Properties

Label 729.6.a.e.1.12
Level $729$
Weight $6$
Character 729.1
Self dual yes
Analytic conductor $116.920$
Analytic rank $0$
Dimension $42$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,6,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(116.919804644\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.08001 q^{2} -6.19352 q^{4} +16.0034 q^{5} -124.463 q^{7} +194.023 q^{8} -81.2975 q^{10} -569.839 q^{11} +506.151 q^{13} +632.275 q^{14} -787.448 q^{16} +802.220 q^{17} +1985.08 q^{19} -99.1175 q^{20} +2894.78 q^{22} -2626.14 q^{23} -2868.89 q^{25} -2571.25 q^{26} +770.867 q^{28} -2863.57 q^{29} -1061.51 q^{31} -2208.51 q^{32} -4075.28 q^{34} -1991.84 q^{35} -10064.4 q^{37} -10084.2 q^{38} +3105.04 q^{40} +8260.52 q^{41} +16683.2 q^{43} +3529.31 q^{44} +13340.8 q^{46} +17511.0 q^{47} -1315.86 q^{49} +14574.0 q^{50} -3134.85 q^{52} -15083.4 q^{53} -9119.36 q^{55} -24148.8 q^{56} +14547.0 q^{58} -7859.28 q^{59} -34078.8 q^{61} +5392.50 q^{62} +36417.6 q^{64} +8100.14 q^{65} -62234.1 q^{67} -4968.57 q^{68} +10118.6 q^{70} -10390.9 q^{71} +22248.0 q^{73} +51127.0 q^{74} -12294.6 q^{76} +70924.1 q^{77} -85664.5 q^{79} -12601.9 q^{80} -41963.5 q^{82} +32676.2 q^{83} +12838.3 q^{85} -84750.7 q^{86} -110562. q^{88} +116390. q^{89} -62997.2 q^{91} +16265.0 q^{92} -88955.9 q^{94} +31768.1 q^{95} -163216. q^{97} +6684.57 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q + 12 q^{2} + 624 q^{4} + 150 q^{5} + 573 q^{8} + 3 q^{10} + 1452 q^{11} + 2256 q^{14} + 8448 q^{16} + 3465 q^{17} + 3 q^{19} + 4128 q^{20} + 96 q^{22} + 5019 q^{23} + 18750 q^{25} + 3903 q^{26} - 6 q^{28}+ \cdots + 463410 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.08001 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(3\) 0 0
\(4\) −6.19352 −0.193548
\(5\) 16.0034 0.286278 0.143139 0.989703i \(-0.454280\pi\)
0.143139 + 0.989703i \(0.454280\pi\)
\(6\) 0 0
\(7\) −124.463 −0.960056 −0.480028 0.877253i \(-0.659374\pi\)
−0.480028 + 0.877253i \(0.659374\pi\)
\(8\) 194.023 1.07184
\(9\) 0 0
\(10\) −81.2975 −0.257085
\(11\) −569.839 −1.41994 −0.709970 0.704232i \(-0.751292\pi\)
−0.709970 + 0.704232i \(0.751292\pi\)
\(12\) 0 0
\(13\) 506.151 0.830656 0.415328 0.909672i \(-0.363667\pi\)
0.415328 + 0.909672i \(0.363667\pi\)
\(14\) 632.275 0.862156
\(15\) 0 0
\(16\) −787.448 −0.768992
\(17\) 802.220 0.673242 0.336621 0.941640i \(-0.390716\pi\)
0.336621 + 0.941640i \(0.390716\pi\)
\(18\) 0 0
\(19\) 1985.08 1.26152 0.630760 0.775978i \(-0.282743\pi\)
0.630760 + 0.775978i \(0.282743\pi\)
\(20\) −99.1175 −0.0554084
\(21\) 0 0
\(22\) 2894.78 1.27514
\(23\) −2626.14 −1.03514 −0.517568 0.855642i \(-0.673163\pi\)
−0.517568 + 0.855642i \(0.673163\pi\)
\(24\) 0 0
\(25\) −2868.89 −0.918045
\(26\) −2571.25 −0.745952
\(27\) 0 0
\(28\) 770.867 0.185817
\(29\) −2863.57 −0.632285 −0.316143 0.948712i \(-0.602388\pi\)
−0.316143 + 0.948712i \(0.602388\pi\)
\(30\) 0 0
\(31\) −1061.51 −0.198391 −0.0991955 0.995068i \(-0.531627\pi\)
−0.0991955 + 0.995068i \(0.531627\pi\)
\(32\) −2208.51 −0.381263
\(33\) 0 0
\(34\) −4075.28 −0.604589
\(35\) −1991.84 −0.274843
\(36\) 0 0
\(37\) −10064.4 −1.20860 −0.604299 0.796758i \(-0.706547\pi\)
−0.604299 + 0.796758i \(0.706547\pi\)
\(38\) −10084.2 −1.13288
\(39\) 0 0
\(40\) 3105.04 0.306843
\(41\) 8260.52 0.767446 0.383723 0.923448i \(-0.374642\pi\)
0.383723 + 0.923448i \(0.374642\pi\)
\(42\) 0 0
\(43\) 16683.2 1.37597 0.687983 0.725727i \(-0.258496\pi\)
0.687983 + 0.725727i \(0.258496\pi\)
\(44\) 3529.31 0.274826
\(45\) 0 0
\(46\) 13340.8 0.929581
\(47\) 17511.0 1.15629 0.578143 0.815935i \(-0.303777\pi\)
0.578143 + 0.815935i \(0.303777\pi\)
\(48\) 0 0
\(49\) −1315.86 −0.0782923
\(50\) 14574.0 0.824429
\(51\) 0 0
\(52\) −3134.85 −0.160772
\(53\) −15083.4 −0.737583 −0.368791 0.929512i \(-0.620228\pi\)
−0.368791 + 0.929512i \(0.620228\pi\)
\(54\) 0 0
\(55\) −9119.36 −0.406497
\(56\) −24148.8 −1.02902
\(57\) 0 0
\(58\) 14547.0 0.567809
\(59\) −7859.28 −0.293936 −0.146968 0.989141i \(-0.546951\pi\)
−0.146968 + 0.989141i \(0.546951\pi\)
\(60\) 0 0
\(61\) −34078.8 −1.17263 −0.586314 0.810084i \(-0.699422\pi\)
−0.586314 + 0.810084i \(0.699422\pi\)
\(62\) 5392.50 0.178160
\(63\) 0 0
\(64\) 36417.6 1.11138
\(65\) 8100.14 0.237798
\(66\) 0 0
\(67\) −62234.1 −1.69372 −0.846859 0.531817i \(-0.821509\pi\)
−0.846859 + 0.531817i \(0.821509\pi\)
\(68\) −4968.57 −0.130304
\(69\) 0 0
\(70\) 10118.6 0.246816
\(71\) −10390.9 −0.244629 −0.122315 0.992491i \(-0.539032\pi\)
−0.122315 + 0.992491i \(0.539032\pi\)
\(72\) 0 0
\(73\) 22248.0 0.488635 0.244317 0.969695i \(-0.421436\pi\)
0.244317 + 0.969695i \(0.421436\pi\)
\(74\) 51127.0 1.08535
\(75\) 0 0
\(76\) −12294.6 −0.244164
\(77\) 70924.1 1.36322
\(78\) 0 0
\(79\) −85664.5 −1.54431 −0.772153 0.635437i \(-0.780820\pi\)
−0.772153 + 0.635437i \(0.780820\pi\)
\(80\) −12601.9 −0.220145
\(81\) 0 0
\(82\) −41963.5 −0.689187
\(83\) 32676.2 0.520639 0.260319 0.965523i \(-0.416172\pi\)
0.260319 + 0.965523i \(0.416172\pi\)
\(84\) 0 0
\(85\) 12838.3 0.192734
\(86\) −84750.7 −1.23565
\(87\) 0 0
\(88\) −110562. −1.52195
\(89\) 116390. 1.55754 0.778772 0.627308i \(-0.215843\pi\)
0.778772 + 0.627308i \(0.215843\pi\)
\(90\) 0 0
\(91\) −62997.2 −0.797477
\(92\) 16265.0 0.200348
\(93\) 0 0
\(94\) −88955.9 −1.03838
\(95\) 31768.1 0.361145
\(96\) 0 0
\(97\) −163216. −1.76130 −0.880648 0.473771i \(-0.842892\pi\)
−0.880648 + 0.473771i \(0.842892\pi\)
\(98\) 6684.57 0.0703086
\(99\) 0 0
\(100\) 17768.5 0.177685
\(101\) −17987.3 −0.175454 −0.0877268 0.996145i \(-0.527960\pi\)
−0.0877268 + 0.996145i \(0.527960\pi\)
\(102\) 0 0
\(103\) 146320. 1.35898 0.679488 0.733687i \(-0.262202\pi\)
0.679488 + 0.733687i \(0.262202\pi\)
\(104\) 98205.0 0.890329
\(105\) 0 0
\(106\) 76624.0 0.662369
\(107\) −200073. −1.68938 −0.844692 0.535253i \(-0.820216\pi\)
−0.844692 + 0.535253i \(0.820216\pi\)
\(108\) 0 0
\(109\) −117299. −0.945645 −0.472822 0.881158i \(-0.656765\pi\)
−0.472822 + 0.881158i \(0.656765\pi\)
\(110\) 46326.4 0.365046
\(111\) 0 0
\(112\) 98008.4 0.738275
\(113\) 219278. 1.61547 0.807736 0.589544i \(-0.200692\pi\)
0.807736 + 0.589544i \(0.200692\pi\)
\(114\) 0 0
\(115\) −42027.2 −0.296337
\(116\) 17735.6 0.122377
\(117\) 0 0
\(118\) 39925.2 0.263962
\(119\) −99847.0 −0.646350
\(120\) 0 0
\(121\) 163665. 1.01623
\(122\) 173121. 1.05305
\(123\) 0 0
\(124\) 6574.52 0.0383981
\(125\) −95922.7 −0.549094
\(126\) 0 0
\(127\) 70990.5 0.390563 0.195282 0.980747i \(-0.437438\pi\)
0.195282 + 0.980747i \(0.437438\pi\)
\(128\) −114329. −0.616783
\(129\) 0 0
\(130\) −41148.8 −0.213549
\(131\) −105374. −0.536480 −0.268240 0.963352i \(-0.586442\pi\)
−0.268240 + 0.963352i \(0.586442\pi\)
\(132\) 0 0
\(133\) −247070. −1.21113
\(134\) 316150. 1.52100
\(135\) 0 0
\(136\) 155649. 0.721606
\(137\) −211495. −0.962717 −0.481358 0.876524i \(-0.659856\pi\)
−0.481358 + 0.876524i \(0.659856\pi\)
\(138\) 0 0
\(139\) −118100. −0.518459 −0.259230 0.965816i \(-0.583469\pi\)
−0.259230 + 0.965816i \(0.583469\pi\)
\(140\) 12336.5 0.0531951
\(141\) 0 0
\(142\) 52786.0 0.219684
\(143\) −288424. −1.17948
\(144\) 0 0
\(145\) −45826.9 −0.181009
\(146\) −113020. −0.438807
\(147\) 0 0
\(148\) 62333.8 0.233921
\(149\) 68356.6 0.252241 0.126120 0.992015i \(-0.459747\pi\)
0.126120 + 0.992015i \(0.459747\pi\)
\(150\) 0 0
\(151\) 96700.2 0.345132 0.172566 0.984998i \(-0.444794\pi\)
0.172566 + 0.984998i \(0.444794\pi\)
\(152\) 385152. 1.35214
\(153\) 0 0
\(154\) −360295. −1.22421
\(155\) −16987.9 −0.0567949
\(156\) 0 0
\(157\) −249547. −0.807986 −0.403993 0.914762i \(-0.632378\pi\)
−0.403993 + 0.914762i \(0.632378\pi\)
\(158\) 435176. 1.38683
\(159\) 0 0
\(160\) −35343.7 −0.109147
\(161\) 326858. 0.993789
\(162\) 0 0
\(163\) 434926. 1.28217 0.641086 0.767469i \(-0.278484\pi\)
0.641086 + 0.767469i \(0.278484\pi\)
\(164\) −51161.7 −0.148537
\(165\) 0 0
\(166\) −165995. −0.467548
\(167\) 649997. 1.80352 0.901758 0.432242i \(-0.142277\pi\)
0.901758 + 0.432242i \(0.142277\pi\)
\(168\) 0 0
\(169\) −115105. −0.310010
\(170\) −65218.5 −0.173081
\(171\) 0 0
\(172\) −103328. −0.266315
\(173\) 637423. 1.61924 0.809622 0.586952i \(-0.199672\pi\)
0.809622 + 0.586952i \(0.199672\pi\)
\(174\) 0 0
\(175\) 357072. 0.881375
\(176\) 448718. 1.09192
\(177\) 0 0
\(178\) −591261. −1.39872
\(179\) −130748. −0.305002 −0.152501 0.988303i \(-0.548733\pi\)
−0.152501 + 0.988303i \(0.548733\pi\)
\(180\) 0 0
\(181\) 39307.8 0.0891831 0.0445916 0.999005i \(-0.485801\pi\)
0.0445916 + 0.999005i \(0.485801\pi\)
\(182\) 320026. 0.716156
\(183\) 0 0
\(184\) −509532. −1.10950
\(185\) −161064. −0.345995
\(186\) 0 0
\(187\) −457136. −0.955963
\(188\) −108455. −0.223797
\(189\) 0 0
\(190\) −161382. −0.324318
\(191\) 483071. 0.958136 0.479068 0.877778i \(-0.340975\pi\)
0.479068 + 0.877778i \(0.340975\pi\)
\(192\) 0 0
\(193\) −466979. −0.902410 −0.451205 0.892420i \(-0.649006\pi\)
−0.451205 + 0.892420i \(0.649006\pi\)
\(194\) 829137. 1.58169
\(195\) 0 0
\(196\) 8149.80 0.0151533
\(197\) −458069. −0.840941 −0.420471 0.907306i \(-0.638135\pi\)
−0.420471 + 0.907306i \(0.638135\pi\)
\(198\) 0 0
\(199\) 684326. 1.22498 0.612492 0.790477i \(-0.290167\pi\)
0.612492 + 0.790477i \(0.290167\pi\)
\(200\) −556632. −0.983995
\(201\) 0 0
\(202\) 91375.6 0.157562
\(203\) 356410. 0.607029
\(204\) 0 0
\(205\) 132197. 0.219703
\(206\) −743308. −1.22040
\(207\) 0 0
\(208\) −398567. −0.638768
\(209\) −1.13118e6 −1.79128
\(210\) 0 0
\(211\) 541424. 0.837205 0.418602 0.908170i \(-0.362520\pi\)
0.418602 + 0.908170i \(0.362520\pi\)
\(212\) 93419.6 0.142757
\(213\) 0 0
\(214\) 1.01637e6 1.51711
\(215\) 266988. 0.393908
\(216\) 0 0
\(217\) 132120. 0.190466
\(218\) 595880. 0.849214
\(219\) 0 0
\(220\) 56481.0 0.0786766
\(221\) 406044. 0.559233
\(222\) 0 0
\(223\) 1.29203e6 1.73985 0.869923 0.493188i \(-0.164168\pi\)
0.869923 + 0.493188i \(0.164168\pi\)
\(224\) 274879. 0.366033
\(225\) 0 0
\(226\) −1.11394e6 −1.45074
\(227\) 960510. 1.23719 0.618596 0.785709i \(-0.287702\pi\)
0.618596 + 0.785709i \(0.287702\pi\)
\(228\) 0 0
\(229\) −130323. −0.164222 −0.0821112 0.996623i \(-0.526166\pi\)
−0.0821112 + 0.996623i \(0.526166\pi\)
\(230\) 213498. 0.266118
\(231\) 0 0
\(232\) −555600. −0.677707
\(233\) 593425. 0.716104 0.358052 0.933702i \(-0.383441\pi\)
0.358052 + 0.933702i \(0.383441\pi\)
\(234\) 0 0
\(235\) 280235. 0.331019
\(236\) 48676.6 0.0568906
\(237\) 0 0
\(238\) 507224. 0.580440
\(239\) 1.23978e6 1.40395 0.701974 0.712202i \(-0.252302\pi\)
0.701974 + 0.712202i \(0.252302\pi\)
\(240\) 0 0
\(241\) 1.04508e6 1.15906 0.579532 0.814949i \(-0.303235\pi\)
0.579532 + 0.814949i \(0.303235\pi\)
\(242\) −831420. −0.912603
\(243\) 0 0
\(244\) 211068. 0.226959
\(245\) −21058.2 −0.0224133
\(246\) 0 0
\(247\) 1.00475e6 1.04789
\(248\) −205959. −0.212643
\(249\) 0 0
\(250\) 487288. 0.493101
\(251\) 670594. 0.671854 0.335927 0.941888i \(-0.390950\pi\)
0.335927 + 0.941888i \(0.390950\pi\)
\(252\) 0 0
\(253\) 1.49647e6 1.46983
\(254\) −360632. −0.350736
\(255\) 0 0
\(256\) −584569. −0.557488
\(257\) 1.10596e6 1.04449 0.522247 0.852795i \(-0.325094\pi\)
0.522247 + 0.852795i \(0.325094\pi\)
\(258\) 0 0
\(259\) 1.25264e6 1.16032
\(260\) −50168.4 −0.0460253
\(261\) 0 0
\(262\) 535298. 0.481773
\(263\) 521342. 0.464765 0.232382 0.972624i \(-0.425348\pi\)
0.232382 + 0.972624i \(0.425348\pi\)
\(264\) 0 0
\(265\) −241387. −0.211154
\(266\) 1.25512e6 1.08763
\(267\) 0 0
\(268\) 385448. 0.327815
\(269\) 752426. 0.633991 0.316995 0.948427i \(-0.397326\pi\)
0.316995 + 0.948427i \(0.397326\pi\)
\(270\) 0 0
\(271\) −1.05481e6 −0.872475 −0.436237 0.899832i \(-0.643689\pi\)
−0.436237 + 0.899832i \(0.643689\pi\)
\(272\) −631706. −0.517718
\(273\) 0 0
\(274\) 1.07440e6 0.864545
\(275\) 1.63480e6 1.30357
\(276\) 0 0
\(277\) −70666.7 −0.0553370 −0.0276685 0.999617i \(-0.508808\pi\)
−0.0276685 + 0.999617i \(0.508808\pi\)
\(278\) 599951. 0.465590
\(279\) 0 0
\(280\) −386463. −0.294587
\(281\) −850903. −0.642857 −0.321429 0.946934i \(-0.604163\pi\)
−0.321429 + 0.946934i \(0.604163\pi\)
\(282\) 0 0
\(283\) −9066.40 −0.00672928 −0.00336464 0.999994i \(-0.501071\pi\)
−0.00336464 + 0.999994i \(0.501071\pi\)
\(284\) 64356.5 0.0473474
\(285\) 0 0
\(286\) 1.46520e6 1.05921
\(287\) −1.02813e6 −0.736791
\(288\) 0 0
\(289\) −776300. −0.546745
\(290\) 232801. 0.162551
\(291\) 0 0
\(292\) −137794. −0.0945740
\(293\) 1.56759e6 1.06675 0.533376 0.845878i \(-0.320923\pi\)
0.533376 + 0.845878i \(0.320923\pi\)
\(294\) 0 0
\(295\) −125775. −0.0841473
\(296\) −1.95272e6 −1.29542
\(297\) 0 0
\(298\) −347252. −0.226519
\(299\) −1.32922e6 −0.859843
\(300\) 0 0
\(301\) −2.07645e6 −1.32100
\(302\) −491238. −0.309938
\(303\) 0 0
\(304\) −1.56315e6 −0.970098
\(305\) −545378. −0.335697
\(306\) 0 0
\(307\) −117066. −0.0708899 −0.0354450 0.999372i \(-0.511285\pi\)
−0.0354450 + 0.999372i \(0.511285\pi\)
\(308\) −439270. −0.263848
\(309\) 0 0
\(310\) 86298.5 0.0510034
\(311\) 1.09944e6 0.644568 0.322284 0.946643i \(-0.395549\pi\)
0.322284 + 0.946643i \(0.395549\pi\)
\(312\) 0 0
\(313\) 2.54078e6 1.46591 0.732954 0.680278i \(-0.238141\pi\)
0.732954 + 0.680278i \(0.238141\pi\)
\(314\) 1.26770e6 0.725593
\(315\) 0 0
\(316\) 530565. 0.298897
\(317\) 432967. 0.241995 0.120998 0.992653i \(-0.461391\pi\)
0.120998 + 0.992653i \(0.461391\pi\)
\(318\) 0 0
\(319\) 1.63177e6 0.897808
\(320\) 582805. 0.318162
\(321\) 0 0
\(322\) −1.66044e6 −0.892450
\(323\) 1.59247e6 0.849308
\(324\) 0 0
\(325\) −1.45209e6 −0.762580
\(326\) −2.20943e6 −1.15143
\(327\) 0 0
\(328\) 1.60273e6 0.822577
\(329\) −2.17948e6 −1.11010
\(330\) 0 0
\(331\) −685734. −0.344021 −0.172011 0.985095i \(-0.555026\pi\)
−0.172011 + 0.985095i \(0.555026\pi\)
\(332\) −202381. −0.100768
\(333\) 0 0
\(334\) −3.30199e6 −1.61961
\(335\) −995958. −0.484874
\(336\) 0 0
\(337\) −2.32900e6 −1.11711 −0.558553 0.829469i \(-0.688643\pi\)
−0.558553 + 0.829469i \(0.688643\pi\)
\(338\) 584732. 0.278397
\(339\) 0 0
\(340\) −79514.0 −0.0373032
\(341\) 604892. 0.281703
\(342\) 0 0
\(343\) 2.25563e6 1.03522
\(344\) 3.23693e6 1.47481
\(345\) 0 0
\(346\) −3.23811e6 −1.45412
\(347\) −1.99993e6 −0.891643 −0.445822 0.895122i \(-0.647088\pi\)
−0.445822 + 0.895122i \(0.647088\pi\)
\(348\) 0 0
\(349\) −749766. −0.329505 −0.164753 0.986335i \(-0.552683\pi\)
−0.164753 + 0.986335i \(0.552683\pi\)
\(350\) −1.81393e6 −0.791498
\(351\) 0 0
\(352\) 1.25849e6 0.541370
\(353\) 1.84975e6 0.790088 0.395044 0.918662i \(-0.370729\pi\)
0.395044 + 0.918662i \(0.370729\pi\)
\(354\) 0 0
\(355\) −166290. −0.0700320
\(356\) −720863. −0.301459
\(357\) 0 0
\(358\) 664201. 0.273900
\(359\) −255855. −0.104775 −0.0523875 0.998627i \(-0.516683\pi\)
−0.0523875 + 0.998627i \(0.516683\pi\)
\(360\) 0 0
\(361\) 1.46445e6 0.591432
\(362\) −199684. −0.0800888
\(363\) 0 0
\(364\) 390175. 0.154350
\(365\) 356044. 0.139885
\(366\) 0 0
\(367\) −866048. −0.335642 −0.167821 0.985817i \(-0.553673\pi\)
−0.167821 + 0.985817i \(0.553673\pi\)
\(368\) 2.06795e6 0.796012
\(369\) 0 0
\(370\) 818207. 0.310713
\(371\) 1.87734e6 0.708121
\(372\) 0 0
\(373\) 928422. 0.345520 0.172760 0.984964i \(-0.444731\pi\)
0.172760 + 0.984964i \(0.444731\pi\)
\(374\) 2.32225e6 0.858481
\(375\) 0 0
\(376\) 3.39754e6 1.23935
\(377\) −1.44940e6 −0.525212
\(378\) 0 0
\(379\) 1.89728e6 0.678475 0.339238 0.940701i \(-0.389831\pi\)
0.339238 + 0.940701i \(0.389831\pi\)
\(380\) −196756. −0.0698988
\(381\) 0 0
\(382\) −2.45400e6 −0.860432
\(383\) 3.48210e6 1.21295 0.606477 0.795101i \(-0.292582\pi\)
0.606477 + 0.795101i \(0.292582\pi\)
\(384\) 0 0
\(385\) 1.13503e6 0.390260
\(386\) 2.37226e6 0.810389
\(387\) 0 0
\(388\) 1.01088e6 0.340895
\(389\) 2.34168e6 0.784609 0.392304 0.919835i \(-0.371678\pi\)
0.392304 + 0.919835i \(0.371678\pi\)
\(390\) 0 0
\(391\) −2.10674e6 −0.696898
\(392\) −255307. −0.0839167
\(393\) 0 0
\(394\) 2.32700e6 0.755188
\(395\) −1.37093e6 −0.442100
\(396\) 0 0
\(397\) 2.13641e6 0.680314 0.340157 0.940369i \(-0.389520\pi\)
0.340157 + 0.940369i \(0.389520\pi\)
\(398\) −3.47638e6 −1.10007
\(399\) 0 0
\(400\) 2.25910e6 0.705969
\(401\) −5.13546e6 −1.59485 −0.797423 0.603421i \(-0.793804\pi\)
−0.797423 + 0.603421i \(0.793804\pi\)
\(402\) 0 0
\(403\) −537286. −0.164795
\(404\) 111405. 0.0339586
\(405\) 0 0
\(406\) −1.81057e6 −0.545129
\(407\) 5.73506e6 1.71614
\(408\) 0 0
\(409\) 166729. 0.0492835 0.0246418 0.999696i \(-0.492155\pi\)
0.0246418 + 0.999696i \(0.492155\pi\)
\(410\) −671559. −0.197299
\(411\) 0 0
\(412\) −906238. −0.263026
\(413\) 978192. 0.282195
\(414\) 0 0
\(415\) 522931. 0.149047
\(416\) −1.11784e6 −0.316698
\(417\) 0 0
\(418\) 5.74638e6 1.60862
\(419\) 1.18915e6 0.330903 0.165452 0.986218i \(-0.447092\pi\)
0.165452 + 0.986218i \(0.447092\pi\)
\(420\) 0 0
\(421\) −5.88992e6 −1.61959 −0.809793 0.586716i \(-0.800420\pi\)
−0.809793 + 0.586716i \(0.800420\pi\)
\(422\) −2.75044e6 −0.751832
\(423\) 0 0
\(424\) −2.92654e6 −0.790569
\(425\) −2.30148e6 −0.618066
\(426\) 0 0
\(427\) 4.24157e6 1.12579
\(428\) 1.23915e6 0.326976
\(429\) 0 0
\(430\) −1.35630e6 −0.353740
\(431\) 5.29916e6 1.37409 0.687043 0.726617i \(-0.258909\pi\)
0.687043 + 0.726617i \(0.258909\pi\)
\(432\) 0 0
\(433\) −702037. −0.179945 −0.0899726 0.995944i \(-0.528678\pi\)
−0.0899726 + 0.995944i \(0.528678\pi\)
\(434\) −671169. −0.171044
\(435\) 0 0
\(436\) 726494. 0.183027
\(437\) −5.21309e6 −1.30585
\(438\) 0 0
\(439\) 537299. 0.133062 0.0665311 0.997784i \(-0.478807\pi\)
0.0665311 + 0.997784i \(0.478807\pi\)
\(440\) −1.76937e6 −0.435699
\(441\) 0 0
\(442\) −2.06271e6 −0.502206
\(443\) 3.74855e6 0.907515 0.453758 0.891125i \(-0.350083\pi\)
0.453758 + 0.891125i \(0.350083\pi\)
\(444\) 0 0
\(445\) 1.86264e6 0.445890
\(446\) −6.56353e6 −1.56243
\(447\) 0 0
\(448\) −4.53265e6 −1.06698
\(449\) 688744. 0.161229 0.0806143 0.996745i \(-0.474312\pi\)
0.0806143 + 0.996745i \(0.474312\pi\)
\(450\) 0 0
\(451\) −4.70716e6 −1.08973
\(452\) −1.35811e6 −0.312671
\(453\) 0 0
\(454\) −4.87940e6 −1.11103
\(455\) −1.00817e6 −0.228300
\(456\) 0 0
\(457\) −3.41882e6 −0.765748 −0.382874 0.923801i \(-0.625066\pi\)
−0.382874 + 0.923801i \(0.625066\pi\)
\(458\) 662042. 0.147476
\(459\) 0 0
\(460\) 260296. 0.0573553
\(461\) −1.27283e6 −0.278944 −0.139472 0.990226i \(-0.544541\pi\)
−0.139472 + 0.990226i \(0.544541\pi\)
\(462\) 0 0
\(463\) 6.56896e6 1.42411 0.712056 0.702123i \(-0.247764\pi\)
0.712056 + 0.702123i \(0.247764\pi\)
\(464\) 2.25491e6 0.486222
\(465\) 0 0
\(466\) −3.01461e6 −0.643081
\(467\) −160043. −0.0339581 −0.0169791 0.999856i \(-0.505405\pi\)
−0.0169791 + 0.999856i \(0.505405\pi\)
\(468\) 0 0
\(469\) 7.74586e6 1.62606
\(470\) −1.42360e6 −0.297264
\(471\) 0 0
\(472\) −1.52488e6 −0.315052
\(473\) −9.50672e6 −1.95379
\(474\) 0 0
\(475\) −5.69498e6 −1.15813
\(476\) 618405. 0.125099
\(477\) 0 0
\(478\) −6.29811e6 −1.26078
\(479\) −3.22750e6 −0.642729 −0.321364 0.946956i \(-0.604141\pi\)
−0.321364 + 0.946956i \(0.604141\pi\)
\(480\) 0 0
\(481\) −5.09408e6 −1.00393
\(482\) −5.30902e6 −1.04087
\(483\) 0 0
\(484\) −1.01366e6 −0.196689
\(485\) −2.61201e6 −0.504220
\(486\) 0 0
\(487\) 8.61882e6 1.64674 0.823371 0.567504i \(-0.192091\pi\)
0.823371 + 0.567504i \(0.192091\pi\)
\(488\) −6.61209e6 −1.25687
\(489\) 0 0
\(490\) 106976. 0.0201278
\(491\) 1.39734e6 0.261576 0.130788 0.991410i \(-0.458249\pi\)
0.130788 + 0.991410i \(0.458249\pi\)
\(492\) 0 0
\(493\) −2.29721e6 −0.425681
\(494\) −5.10414e6 −0.941033
\(495\) 0 0
\(496\) 835887. 0.152561
\(497\) 1.29329e6 0.234858
\(498\) 0 0
\(499\) 237068. 0.0426208 0.0213104 0.999773i \(-0.493216\pi\)
0.0213104 + 0.999773i \(0.493216\pi\)
\(500\) 594100. 0.106276
\(501\) 0 0
\(502\) −3.40662e6 −0.603343
\(503\) −6.60991e6 −1.16487 −0.582433 0.812879i \(-0.697899\pi\)
−0.582433 + 0.812879i \(0.697899\pi\)
\(504\) 0 0
\(505\) −287858. −0.0502285
\(506\) −7.60210e6 −1.31995
\(507\) 0 0
\(508\) −439681. −0.0755925
\(509\) 2.59325e6 0.443660 0.221830 0.975085i \(-0.428797\pi\)
0.221830 + 0.975085i \(0.428797\pi\)
\(510\) 0 0
\(511\) −2.76906e6 −0.469117
\(512\) 6.62815e6 1.11742
\(513\) 0 0
\(514\) −5.61827e6 −0.937983
\(515\) 2.34162e6 0.389044
\(516\) 0 0
\(517\) −9.97843e6 −1.64186
\(518\) −6.36344e6 −1.04200
\(519\) 0 0
\(520\) 1.57162e6 0.254881
\(521\) −7.93434e6 −1.28061 −0.640304 0.768121i \(-0.721192\pi\)
−0.640304 + 0.768121i \(0.721192\pi\)
\(522\) 0 0
\(523\) −1.63391e6 −0.261201 −0.130600 0.991435i \(-0.541691\pi\)
−0.130600 + 0.991435i \(0.541691\pi\)
\(524\) 652633. 0.103834
\(525\) 0 0
\(526\) −2.64842e6 −0.417371
\(527\) −851568. −0.133565
\(528\) 0 0
\(529\) 460253. 0.0715084
\(530\) 1.22625e6 0.189622
\(531\) 0 0
\(532\) 1.53023e6 0.234411
\(533\) 4.18107e6 0.637484
\(534\) 0 0
\(535\) −3.20185e6 −0.483633
\(536\) −1.20749e7 −1.81539
\(537\) 0 0
\(538\) −3.82233e6 −0.569341
\(539\) 749827. 0.111170
\(540\) 0 0
\(541\) 4.48902e6 0.659414 0.329707 0.944083i \(-0.393050\pi\)
0.329707 + 0.944083i \(0.393050\pi\)
\(542\) 5.35847e6 0.783506
\(543\) 0 0
\(544\) −1.77171e6 −0.256682
\(545\) −1.87718e6 −0.270717
\(546\) 0 0
\(547\) −1.04617e6 −0.149497 −0.0747487 0.997202i \(-0.523815\pi\)
−0.0747487 + 0.997202i \(0.523815\pi\)
\(548\) 1.30990e6 0.186331
\(549\) 0 0
\(550\) −8.30482e6 −1.17064
\(551\) −5.68442e6 −0.797641
\(552\) 0 0
\(553\) 1.06621e7 1.48262
\(554\) 358987. 0.0496941
\(555\) 0 0
\(556\) 731458. 0.100346
\(557\) 4.12965e6 0.563995 0.281998 0.959415i \(-0.409003\pi\)
0.281998 + 0.959415i \(0.409003\pi\)
\(558\) 0 0
\(559\) 8.44420e6 1.14295
\(560\) 1.56847e6 0.211352
\(561\) 0 0
\(562\) 4.32260e6 0.577303
\(563\) −1.35498e7 −1.80161 −0.900806 0.434221i \(-0.857024\pi\)
−0.900806 + 0.434221i \(0.857024\pi\)
\(564\) 0 0
\(565\) 3.50920e6 0.462474
\(566\) 46057.4 0.00604308
\(567\) 0 0
\(568\) −2.01608e6 −0.262203
\(569\) 4.47889e6 0.579949 0.289975 0.957034i \(-0.406353\pi\)
0.289975 + 0.957034i \(0.406353\pi\)
\(570\) 0 0
\(571\) −9.06059e6 −1.16296 −0.581482 0.813559i \(-0.697527\pi\)
−0.581482 + 0.813559i \(0.697527\pi\)
\(572\) 1.78636e6 0.228286
\(573\) 0 0
\(574\) 5.22292e6 0.661658
\(575\) 7.53410e6 0.950302
\(576\) 0 0
\(577\) −567132. −0.0709160 −0.0354580 0.999371i \(-0.511289\pi\)
−0.0354580 + 0.999371i \(0.511289\pi\)
\(578\) 3.94361e6 0.490992
\(579\) 0 0
\(580\) 283830. 0.0350339
\(581\) −4.06699e6 −0.499843
\(582\) 0 0
\(583\) 8.59513e6 1.04732
\(584\) 4.31664e6 0.523737
\(585\) 0 0
\(586\) −7.96337e6 −0.957972
\(587\) 6.96933e6 0.834826 0.417413 0.908717i \(-0.362937\pi\)
0.417413 + 0.908717i \(0.362937\pi\)
\(588\) 0 0
\(589\) −2.10719e6 −0.250274
\(590\) 638939. 0.0755665
\(591\) 0 0
\(592\) 7.92515e6 0.929402
\(593\) −8.17118e6 −0.954219 −0.477109 0.878844i \(-0.658315\pi\)
−0.477109 + 0.878844i \(0.658315\pi\)
\(594\) 0 0
\(595\) −1.59789e6 −0.185036
\(596\) −423368. −0.0488206
\(597\) 0 0
\(598\) 6.75245e6 0.772162
\(599\) −5.80504e6 −0.661056 −0.330528 0.943796i \(-0.607227\pi\)
−0.330528 + 0.943796i \(0.607227\pi\)
\(600\) 0 0
\(601\) −2.82872e6 −0.319451 −0.159725 0.987162i \(-0.551061\pi\)
−0.159725 + 0.987162i \(0.551061\pi\)
\(602\) 1.05484e7 1.18630
\(603\) 0 0
\(604\) −598915. −0.0667995
\(605\) 2.61920e6 0.290924
\(606\) 0 0
\(607\) −1.02918e7 −1.13376 −0.566878 0.823802i \(-0.691849\pi\)
−0.566878 + 0.823802i \(0.691849\pi\)
\(608\) −4.38407e6 −0.480970
\(609\) 0 0
\(610\) 2.77052e6 0.301465
\(611\) 8.86319e6 0.960477
\(612\) 0 0
\(613\) 1.09558e7 1.17759 0.588795 0.808282i \(-0.299602\pi\)
0.588795 + 0.808282i \(0.299602\pi\)
\(614\) 594696. 0.0636611
\(615\) 0 0
\(616\) 1.37609e7 1.46115
\(617\) −1.14615e6 −0.121207 −0.0606037 0.998162i \(-0.519303\pi\)
−0.0606037 + 0.998162i \(0.519303\pi\)
\(618\) 0 0
\(619\) −1.10949e6 −0.116385 −0.0581926 0.998305i \(-0.518534\pi\)
−0.0581926 + 0.998305i \(0.518534\pi\)
\(620\) 105215. 0.0109925
\(621\) 0 0
\(622\) −5.58514e6 −0.578840
\(623\) −1.44863e7 −1.49533
\(624\) 0 0
\(625\) 7.43019e6 0.760852
\(626\) −1.29072e7 −1.31643
\(627\) 0 0
\(628\) 1.54558e6 0.156384
\(629\) −8.07383e6 −0.813679
\(630\) 0 0
\(631\) −1.05600e7 −1.05582 −0.527912 0.849299i \(-0.677025\pi\)
−0.527912 + 0.849299i \(0.677025\pi\)
\(632\) −1.66209e7 −1.65525
\(633\) 0 0
\(634\) −2.19948e6 −0.217318
\(635\) 1.13609e6 0.111810
\(636\) 0 0
\(637\) −666023. −0.0650340
\(638\) −8.28942e6 −0.806255
\(639\) 0 0
\(640\) −1.82966e6 −0.176571
\(641\) 1.60094e7 1.53897 0.769483 0.638668i \(-0.220514\pi\)
0.769483 + 0.638668i \(0.220514\pi\)
\(642\) 0 0
\(643\) −7.66694e6 −0.731298 −0.365649 0.930753i \(-0.619153\pi\)
−0.365649 + 0.930753i \(0.619153\pi\)
\(644\) −2.02440e6 −0.192346
\(645\) 0 0
\(646\) −8.08977e6 −0.762702
\(647\) −1.47237e7 −1.38279 −0.691397 0.722475i \(-0.743004\pi\)
−0.691397 + 0.722475i \(0.743004\pi\)
\(648\) 0 0
\(649\) 4.47852e6 0.417371
\(650\) 7.37663e6 0.684817
\(651\) 0 0
\(652\) −2.69372e6 −0.248161
\(653\) −1.29579e7 −1.18919 −0.594595 0.804025i \(-0.702688\pi\)
−0.594595 + 0.804025i \(0.702688\pi\)
\(654\) 0 0
\(655\) −1.68634e6 −0.153582
\(656\) −6.50473e6 −0.590159
\(657\) 0 0
\(658\) 1.10718e7 0.996900
\(659\) 1.98288e7 1.77862 0.889311 0.457302i \(-0.151184\pi\)
0.889311 + 0.457302i \(0.151184\pi\)
\(660\) 0 0
\(661\) 6.67103e6 0.593867 0.296934 0.954898i \(-0.404036\pi\)
0.296934 + 0.954898i \(0.404036\pi\)
\(662\) 3.48353e6 0.308941
\(663\) 0 0
\(664\) 6.33995e6 0.558041
\(665\) −3.95396e6 −0.346720
\(666\) 0 0
\(667\) 7.52013e6 0.654502
\(668\) −4.02577e6 −0.349066
\(669\) 0 0
\(670\) 5.05947e6 0.435430
\(671\) 1.94194e7 1.66506
\(672\) 0 0
\(673\) 1.60379e6 0.136493 0.0682463 0.997669i \(-0.478260\pi\)
0.0682463 + 0.997669i \(0.478260\pi\)
\(674\) 1.18313e7 1.00319
\(675\) 0 0
\(676\) 712903. 0.0600017
\(677\) 5.42092e6 0.454571 0.227285 0.973828i \(-0.427015\pi\)
0.227285 + 0.973828i \(0.427015\pi\)
\(678\) 0 0
\(679\) 2.03144e7 1.69094
\(680\) 2.49092e6 0.206580
\(681\) 0 0
\(682\) −3.07286e6 −0.252977
\(683\) 8.07067e6 0.661999 0.331000 0.943631i \(-0.392614\pi\)
0.331000 + 0.943631i \(0.392614\pi\)
\(684\) 0 0
\(685\) −3.38464e6 −0.275604
\(686\) −1.14586e7 −0.929656
\(687\) 0 0
\(688\) −1.31371e7 −1.05811
\(689\) −7.63449e6 −0.612678
\(690\) 0 0
\(691\) 1.58046e7 1.25918 0.629590 0.776928i \(-0.283223\pi\)
0.629590 + 0.776928i \(0.283223\pi\)
\(692\) −3.94789e6 −0.313401
\(693\) 0 0
\(694\) 1.01597e7 0.800719
\(695\) −1.89001e6 −0.148423
\(696\) 0 0
\(697\) 6.62675e6 0.516677
\(698\) 3.80882e6 0.295905
\(699\) 0 0
\(700\) −2.21153e6 −0.170588
\(701\) 2.34265e6 0.180058 0.0900291 0.995939i \(-0.471304\pi\)
0.0900291 + 0.995939i \(0.471304\pi\)
\(702\) 0 0
\(703\) −1.99786e7 −1.52467
\(704\) −2.07521e7 −1.57809
\(705\) 0 0
\(706\) −9.39672e6 −0.709520
\(707\) 2.23876e6 0.168445
\(708\) 0 0
\(709\) −9.68102e6 −0.723278 −0.361639 0.932318i \(-0.617783\pi\)
−0.361639 + 0.932318i \(0.617783\pi\)
\(710\) 844757. 0.0628906
\(711\) 0 0
\(712\) 2.25824e7 1.66943
\(713\) 2.78768e6 0.205362
\(714\) 0 0
\(715\) −4.61577e6 −0.337660
\(716\) 809791. 0.0590324
\(717\) 0 0
\(718\) 1.29974e6 0.0940908
\(719\) 2.52286e6 0.182000 0.0909998 0.995851i \(-0.470994\pi\)
0.0909998 + 0.995851i \(0.470994\pi\)
\(720\) 0 0
\(721\) −1.82115e7 −1.30469
\(722\) −7.43939e6 −0.531122
\(723\) 0 0
\(724\) −243454. −0.0172612
\(725\) 8.21527e6 0.580466
\(726\) 0 0
\(727\) 2.62482e7 1.84189 0.920946 0.389691i \(-0.127418\pi\)
0.920946 + 0.389691i \(0.127418\pi\)
\(728\) −1.22229e7 −0.854766
\(729\) 0 0
\(730\) −1.80871e6 −0.125621
\(731\) 1.33836e7 0.926358
\(732\) 0 0
\(733\) 1.46222e7 1.00520 0.502602 0.864518i \(-0.332376\pi\)
0.502602 + 0.864518i \(0.332376\pi\)
\(734\) 4.39953e6 0.301416
\(735\) 0 0
\(736\) 5.79985e6 0.394659
\(737\) 3.54634e7 2.40498
\(738\) 0 0
\(739\) 1.37426e7 0.925671 0.462835 0.886444i \(-0.346832\pi\)
0.462835 + 0.886444i \(0.346832\pi\)
\(740\) 997554. 0.0669664
\(741\) 0 0
\(742\) −9.53688e6 −0.635912
\(743\) −1.64137e7 −1.09077 −0.545387 0.838184i \(-0.683617\pi\)
−0.545387 + 0.838184i \(0.683617\pi\)
\(744\) 0 0
\(745\) 1.09394e6 0.0722109
\(746\) −4.71639e6 −0.310286
\(747\) 0 0
\(748\) 2.83128e6 0.185024
\(749\) 2.49017e7 1.62190
\(750\) 0 0
\(751\) −9.97932e6 −0.645656 −0.322828 0.946458i \(-0.604634\pi\)
−0.322828 + 0.946458i \(0.604634\pi\)
\(752\) −1.37890e7 −0.889175
\(753\) 0 0
\(754\) 7.36296e6 0.471654
\(755\) 1.54753e6 0.0988036
\(756\) 0 0
\(757\) 1.33937e7 0.849495 0.424747 0.905312i \(-0.360363\pi\)
0.424747 + 0.905312i \(0.360363\pi\)
\(758\) −9.63821e6 −0.609289
\(759\) 0 0
\(760\) 6.16375e6 0.387089
\(761\) −1.43357e7 −0.897341 −0.448670 0.893697i \(-0.648102\pi\)
−0.448670 + 0.893697i \(0.648102\pi\)
\(762\) 0 0
\(763\) 1.45994e7 0.907872
\(764\) −2.99191e6 −0.185445
\(765\) 0 0
\(766\) −1.76891e7 −1.08927
\(767\) −3.97798e6 −0.244160
\(768\) 0 0
\(769\) 2.75117e6 0.167765 0.0838826 0.996476i \(-0.473268\pi\)
0.0838826 + 0.996476i \(0.473268\pi\)
\(770\) −5.76595e6 −0.350464
\(771\) 0 0
\(772\) 2.89224e6 0.174659
\(773\) 1.11095e7 0.668722 0.334361 0.942445i \(-0.391480\pi\)
0.334361 + 0.942445i \(0.391480\pi\)
\(774\) 0 0
\(775\) 3.04537e6 0.182132
\(776\) −3.16676e7 −1.88782
\(777\) 0 0
\(778\) −1.18957e7 −0.704600
\(779\) 1.63978e7 0.968148
\(780\) 0 0
\(781\) 5.92115e6 0.347359
\(782\) 1.07023e7 0.625833
\(783\) 0 0
\(784\) 1.03617e6 0.0602061
\(785\) −3.99361e6 −0.231308
\(786\) 0 0
\(787\) −1.09250e7 −0.628757 −0.314379 0.949298i \(-0.601796\pi\)
−0.314379 + 0.949298i \(0.601796\pi\)
\(788\) 2.83706e6 0.162762
\(789\) 0 0
\(790\) 6.96431e6 0.397018
\(791\) −2.72921e7 −1.55094
\(792\) 0 0
\(793\) −1.72490e7 −0.974051
\(794\) −1.08530e7 −0.610940
\(795\) 0 0
\(796\) −4.23839e6 −0.237093
\(797\) 2.23804e7 1.24802 0.624011 0.781416i \(-0.285502\pi\)
0.624011 + 0.781416i \(0.285502\pi\)
\(798\) 0 0
\(799\) 1.40477e7 0.778461
\(800\) 6.33597e6 0.350016
\(801\) 0 0
\(802\) 2.60882e7 1.43221
\(803\) −1.26778e7 −0.693832
\(804\) 0 0
\(805\) 5.23084e6 0.284500
\(806\) 2.72942e6 0.147990
\(807\) 0 0
\(808\) −3.48996e6 −0.188058
\(809\) −1.69242e7 −0.909153 −0.454576 0.890708i \(-0.650209\pi\)
−0.454576 + 0.890708i \(0.650209\pi\)
\(810\) 0 0
\(811\) 2.67183e6 0.142645 0.0713226 0.997453i \(-0.477278\pi\)
0.0713226 + 0.997453i \(0.477278\pi\)
\(812\) −2.20743e6 −0.117489
\(813\) 0 0
\(814\) −2.91341e7 −1.54114
\(815\) 6.96030e6 0.367057
\(816\) 0 0
\(817\) 3.31174e7 1.73581
\(818\) −846983. −0.0442579
\(819\) 0 0
\(820\) −818762. −0.0425229
\(821\) −5.35751e6 −0.277399 −0.138700 0.990335i \(-0.544292\pi\)
−0.138700 + 0.990335i \(0.544292\pi\)
\(822\) 0 0
\(823\) 357088. 0.0183770 0.00918851 0.999958i \(-0.497075\pi\)
0.00918851 + 0.999958i \(0.497075\pi\)
\(824\) 2.83896e7 1.45660
\(825\) 0 0
\(826\) −4.96922e6 −0.253419
\(827\) −1.09197e7 −0.555198 −0.277599 0.960697i \(-0.589539\pi\)
−0.277599 + 0.960697i \(0.589539\pi\)
\(828\) 0 0
\(829\) −2.62577e7 −1.32700 −0.663499 0.748177i \(-0.730929\pi\)
−0.663499 + 0.748177i \(0.730929\pi\)
\(830\) −2.65649e6 −0.133849
\(831\) 0 0
\(832\) 1.84328e7 0.923171
\(833\) −1.05561e6 −0.0527097
\(834\) 0 0
\(835\) 1.04022e7 0.516307
\(836\) 7.00596e6 0.346699
\(837\) 0 0
\(838\) −6.04088e6 −0.297160
\(839\) 1.74920e7 0.857896 0.428948 0.903329i \(-0.358884\pi\)
0.428948 + 0.903329i \(0.358884\pi\)
\(840\) 0 0
\(841\) −1.23111e7 −0.600215
\(842\) 2.99208e7 1.45443
\(843\) 0 0
\(844\) −3.35332e6 −0.162039
\(845\) −1.84207e6 −0.0887490
\(846\) 0 0
\(847\) −2.03703e7 −0.975639
\(848\) 1.18774e7 0.567195
\(849\) 0 0
\(850\) 1.16915e7 0.555040
\(851\) 2.64304e7 1.25106
\(852\) 0 0
\(853\) −3.14997e7 −1.48229 −0.741147 0.671343i \(-0.765718\pi\)
−0.741147 + 0.671343i \(0.765718\pi\)
\(854\) −2.15472e7 −1.01099
\(855\) 0 0
\(856\) −3.88188e7 −1.81075
\(857\) 1.44326e7 0.671265 0.335632 0.941993i \(-0.391050\pi\)
0.335632 + 0.941993i \(0.391050\pi\)
\(858\) 0 0
\(859\) 106278. 0.00491427 0.00245714 0.999997i \(-0.499218\pi\)
0.00245714 + 0.999997i \(0.499218\pi\)
\(860\) −1.65359e6 −0.0762400
\(861\) 0 0
\(862\) −2.69198e7 −1.23397
\(863\) 1.69735e7 0.775792 0.387896 0.921703i \(-0.373202\pi\)
0.387896 + 0.921703i \(0.373202\pi\)
\(864\) 0 0
\(865\) 1.02009e7 0.463553
\(866\) 3.56635e6 0.161596
\(867\) 0 0
\(868\) −818287. −0.0368643
\(869\) 4.88150e7 2.19282
\(870\) 0 0
\(871\) −3.14998e7 −1.40690
\(872\) −2.27587e7 −1.01358
\(873\) 0 0
\(874\) 2.64826e7 1.17268
\(875\) 1.19389e7 0.527161
\(876\) 0 0
\(877\) 2.08946e7 0.917350 0.458675 0.888604i \(-0.348324\pi\)
0.458675 + 0.888604i \(0.348324\pi\)
\(878\) −2.72948e6 −0.119493
\(879\) 0 0
\(880\) 7.18102e6 0.312593
\(881\) 3.16804e7 1.37515 0.687576 0.726113i \(-0.258675\pi\)
0.687576 + 0.726113i \(0.258675\pi\)
\(882\) 0 0
\(883\) 2.61037e7 1.12668 0.563339 0.826226i \(-0.309516\pi\)
0.563339 + 0.826226i \(0.309516\pi\)
\(884\) −2.51484e6 −0.108238
\(885\) 0 0
\(886\) −1.90427e7 −0.814973
\(887\) −3.74614e7 −1.59873 −0.799365 0.600846i \(-0.794831\pi\)
−0.799365 + 0.600846i \(0.794831\pi\)
\(888\) 0 0
\(889\) −8.83572e6 −0.374962
\(890\) −9.46220e6 −0.400421
\(891\) 0 0
\(892\) −8.00222e6 −0.336743
\(893\) 3.47607e7 1.45868
\(894\) 0 0
\(895\) −2.09242e6 −0.0873153
\(896\) 1.42298e7 0.592146
\(897\) 0 0
\(898\) −3.49882e6 −0.144788
\(899\) 3.03972e6 0.125440
\(900\) 0 0
\(901\) −1.21002e7 −0.496572
\(902\) 2.39124e7 0.978605
\(903\) 0 0
\(904\) 4.25451e7 1.73153
\(905\) 629059. 0.0255311
\(906\) 0 0
\(907\) −2.38271e7 −0.961728 −0.480864 0.876795i \(-0.659677\pi\)
−0.480864 + 0.876795i \(0.659677\pi\)
\(908\) −5.94894e6 −0.239456
\(909\) 0 0
\(910\) 5.12152e6 0.205019
\(911\) 4.26255e7 1.70166 0.850832 0.525438i \(-0.176098\pi\)
0.850832 + 0.525438i \(0.176098\pi\)
\(912\) 0 0
\(913\) −1.86202e7 −0.739276
\(914\) 1.73676e7 0.687663
\(915\) 0 0
\(916\) 807158. 0.0317848
\(917\) 1.31152e7 0.515051
\(918\) 0 0
\(919\) 8.22683e6 0.321325 0.160662 0.987009i \(-0.448637\pi\)
0.160662 + 0.987009i \(0.448637\pi\)
\(920\) −8.15425e6 −0.317625
\(921\) 0 0
\(922\) 6.46597e6 0.250499
\(923\) −5.25938e6 −0.203203
\(924\) 0 0
\(925\) 2.88735e7 1.10955
\(926\) −3.33703e7 −1.27889
\(927\) 0 0
\(928\) 6.32422e6 0.241067
\(929\) −2.09820e7 −0.797640 −0.398820 0.917029i \(-0.630580\pi\)
−0.398820 + 0.917029i \(0.630580\pi\)
\(930\) 0 0
\(931\) −2.61209e6 −0.0987673
\(932\) −3.67539e6 −0.138600
\(933\) 0 0
\(934\) 813019. 0.0304953
\(935\) −7.31574e6 −0.273671
\(936\) 0 0
\(937\) −1.32127e7 −0.491636 −0.245818 0.969316i \(-0.579057\pi\)
−0.245818 + 0.969316i \(0.579057\pi\)
\(938\) −3.93490e7 −1.46025
\(939\) 0 0
\(940\) −1.73564e6 −0.0640680
\(941\) 2.57409e7 0.947655 0.473827 0.880618i \(-0.342872\pi\)
0.473827 + 0.880618i \(0.342872\pi\)
\(942\) 0 0
\(943\) −2.16933e7 −0.794411
\(944\) 6.18877e6 0.226034
\(945\) 0 0
\(946\) 4.82942e7 1.75456
\(947\) −8.68204e6 −0.314592 −0.157296 0.987552i \(-0.550278\pi\)
−0.157296 + 0.987552i \(0.550278\pi\)
\(948\) 0 0
\(949\) 1.12608e7 0.405887
\(950\) 2.89305e7 1.04003
\(951\) 0 0
\(952\) −1.93727e7 −0.692782
\(953\) 1.11979e7 0.399396 0.199698 0.979858i \(-0.436004\pi\)
0.199698 + 0.979858i \(0.436004\pi\)
\(954\) 0 0
\(955\) 7.73078e6 0.274293
\(956\) −7.67863e6 −0.271731
\(957\) 0 0
\(958\) 1.63957e7 0.577188
\(959\) 2.63234e7 0.924262
\(960\) 0 0
\(961\) −2.75023e7 −0.960641
\(962\) 2.58780e7 0.901556
\(963\) 0 0
\(964\) −6.47274e6 −0.224334
\(965\) −7.47326e6 −0.258340
\(966\) 0 0
\(967\) 2.32908e7 0.800972 0.400486 0.916303i \(-0.368841\pi\)
0.400486 + 0.916303i \(0.368841\pi\)
\(968\) 3.17548e7 1.08923
\(969\) 0 0
\(970\) 1.32690e7 0.452803
\(971\) 4.05544e7 1.38035 0.690175 0.723642i \(-0.257533\pi\)
0.690175 + 0.723642i \(0.257533\pi\)
\(972\) 0 0
\(973\) 1.46992e7 0.497750
\(974\) −4.37837e7 −1.47882
\(975\) 0 0
\(976\) 2.68353e7 0.901741
\(977\) −1.64638e7 −0.551816 −0.275908 0.961184i \(-0.588979\pi\)
−0.275908 + 0.961184i \(0.588979\pi\)
\(978\) 0 0
\(979\) −6.63234e7 −2.21162
\(980\) 130425. 0.00433805
\(981\) 0 0
\(982\) −7.09849e6 −0.234902
\(983\) 4.87657e7 1.60965 0.804824 0.593514i \(-0.202260\pi\)
0.804824 + 0.593514i \(0.202260\pi\)
\(984\) 0 0
\(985\) −7.33067e6 −0.240743
\(986\) 1.16699e7 0.382273
\(987\) 0 0
\(988\) −6.22294e6 −0.202816
\(989\) −4.38123e7 −1.42431
\(990\) 0 0
\(991\) −2.21394e7 −0.716114 −0.358057 0.933700i \(-0.616561\pi\)
−0.358057 + 0.933700i \(0.616561\pi\)
\(992\) 2.34436e6 0.0756390
\(993\) 0 0
\(994\) −6.56993e6 −0.210909
\(995\) 1.09515e7 0.350686
\(996\) 0 0
\(997\) −3.62667e7 −1.15550 −0.577751 0.816213i \(-0.696069\pi\)
−0.577751 + 0.816213i \(0.696069\pi\)
\(998\) −1.20431e6 −0.0382746
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.6.a.e.1.12 42
3.2 odd 2 729.6.a.c.1.31 42
27.2 odd 18 27.6.e.a.4.5 84
27.13 even 9 81.6.e.a.19.10 84
27.14 odd 18 27.6.e.a.7.5 yes 84
27.25 even 9 81.6.e.a.64.10 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.6.e.a.4.5 84 27.2 odd 18
27.6.e.a.7.5 yes 84 27.14 odd 18
81.6.e.a.19.10 84 27.13 even 9
81.6.e.a.64.10 84 27.25 even 9
729.6.a.c.1.31 42 3.2 odd 2
729.6.a.e.1.12 42 1.1 even 1 trivial