Properties

Label 735.2.p.g.509.14
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.14
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.g.374.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173233 + 0.300049i) q^{2} +(-0.124909 + 1.72754i) q^{3} +(0.939980 + 1.62809i) q^{4} +(-0.145835 - 2.23131i) q^{5} +(-0.496709 - 0.336746i) q^{6} -1.34428 q^{8} +(-2.96880 - 0.431570i) q^{9} +(0.694765 + 0.342779i) q^{10} +(-0.465604 + 0.268817i) q^{11} +(-2.93001 + 1.42049i) q^{12} -3.81157 q^{13} +(3.87289 + 0.0267743i) q^{15} +(-1.64709 + 2.85284i) q^{16} +(-3.35855 + 1.93906i) q^{17} +(0.643786 - 0.816022i) q^{18} +(-2.69962 - 1.55862i) q^{19} +(3.49570 - 2.33482i) q^{20} -0.186272i q^{22} +(-3.87516 + 6.71198i) q^{23} +(0.167912 - 2.32229i) q^{24} +(-4.95746 + 0.650804i) q^{25} +(0.660291 - 1.14366i) q^{26} +(1.11638 - 5.07481i) q^{27} +8.42000i q^{29} +(-0.678947 + 1.15742i) q^{30} +(-2.61715 + 1.51101i) q^{31} +(-1.91494 - 3.31677i) q^{32} +(-0.406234 - 0.837928i) q^{33} -1.34364i q^{34} +(-2.08797 - 5.23915i) q^{36} +(9.01516 + 5.20491i) q^{37} +(0.935327 - 0.540011i) q^{38} +(0.476098 - 6.58464i) q^{39} +(0.196042 + 2.99950i) q^{40} +8.56674 q^{41} -4.12561i q^{43} +(-0.875318 - 0.505365i) q^{44} +(-0.530012 + 6.68723i) q^{45} +(-1.34262 - 2.32548i) q^{46} +(-0.360706 - 0.208254i) q^{47} +(-4.72266 - 3.20176i) q^{48} +(0.663525 - 1.60022i) q^{50} +(-2.93029 - 6.04423i) q^{51} +(-3.58280 - 6.20559i) q^{52} +(-2.14239 - 3.71072i) q^{53} +(1.32930 + 1.21410i) q^{54} +(0.667714 + 0.999703i) q^{55} +(3.02979 - 4.46901i) q^{57} +(-2.52641 - 1.45862i) q^{58} +(-5.14940 - 8.91903i) q^{59} +(3.59685 + 6.33060i) q^{60} +(0.244494 + 0.141159i) q^{61} -1.04703i q^{62} -5.26142 q^{64} +(0.555859 + 8.50478i) q^{65} +(0.321793 + 0.0232670i) q^{66} +(8.38926 - 4.84354i) q^{67} +(-6.31394 - 3.64535i) q^{68} +(-11.1112 - 7.53289i) q^{69} +1.01073i q^{71} +(3.99088 + 0.580149i) q^{72} +(3.33943 + 5.78405i) q^{73} +(-3.12345 + 1.80333i) q^{74} +(-0.505060 - 8.64551i) q^{75} -5.86030i q^{76} +(1.89324 + 1.28353i) q^{78} +(1.93907 - 3.35858i) q^{79} +(6.60576 + 3.25911i) q^{80} +(8.62749 + 2.56249i) q^{81} +(-1.48404 + 2.57044i) q^{82} +10.8216i q^{83} +(4.81643 + 7.21117i) q^{85} +(1.23789 + 0.714694i) q^{86} +(-14.5459 - 1.05173i) q^{87} +(0.625901 - 0.361364i) q^{88} +(-3.08421 + 5.34201i) q^{89} +(-1.91468 - 1.31748i) q^{90} -14.5703 q^{92} +(-2.28343 - 4.70997i) q^{93} +(0.124972 - 0.0721529i) q^{94} +(-3.08407 + 6.25097i) q^{95} +(5.96905 - 2.89384i) q^{96} +8.00908 q^{97} +(1.49830 - 0.597121i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173233 + 0.300049i −0.122494 + 0.212167i −0.920751 0.390151i \(-0.872423\pi\)
0.798256 + 0.602318i \(0.205756\pi\)
\(3\) −0.124909 + 1.72754i −0.0721161 + 0.997396i
\(4\) 0.939980 + 1.62809i 0.469990 + 0.814047i
\(5\) −0.145835 2.23131i −0.0652192 0.997871i
\(6\) −0.496709 0.336746i −0.202780 0.137476i
\(7\) 0 0
\(8\) −1.34428 −0.475274
\(9\) −2.96880 0.431570i −0.989599 0.143857i
\(10\) 0.694765 + 0.342779i 0.219704 + 0.108396i
\(11\) −0.465604 + 0.268817i −0.140385 + 0.0810513i −0.568547 0.822650i \(-0.692494\pi\)
0.428162 + 0.903702i \(0.359161\pi\)
\(12\) −2.93001 + 1.42049i −0.845821 + 0.410061i
\(13\) −3.81157 −1.05714 −0.528570 0.848890i \(-0.677271\pi\)
−0.528570 + 0.848890i \(0.677271\pi\)
\(14\) 0 0
\(15\) 3.87289 + 0.0267743i 0.999976 + 0.00691311i
\(16\) −1.64709 + 2.85284i −0.411772 + 0.713210i
\(17\) −3.35855 + 1.93906i −0.814567 + 0.470291i −0.848539 0.529132i \(-0.822518\pi\)
0.0339722 + 0.999423i \(0.489184\pi\)
\(18\) 0.643786 0.816022i 0.151742 0.192338i
\(19\) −2.69962 1.55862i −0.619334 0.357573i 0.157276 0.987555i \(-0.449729\pi\)
−0.776610 + 0.629982i \(0.783062\pi\)
\(20\) 3.49570 2.33482i 0.781661 0.522081i
\(21\) 0 0
\(22\) 0.186272i 0.0397133i
\(23\) −3.87516 + 6.71198i −0.808027 + 1.39954i 0.106201 + 0.994345i \(0.466131\pi\)
−0.914228 + 0.405200i \(0.867202\pi\)
\(24\) 0.167912 2.32229i 0.0342749 0.474036i
\(25\) −4.95746 + 0.650804i −0.991493 + 0.130161i
\(26\) 0.660291 1.14366i 0.129494 0.224290i
\(27\) 1.11638 5.07481i 0.214848 0.976647i
\(28\) 0 0
\(29\) 8.42000i 1.56355i 0.623558 + 0.781777i \(0.285687\pi\)
−0.623558 + 0.781777i \(0.714313\pi\)
\(30\) −0.678947 + 1.15742i −0.123958 + 0.211315i
\(31\) −2.61715 + 1.51101i −0.470054 + 0.271386i −0.716262 0.697831i \(-0.754149\pi\)
0.246208 + 0.969217i \(0.420815\pi\)
\(32\) −1.91494 3.31677i −0.338516 0.586328i
\(33\) −0.406234 0.837928i −0.0707162 0.145865i
\(34\) 1.34364i 0.230432i
\(35\) 0 0
\(36\) −2.08797 5.23915i −0.347996 0.873191i
\(37\) 9.01516 + 5.20491i 1.48208 + 0.855681i 0.999793 0.0203301i \(-0.00647171\pi\)
0.482290 + 0.876011i \(0.339805\pi\)
\(38\) 0.935327 0.540011i 0.151730 0.0876014i
\(39\) 0.476098 6.58464i 0.0762367 1.05439i
\(40\) 0.196042 + 2.99950i 0.0309970 + 0.474262i
\(41\) 8.56674 1.33790 0.668950 0.743307i \(-0.266744\pi\)
0.668950 + 0.743307i \(0.266744\pi\)
\(42\) 0 0
\(43\) 4.12561i 0.629150i −0.949233 0.314575i \(-0.898138\pi\)
0.949233 0.314575i \(-0.101862\pi\)
\(44\) −0.875318 0.505365i −0.131959 0.0761866i
\(45\) −0.530012 + 6.68723i −0.0790095 + 0.996874i
\(46\) −1.34262 2.32548i −0.197958 0.342873i
\(47\) −0.360706 0.208254i −0.0526143 0.0303769i 0.473462 0.880814i \(-0.343004\pi\)
−0.526076 + 0.850437i \(0.676337\pi\)
\(48\) −4.72266 3.20176i −0.681657 0.462134i
\(49\) 0 0
\(50\) 0.663525 1.60022i 0.0938366 0.226306i
\(51\) −2.93029 6.04423i −0.410323 0.846362i
\(52\) −3.58280 6.20559i −0.496845 0.860561i
\(53\) −2.14239 3.71072i −0.294279 0.509707i 0.680538 0.732713i \(-0.261746\pi\)
−0.974817 + 0.223006i \(0.928413\pi\)
\(54\) 1.32930 + 1.21410i 0.180894 + 0.165218i
\(55\) 0.667714 + 0.999703i 0.0900345 + 0.134800i
\(56\) 0 0
\(57\) 3.02979 4.46901i 0.401306 0.591935i
\(58\) −2.52641 1.45862i −0.331734 0.191527i
\(59\) −5.14940 8.91903i −0.670395 1.16116i −0.977792 0.209577i \(-0.932791\pi\)
0.307397 0.951581i \(-0.400542\pi\)
\(60\) 3.59685 + 6.33060i 0.464351 + 0.817277i
\(61\) 0.244494 + 0.141159i 0.0313043 + 0.0180735i 0.515570 0.856847i \(-0.327580\pi\)
−0.484266 + 0.874921i \(0.660913\pi\)
\(62\) 1.04703i 0.132973i
\(63\) 0 0
\(64\) −5.26142 −0.657678
\(65\) 0.555859 + 8.50478i 0.0689458 + 1.05489i
\(66\) 0.321793 + 0.0232670i 0.0396099 + 0.00286397i
\(67\) 8.38926 4.84354i 1.02491 0.591733i 0.109389 0.993999i \(-0.465111\pi\)
0.915523 + 0.402266i \(0.131777\pi\)
\(68\) −6.31394 3.64535i −0.765677 0.442064i
\(69\) −11.1112 7.53289i −1.33763 0.906853i
\(70\) 0 0
\(71\) 1.01073i 0.119952i 0.998200 + 0.0599758i \(0.0191023\pi\)
−0.998200 + 0.0599758i \(0.980898\pi\)
\(72\) 3.99088 + 0.580149i 0.470330 + 0.0683713i
\(73\) 3.33943 + 5.78405i 0.390850 + 0.676972i 0.992562 0.121741i \(-0.0388477\pi\)
−0.601712 + 0.798713i \(0.705514\pi\)
\(74\) −3.12345 + 1.80333i −0.363094 + 0.209632i
\(75\) −0.505060 8.64551i −0.0583193 0.998298i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 1.89324 + 1.28353i 0.214367 + 0.145331i
\(79\) 1.93907 3.35858i 0.218163 0.377869i −0.736083 0.676891i \(-0.763327\pi\)
0.954246 + 0.299022i \(0.0966602\pi\)
\(80\) 6.60576 + 3.25911i 0.738547 + 0.364380i
\(81\) 8.62749 + 2.56249i 0.958611 + 0.284721i
\(82\) −1.48404 + 2.57044i −0.163885 + 0.283858i
\(83\) 10.8216i 1.18783i 0.804528 + 0.593914i \(0.202418\pi\)
−0.804528 + 0.593914i \(0.797582\pi\)
\(84\) 0 0
\(85\) 4.81643 + 7.21117i 0.522415 + 0.782161i
\(86\) 1.23789 + 0.714694i 0.133485 + 0.0770674i
\(87\) −14.5459 1.05173i −1.55948 0.112757i
\(88\) 0.625901 0.361364i 0.0667213 0.0385215i
\(89\) −3.08421 + 5.34201i −0.326926 + 0.566252i −0.981900 0.189399i \(-0.939346\pi\)
0.654975 + 0.755651i \(0.272679\pi\)
\(90\) −1.91468 1.31748i −0.201825 0.138875i
\(91\) 0 0
\(92\) −14.5703 −1.51906
\(93\) −2.28343 4.70997i −0.236781 0.488402i
\(94\) 0.124972 0.0721529i 0.0128899 0.00744200i
\(95\) −3.08407 + 6.25097i −0.316419 + 0.641336i
\(96\) 5.96905 2.89384i 0.609213 0.295351i
\(97\) 8.00908 0.813199 0.406600 0.913606i \(-0.366714\pi\)
0.406600 + 0.913606i \(0.366714\pi\)
\(98\) 0 0
\(99\) 1.49830 0.597121i 0.150585 0.0600129i
\(100\) −5.71949 7.45947i −0.571949 0.745947i
\(101\) 0.0677581 + 0.117360i 0.00674218 + 0.0116778i 0.869377 0.494150i \(-0.164521\pi\)
−0.862635 + 0.505828i \(0.831187\pi\)
\(102\) 2.32119 + 0.167832i 0.229832 + 0.0166179i
\(103\) −0.593833 + 1.02855i −0.0585121 + 0.101346i −0.893798 0.448470i \(-0.851969\pi\)
0.835286 + 0.549816i \(0.185302\pi\)
\(104\) 5.12381 0.502431
\(105\) 0 0
\(106\) 1.48453 0.144190
\(107\) 6.57437 11.3871i 0.635568 1.10084i −0.350826 0.936441i \(-0.614099\pi\)
0.986394 0.164396i \(-0.0525674\pi\)
\(108\) 9.31164 2.95264i 0.896013 0.284118i
\(109\) 4.35638 + 7.54547i 0.417266 + 0.722725i 0.995663 0.0930296i \(-0.0296551\pi\)
−0.578398 + 0.815755i \(0.696322\pi\)
\(110\) −0.415630 + 0.0271649i −0.0396288 + 0.00259007i
\(111\) −10.1178 + 14.9239i −0.960335 + 1.41652i
\(112\) 0 0
\(113\) 5.82398 0.547874 0.273937 0.961748i \(-0.411674\pi\)
0.273937 + 0.961748i \(0.411674\pi\)
\(114\) 0.816061 + 1.68327i 0.0764311 + 0.157652i
\(115\) 15.5416 + 7.66784i 1.44926 + 0.715030i
\(116\) −13.7085 + 7.91463i −1.27281 + 0.734855i
\(117\) 11.3158 + 1.64496i 1.04614 + 0.152076i
\(118\) 3.56819 0.328479
\(119\) 0 0
\(120\) −5.20624 0.0359921i −0.475262 0.00328562i
\(121\) −5.35548 + 9.27596i −0.486861 + 0.843269i
\(122\) −0.0847091 + 0.0489068i −0.00766921 + 0.00442782i
\(123\) −1.07006 + 14.7994i −0.0964841 + 1.33442i
\(124\) −4.92014 2.84064i −0.441842 0.255097i
\(125\) 2.17511 + 10.9667i 0.194548 + 0.980893i
\(126\) 0 0
\(127\) 14.2361i 1.26325i −0.775276 0.631623i \(-0.782389\pi\)
0.775276 0.631623i \(-0.217611\pi\)
\(128\) 4.74133 8.21222i 0.419078 0.725865i
\(129\) 7.12717 + 0.515325i 0.627512 + 0.0453718i
\(130\) −2.64814 1.30653i −0.232258 0.114590i
\(131\) −8.48152 + 14.6904i −0.741034 + 1.28351i 0.210991 + 0.977488i \(0.432331\pi\)
−0.952025 + 0.306020i \(0.901003\pi\)
\(132\) 0.982373 1.44902i 0.0855046 0.126121i
\(133\) 0 0
\(134\) 3.35625i 0.289936i
\(135\) −11.4863 1.75091i −0.988580 0.150694i
\(136\) 4.51482 2.60663i 0.387142 0.223517i
\(137\) −6.22790 10.7870i −0.532085 0.921599i −0.999298 0.0374542i \(-0.988075\pi\)
0.467213 0.884145i \(-0.345258\pi\)
\(138\) 4.18506 2.02895i 0.356256 0.172716i
\(139\) 19.0259i 1.61375i 0.590719 + 0.806877i \(0.298844\pi\)
−0.590719 + 0.806877i \(0.701156\pi\)
\(140\) 0 0
\(141\) 0.404822 0.597121i 0.0340921 0.0502867i
\(142\) −0.303268 0.175092i −0.0254497 0.0146934i
\(143\) 1.77468 1.02461i 0.148406 0.0856825i
\(144\) 6.12106 7.75866i 0.510089 0.646555i
\(145\) 18.7876 1.22793i 1.56023 0.101974i
\(146\) −2.31400 −0.191508
\(147\) 0 0
\(148\) 19.5700i 1.60865i
\(149\) 9.38114 + 5.41621i 0.768533 + 0.443713i 0.832351 0.554249i \(-0.186994\pi\)
−0.0638179 + 0.997962i \(0.520328\pi\)
\(150\) 2.68157 + 1.34615i 0.218949 + 0.109913i
\(151\) −1.59774 2.76737i −0.130022 0.225205i 0.793663 0.608358i \(-0.208172\pi\)
−0.923685 + 0.383153i \(0.874838\pi\)
\(152\) 3.62903 + 2.09522i 0.294353 + 0.169945i
\(153\) 10.8077 4.30722i 0.873749 0.348218i
\(154\) 0 0
\(155\) 3.75320 + 5.61931i 0.301465 + 0.451354i
\(156\) 11.1679 5.41430i 0.894151 0.433491i
\(157\) −12.0457 20.8638i −0.961355 1.66512i −0.719104 0.694903i \(-0.755447\pi\)
−0.242252 0.970213i \(-0.577886\pi\)
\(158\) 0.671825 + 1.16363i 0.0534475 + 0.0925738i
\(159\) 6.67803 3.23756i 0.529602 0.256755i
\(160\) −7.12147 + 4.75652i −0.563002 + 0.376036i
\(161\) 0 0
\(162\) −2.26344 + 2.14476i −0.177833 + 0.168508i
\(163\) −9.59705 5.54086i −0.751699 0.433994i 0.0746084 0.997213i \(-0.476229\pi\)
−0.826308 + 0.563219i \(0.809563\pi\)
\(164\) 8.05257 + 13.9475i 0.628800 + 1.08911i
\(165\) −1.81043 + 1.02863i −0.140942 + 0.0800789i
\(166\) −3.24702 1.87467i −0.252018 0.145502i
\(167\) 12.2802i 0.950270i 0.879913 + 0.475135i \(0.157601\pi\)
−0.879913 + 0.475135i \(0.842399\pi\)
\(168\) 0 0
\(169\) 1.52807 0.117544
\(170\) −2.99807 + 0.195949i −0.229941 + 0.0150286i
\(171\) 7.34195 + 5.79231i 0.561453 + 0.442949i
\(172\) 6.71689 3.87800i 0.512158 0.295694i
\(173\) 17.5358 + 10.1243i 1.33322 + 0.769735i 0.985792 0.167971i \(-0.0537215\pi\)
0.347429 + 0.937706i \(0.387055\pi\)
\(174\) 2.83540 4.18229i 0.214951 0.317058i
\(175\) 0 0
\(176\) 1.77106i 0.133499i
\(177\) 16.0512 7.78174i 1.20648 0.584912i
\(178\) −1.06858 1.85083i −0.0800931 0.138725i
\(179\) −5.59923 + 3.23271i −0.418506 + 0.241624i −0.694438 0.719553i \(-0.744347\pi\)
0.275932 + 0.961177i \(0.411014\pi\)
\(180\) −11.3856 + 5.42296i −0.848636 + 0.404204i
\(181\) 16.5297i 1.22864i −0.789056 0.614322i \(-0.789430\pi\)
0.789056 0.614322i \(-0.210570\pi\)
\(182\) 0 0
\(183\) −0.274397 + 0.404742i −0.0202840 + 0.0299194i
\(184\) 5.20929 9.02276i 0.384034 0.665167i
\(185\) 10.2990 20.8747i 0.757199 1.53474i
\(186\) 1.80879 + 0.130783i 0.132627 + 0.00958950i
\(187\) 1.04250 1.80567i 0.0762353 0.132043i
\(188\) 0.783017i 0.0571074i
\(189\) 0 0
\(190\) −1.34133 2.00825i −0.0973106 0.145694i
\(191\) 8.88161 + 5.12780i 0.642650 + 0.371034i 0.785635 0.618691i \(-0.212337\pi\)
−0.142984 + 0.989725i \(0.545670\pi\)
\(192\) 0.657198 9.08933i 0.0474292 0.655966i
\(193\) −14.2293 + 8.21529i −1.02425 + 0.591350i −0.915331 0.402701i \(-0.868071\pi\)
−0.108916 + 0.994051i \(0.534738\pi\)
\(194\) −1.38744 + 2.40312i −0.0996124 + 0.172534i
\(195\) −14.7618 0.102052i −1.05711 0.00730812i
\(196\) 0 0
\(197\) −0.0212992 −0.00151751 −0.000758753 1.00000i \(-0.500242\pi\)
−0.000758753 1.00000i \(0.500242\pi\)
\(198\) −0.0803894 + 0.553004i −0.00571303 + 0.0393003i
\(199\) −9.63950 + 5.56537i −0.683326 + 0.394518i −0.801107 0.598521i \(-0.795755\pi\)
0.117781 + 0.993040i \(0.462422\pi\)
\(200\) 6.66421 0.874861i 0.471231 0.0618620i
\(201\) 7.31953 + 15.0978i 0.516280 + 1.06492i
\(202\) −0.0469519 −0.00330352
\(203\) 0 0
\(204\) 7.08616 10.4522i 0.496131 0.731804i
\(205\) −1.24933 19.1150i −0.0872568 1.33505i
\(206\) −0.205743 0.356358i −0.0143348 0.0248286i
\(207\) 14.4013 18.2541i 1.00096 1.26875i
\(208\) 6.27799 10.8738i 0.435300 0.753962i
\(209\) 1.67594 0.115927
\(210\) 0 0
\(211\) −4.75289 −0.327203 −0.163601 0.986527i \(-0.552311\pi\)
−0.163601 + 0.986527i \(0.552311\pi\)
\(212\) 4.02760 6.97601i 0.276617 0.479114i
\(213\) −1.74608 0.126249i −0.119639 0.00865044i
\(214\) 2.27780 + 3.94526i 0.155707 + 0.269693i
\(215\) −9.20551 + 0.601658i −0.627811 + 0.0410327i
\(216\) −1.50073 + 6.82195i −0.102112 + 0.464175i
\(217\) 0 0
\(218\) −3.01868 −0.204451
\(219\) −10.4093 + 5.04651i −0.703396 + 0.341012i
\(220\) −0.999973 + 2.02680i −0.0674181 + 0.136647i
\(221\) 12.8013 7.39085i 0.861111 0.497163i
\(222\) −2.72517 5.62115i −0.182902 0.377267i
\(223\) 9.93727 0.665449 0.332724 0.943024i \(-0.392032\pi\)
0.332724 + 0.943024i \(0.392032\pi\)
\(224\) 0 0
\(225\) 14.9986 + 0.207388i 0.999904 + 0.0138259i
\(226\) −1.00891 + 1.74748i −0.0671115 + 0.116241i
\(227\) −12.3035 + 7.10345i −0.816614 + 0.471472i −0.849247 0.527995i \(-0.822944\pi\)
0.0326333 + 0.999467i \(0.489611\pi\)
\(228\) 10.1239 + 0.732003i 0.670472 + 0.0484781i
\(229\) 13.5128 + 7.80161i 0.892950 + 0.515545i 0.874906 0.484292i \(-0.160923\pi\)
0.0180437 + 0.999837i \(0.494256\pi\)
\(230\) −4.99306 + 3.33492i −0.329232 + 0.219898i
\(231\) 0 0
\(232\) 11.3188i 0.743117i
\(233\) −5.32462 + 9.22251i −0.348827 + 0.604186i −0.986041 0.166500i \(-0.946753\pi\)
0.637214 + 0.770687i \(0.280087\pi\)
\(234\) −2.45384 + 3.11032i −0.160412 + 0.203328i
\(235\) −0.412074 + 0.835216i −0.0268808 + 0.0544835i
\(236\) 9.68068 16.7674i 0.630158 1.09147i
\(237\) 5.55987 + 3.76935i 0.361152 + 0.244845i
\(238\) 0 0
\(239\) 24.4443i 1.58117i −0.612354 0.790584i \(-0.709777\pi\)
0.612354 0.790584i \(-0.290223\pi\)
\(240\) −6.45537 + 11.0046i −0.416692 + 0.710346i
\(241\) −16.3507 + 9.44010i −1.05324 + 0.608090i −0.923556 0.383465i \(-0.874731\pi\)
−0.129688 + 0.991555i \(0.541397\pi\)
\(242\) −1.85549 3.21381i −0.119276 0.206591i
\(243\) −5.50445 + 14.5843i −0.353110 + 0.935582i
\(244\) 0.530746i 0.0339776i
\(245\) 0 0
\(246\) −4.25517 2.88482i −0.271300 0.183929i
\(247\) 10.2898 + 5.94080i 0.654723 + 0.378004i
\(248\) 3.51818 2.03122i 0.223404 0.128983i
\(249\) −18.6948 1.35172i −1.18474 0.0856616i
\(250\) −3.66735 1.24716i −0.231944 0.0788774i
\(251\) −3.44293 −0.217316 −0.108658 0.994079i \(-0.534655\pi\)
−0.108658 + 0.994079i \(0.534655\pi\)
\(252\) 0 0
\(253\) 4.16683i 0.261967i
\(254\) 4.27152 + 2.46616i 0.268019 + 0.154741i
\(255\) −13.0592 + 7.41984i −0.817799 + 0.464648i
\(256\) −3.61871 6.26779i −0.226169 0.391737i
\(257\) −3.27669 1.89180i −0.204395 0.118007i 0.394309 0.918978i \(-0.370984\pi\)
−0.598704 + 0.800971i \(0.704317\pi\)
\(258\) −1.38929 + 2.04923i −0.0864932 + 0.127579i
\(259\) 0 0
\(260\) −13.3241 + 8.89932i −0.826325 + 0.551912i
\(261\) 3.63382 24.9973i 0.224928 1.54729i
\(262\) −2.93856 5.08974i −0.181545 0.314445i
\(263\) 12.8674 + 22.2870i 0.793437 + 1.37427i 0.923827 + 0.382810i \(0.125044\pi\)
−0.130390 + 0.991463i \(0.541623\pi\)
\(264\) 0.546091 + 1.12641i 0.0336096 + 0.0693256i
\(265\) −7.96733 + 5.32147i −0.489429 + 0.326896i
\(266\) 0 0
\(267\) −8.84329 5.99536i −0.541201 0.366910i
\(268\) 15.7715 + 9.10567i 0.963397 + 0.556217i
\(269\) 3.67674 + 6.36830i 0.224175 + 0.388282i 0.956072 0.293133i \(-0.0946980\pi\)
−0.731897 + 0.681416i \(0.761365\pi\)
\(270\) 2.51516 3.14313i 0.153068 0.191285i
\(271\) −21.0330 12.1434i −1.27767 0.737660i −0.301247 0.953546i \(-0.597403\pi\)
−0.976419 + 0.215886i \(0.930736\pi\)
\(272\) 12.7752i 0.774610i
\(273\) 0 0
\(274\) 4.31552 0.260710
\(275\) 2.13327 1.63567i 0.128641 0.0986344i
\(276\) 1.81996 25.1708i 0.109549 1.51510i
\(277\) 5.24526 3.02835i 0.315157 0.181956i −0.334075 0.942547i \(-0.608424\pi\)
0.649232 + 0.760590i \(0.275090\pi\)
\(278\) −5.70870 3.29592i −0.342385 0.197676i
\(279\) 8.42189 3.35640i 0.504206 0.200943i
\(280\) 0 0
\(281\) 18.8983i 1.12738i 0.825987 + 0.563689i \(0.190618\pi\)
−0.825987 + 0.563689i \(0.809382\pi\)
\(282\) 0.109037 + 0.224908i 0.00649306 + 0.0133931i
\(283\) 4.12883 + 7.15134i 0.245433 + 0.425103i 0.962253 0.272155i \(-0.0877364\pi\)
−0.716820 + 0.697258i \(0.754403\pi\)
\(284\) −1.64556 + 0.950066i −0.0976462 + 0.0563761i
\(285\) −10.4136 6.10866i −0.616847 0.361846i
\(286\) 0.709989i 0.0419825i
\(287\) 0 0
\(288\) 4.25364 + 10.6732i 0.250648 + 0.628927i
\(289\) −0.980110 + 1.69760i −0.0576535 + 0.0998588i
\(290\) −2.88620 + 5.84992i −0.169484 + 0.343519i
\(291\) −1.00040 + 13.8360i −0.0586447 + 0.811082i
\(292\) −6.27799 + 10.8738i −0.367391 + 0.636341i
\(293\) 5.23650i 0.305919i −0.988232 0.152960i \(-0.951120\pi\)
0.988232 0.152960i \(-0.0488805\pi\)
\(294\) 0 0
\(295\) −19.1501 + 12.7906i −1.11496 + 0.744698i
\(296\) −12.1189 6.99684i −0.704395 0.406683i
\(297\) 0.844401 + 2.66295i 0.0489971 + 0.154520i
\(298\) −3.25025 + 1.87653i −0.188282 + 0.108705i
\(299\) 14.7705 25.5832i 0.854198 1.47951i
\(300\) 13.6010 8.94890i 0.785252 0.516665i
\(301\) 0 0
\(302\) 1.10713 0.0637080
\(303\) −0.211209 + 0.102396i −0.0121336 + 0.00588247i
\(304\) 8.89300 5.13438i 0.510049 0.294477i
\(305\) 0.279313 0.566128i 0.0159934 0.0324164i
\(306\) −0.579874 + 3.98899i −0.0331492 + 0.228035i
\(307\) −1.12127 −0.0639940 −0.0319970 0.999488i \(-0.510187\pi\)
−0.0319970 + 0.999488i \(0.510187\pi\)
\(308\) 0 0
\(309\) −1.70269 1.15435i −0.0968624 0.0656684i
\(310\) −2.33625 + 0.152693i −0.132690 + 0.00867240i
\(311\) −6.48408 11.2308i −0.367678 0.636838i 0.621524 0.783395i \(-0.286514\pi\)
−0.989202 + 0.146558i \(0.953181\pi\)
\(312\) −0.640008 + 8.85159i −0.0362333 + 0.501122i
\(313\) −6.87182 + 11.9023i −0.388418 + 0.672760i −0.992237 0.124361i \(-0.960312\pi\)
0.603819 + 0.797122i \(0.293645\pi\)
\(314\) 8.34690 0.471043
\(315\) 0 0
\(316\) 7.29077 0.410138
\(317\) −9.07954 + 15.7262i −0.509958 + 0.883273i 0.489975 + 0.871736i \(0.337006\pi\)
−0.999933 + 0.0115369i \(0.996328\pi\)
\(318\) −0.185431 + 2.56459i −0.0103984 + 0.143815i
\(319\) −2.26344 3.92039i −0.126728 0.219500i
\(320\) 0.767298 + 11.7399i 0.0428933 + 0.656278i
\(321\) 18.8506 + 12.7798i 1.05214 + 0.713301i
\(322\) 0 0
\(323\) 12.0890 0.672652
\(324\) 3.93771 + 16.4551i 0.218762 + 0.914170i
\(325\) 18.8957 2.48058i 1.04815 0.137598i
\(326\) 3.32506 1.91972i 0.184158 0.106324i
\(327\) −13.5793 + 6.58333i −0.750935 + 0.364059i
\(328\) −11.5161 −0.635869
\(329\) 0 0
\(330\) 0.00498731 0.721411i 0.000274543 0.0397124i
\(331\) −15.4952 + 26.8384i −0.851691 + 1.47517i 0.0279904 + 0.999608i \(0.491089\pi\)
−0.879681 + 0.475564i \(0.842244\pi\)
\(332\) −17.6186 + 10.1721i −0.966948 + 0.558268i
\(333\) −24.5179 19.3430i −1.34357 1.05999i
\(334\) −3.68466 2.12734i −0.201616 0.116403i
\(335\) −12.0309 18.0127i −0.657317 0.984137i
\(336\) 0 0
\(337\) 10.6732i 0.581409i 0.956813 + 0.290704i \(0.0938896\pi\)
−0.956813 + 0.290704i \(0.906110\pi\)
\(338\) −0.264712 + 0.458495i −0.0143984 + 0.0249388i
\(339\) −0.727466 + 10.0612i −0.0395105 + 0.546448i
\(340\) −7.21311 + 14.6200i −0.391186 + 0.792878i
\(341\) 0.812371 1.40707i 0.0439923 0.0761970i
\(342\) −3.00985 + 1.19952i −0.162754 + 0.0648628i
\(343\) 0 0
\(344\) 5.54597i 0.299019i
\(345\) −15.1878 + 25.8910i −0.817683 + 1.39393i
\(346\) −6.07556 + 3.50773i −0.326624 + 0.188577i
\(347\) 1.16875 + 2.02434i 0.0627420 + 0.108672i 0.895690 0.444679i \(-0.146682\pi\)
−0.832948 + 0.553351i \(0.813349\pi\)
\(348\) −11.9605 24.6707i −0.641152 1.32249i
\(349\) 4.60715i 0.246615i −0.992368 0.123308i \(-0.960650\pi\)
0.992368 0.123308i \(-0.0393502\pi\)
\(350\) 0 0
\(351\) −4.25517 + 19.3430i −0.227124 + 1.03245i
\(352\) 1.78321 + 1.02953i 0.0950452 + 0.0548744i
\(353\) −5.20325 + 3.00410i −0.276941 + 0.159892i −0.632038 0.774938i \(-0.717781\pi\)
0.355097 + 0.934830i \(0.384448\pi\)
\(354\) −0.445699 + 6.16420i −0.0236886 + 0.327624i
\(355\) 2.25525 0.147399i 0.119696 0.00782315i
\(356\) −11.5964 −0.614607
\(357\) 0 0
\(358\) 2.24006i 0.118391i
\(359\) −16.9218 9.76982i −0.893100 0.515631i −0.0181447 0.999835i \(-0.505776\pi\)
−0.874955 + 0.484204i \(0.839109\pi\)
\(360\) 0.712482 8.98950i 0.0375511 0.473788i
\(361\) −4.64139 8.03911i −0.244283 0.423111i
\(362\) 4.95972 + 2.86350i 0.260677 + 0.150502i
\(363\) −15.3556 10.4105i −0.805962 0.546407i
\(364\) 0 0
\(365\) 12.4190 8.29480i 0.650040 0.434170i
\(366\) −0.0739077 0.152447i −0.00386322 0.00796855i
\(367\) 9.51920 + 16.4877i 0.496898 + 0.860653i 0.999994 0.00357789i \(-0.00113888\pi\)
−0.503095 + 0.864231i \(0.667806\pi\)
\(368\) −12.7655 22.1104i −0.665446 1.15259i
\(369\) −25.4329 3.69715i −1.32398 0.192466i
\(370\) 4.47928 + 6.70640i 0.232867 + 0.348649i
\(371\) 0 0
\(372\) 5.52190 8.14492i 0.286297 0.422295i
\(373\) −17.4796 10.0918i −0.905057 0.522535i −0.0262197 0.999656i \(-0.508347\pi\)
−0.878837 + 0.477121i \(0.841680\pi\)
\(374\) 0.361192 + 0.625603i 0.0186768 + 0.0323492i
\(375\) −19.2171 + 2.38776i −0.992369 + 0.123303i
\(376\) 0.484888 + 0.279950i 0.0250062 + 0.0144373i
\(377\) 32.0934i 1.65290i
\(378\) 0 0
\(379\) 6.25621 0.321360 0.160680 0.987007i \(-0.448631\pi\)
0.160680 + 0.987007i \(0.448631\pi\)
\(380\) −13.0761 + 0.854635i −0.670792 + 0.0438419i
\(381\) 24.5934 + 1.77821i 1.25996 + 0.0911004i
\(382\) −3.07718 + 1.77661i −0.157442 + 0.0908993i
\(383\) −13.9988 8.08223i −0.715307 0.412982i 0.0977162 0.995214i \(-0.468846\pi\)
−0.813023 + 0.582232i \(0.802180\pi\)
\(384\) 13.5947 + 9.21662i 0.693753 + 0.470334i
\(385\) 0 0
\(386\) 5.69265i 0.289748i
\(387\) −1.78049 + 12.2481i −0.0905074 + 0.622606i
\(388\) 7.52838 + 13.0395i 0.382196 + 0.661982i
\(389\) 27.4829 15.8673i 1.39344 0.804503i 0.399746 0.916626i \(-0.369098\pi\)
0.993694 + 0.112123i \(0.0357652\pi\)
\(390\) 2.58786 4.41158i 0.131041 0.223389i
\(391\) 30.0567i 1.52003i
\(392\) 0 0
\(393\) −24.3189 16.4871i −1.22673 0.831666i
\(394\) 0.00368974 0.00639081i 0.000185886 0.000321964i
\(395\) −7.77680 3.83687i −0.391293 0.193054i
\(396\) 2.38054 + 1.87809i 0.119627 + 0.0943774i
\(397\) 4.56777 7.91161i 0.229250 0.397072i −0.728336 0.685220i \(-0.759706\pi\)
0.957586 + 0.288148i \(0.0930394\pi\)
\(398\) 3.85643i 0.193305i
\(399\) 0 0
\(400\) 6.30874 15.2148i 0.315437 0.760739i
\(401\) −6.94015 4.00690i −0.346574 0.200095i 0.316601 0.948559i \(-0.397458\pi\)
−0.663175 + 0.748464i \(0.730792\pi\)
\(402\) −5.79806 0.419225i −0.289181 0.0209091i
\(403\) 9.97545 5.75933i 0.496913 0.286893i
\(404\) −0.127383 + 0.220633i −0.00633752 + 0.0109769i
\(405\) 4.45950 19.6243i 0.221595 0.975139i
\(406\) 0 0
\(407\) −5.59666 −0.277416
\(408\) 3.93912 + 8.12512i 0.195016 + 0.402254i
\(409\) 6.66703 3.84921i 0.329663 0.190331i −0.326028 0.945360i \(-0.605710\pi\)
0.655692 + 0.755029i \(0.272377\pi\)
\(410\) 5.95187 + 2.93650i 0.293942 + 0.145023i
\(411\) 19.4130 9.41156i 0.957571 0.464238i
\(412\) −2.23277 −0.110000
\(413\) 0 0
\(414\) 2.98234 + 7.48330i 0.146574 + 0.367784i
\(415\) 24.1464 1.57817i 1.18530 0.0774693i
\(416\) 7.29892 + 12.6421i 0.357859 + 0.619830i
\(417\) −32.8680 2.37650i −1.60955 0.116378i
\(418\) −0.290328 + 0.502863i −0.0142004 + 0.0245958i
\(419\) −0.801768 −0.0391689 −0.0195845 0.999808i \(-0.506234\pi\)
−0.0195845 + 0.999808i \(0.506234\pi\)
\(420\) 0 0
\(421\) 19.7801 0.964022 0.482011 0.876165i \(-0.339907\pi\)
0.482011 + 0.876165i \(0.339907\pi\)
\(422\) 0.823359 1.42610i 0.0400805 0.0694215i
\(423\) 0.980985 + 0.773932i 0.0476971 + 0.0376299i
\(424\) 2.87996 + 4.98824i 0.139863 + 0.242250i
\(425\) 15.3879 11.7986i 0.746424 0.572314i
\(426\) 0.340360 0.502038i 0.0164905 0.0243238i
\(427\) 0 0
\(428\) 24.7191 1.19484
\(429\) 1.54839 + 3.19382i 0.0747569 + 0.154199i
\(430\) 1.41417 2.86633i 0.0681976 0.138227i
\(431\) 15.4013 8.89192i 0.741852 0.428309i −0.0808900 0.996723i \(-0.525776\pi\)
0.822742 + 0.568414i \(0.192443\pi\)
\(432\) 12.6388 + 11.5435i 0.608086 + 0.555388i
\(433\) −20.1791 −0.969746 −0.484873 0.874584i \(-0.661134\pi\)
−0.484873 + 0.874584i \(0.661134\pi\)
\(434\) 0 0
\(435\) −0.225440 + 32.6097i −0.0108090 + 1.56352i
\(436\) −8.18983 + 14.1852i −0.392222 + 0.679348i
\(437\) 20.9229 12.0798i 1.00088 0.577857i
\(438\) 0.289039 3.99753i 0.0138108 0.191009i
\(439\) 14.7323 + 8.50568i 0.703133 + 0.405954i 0.808513 0.588478i \(-0.200273\pi\)
−0.105380 + 0.994432i \(0.533606\pi\)
\(440\) −0.897593 1.34388i −0.0427910 0.0640669i
\(441\) 0 0
\(442\) 5.12137i 0.243599i
\(443\) −7.87183 + 13.6344i −0.374002 + 0.647790i −0.990177 0.139819i \(-0.955348\pi\)
0.616175 + 0.787609i \(0.288681\pi\)
\(444\) −33.8080 2.44447i −1.60446 0.116009i
\(445\) 12.3694 + 6.10277i 0.586368 + 0.289299i
\(446\) −1.72147 + 2.98167i −0.0815138 + 0.141186i
\(447\) −10.5285 + 15.5298i −0.497981 + 0.734533i
\(448\) 0 0
\(449\) 17.8876i 0.844166i −0.906557 0.422083i \(-0.861299\pi\)
0.906557 0.422083i \(-0.138701\pi\)
\(450\) −2.66048 + 4.46438i −0.125416 + 0.210453i
\(451\) −3.98871 + 2.30288i −0.187821 + 0.108439i
\(452\) 5.47443 + 9.48199i 0.257495 + 0.445995i
\(453\) 4.98031 2.41449i 0.233996 0.113443i
\(454\) 4.92222i 0.231011i
\(455\) 0 0
\(456\) −4.07288 + 6.00759i −0.190730 + 0.281331i
\(457\) 10.6207 + 6.13187i 0.496816 + 0.286837i 0.727398 0.686216i \(-0.240730\pi\)
−0.230582 + 0.973053i \(0.574063\pi\)
\(458\) −4.68173 + 2.70300i −0.218763 + 0.126303i
\(459\) 6.09092 + 19.2087i 0.284300 + 0.896586i
\(460\) 2.12486 + 32.5108i 0.0990720 + 1.51583i
\(461\) −4.02980 −0.187687 −0.0938433 0.995587i \(-0.529915\pi\)
−0.0938433 + 0.995587i \(0.529915\pi\)
\(462\) 0 0
\(463\) 19.2199i 0.893223i −0.894728 0.446611i \(-0.852631\pi\)
0.894728 0.446611i \(-0.147369\pi\)
\(464\) −24.0209 13.8685i −1.11514 0.643828i
\(465\) −10.1764 + 5.78191i −0.471919 + 0.268130i
\(466\) −1.84480 3.19529i −0.0854588 0.148019i
\(467\) −22.3200 12.8864i −1.03285 0.596314i −0.115047 0.993360i \(-0.536702\pi\)
−0.917799 + 0.397046i \(0.870035\pi\)
\(468\) 7.95846 + 19.9694i 0.367880 + 0.923084i
\(469\) 0 0
\(470\) −0.179221 0.268330i −0.00826683 0.0123771i
\(471\) 37.5478 18.2034i 1.73011 0.838771i
\(472\) 6.92223 + 11.9896i 0.318621 + 0.551868i
\(473\) 1.10903 + 1.92090i 0.0509934 + 0.0883232i
\(474\) −2.09414 + 1.01526i −0.0961872 + 0.0466323i
\(475\) 14.3976 + 5.96990i 0.660607 + 0.273918i
\(476\) 0 0
\(477\) 4.75887 + 11.9410i 0.217894 + 0.546739i
\(478\) 7.33447 + 4.23456i 0.335471 + 0.193684i
\(479\) −11.2070 19.4111i −0.512061 0.886916i −0.999902 0.0139833i \(-0.995549\pi\)
0.487841 0.872932i \(-0.337785\pi\)
\(480\) −7.32754 12.8968i −0.334455 0.588654i
\(481\) −34.3619 19.8389i −1.56677 0.904574i
\(482\) 6.54136i 0.297951i
\(483\) 0 0
\(484\) −20.1362 −0.915280
\(485\) −1.16800 17.8707i −0.0530362 0.811468i
\(486\) −3.42244 4.17809i −0.155245 0.189522i
\(487\) 4.02571 2.32425i 0.182423 0.105322i −0.406008 0.913870i \(-0.633079\pi\)
0.588430 + 0.808548i \(0.299746\pi\)
\(488\) −0.328668 0.189757i −0.0148781 0.00858988i
\(489\) 10.7708 15.8872i 0.487073 0.718444i
\(490\) 0 0
\(491\) 38.5971i 1.74186i −0.491406 0.870931i \(-0.663517\pi\)
0.491406 0.870931i \(-0.336483\pi\)
\(492\) −25.1006 + 12.1690i −1.13162 + 0.548620i
\(493\) −16.3269 28.2790i −0.735325 1.27362i
\(494\) −3.56506 + 2.05829i −0.160400 + 0.0926069i
\(495\) −1.55086 3.25608i −0.0697062 0.146350i
\(496\) 9.95508i 0.446996i
\(497\) 0 0
\(498\) 3.64415 5.37520i 0.163298 0.240868i
\(499\) 5.51346 9.54959i 0.246816 0.427498i −0.715824 0.698280i \(-0.753949\pi\)
0.962641 + 0.270782i \(0.0872823\pi\)
\(500\) −15.8103 + 13.8498i −0.707057 + 0.619381i
\(501\) −21.2145 1.53390i −0.947796 0.0685297i
\(502\) 0.596431 1.03305i 0.0266200 0.0461072i
\(503\) 3.76757i 0.167988i −0.996466 0.0839939i \(-0.973232\pi\)
0.996466 0.0839939i \(-0.0267676\pi\)
\(504\) 0 0
\(505\) 0.251986 0.168304i 0.0112132 0.00748945i
\(506\) 1.25025 + 0.721835i 0.0555806 + 0.0320895i
\(507\) −0.190869 + 2.63980i −0.00847678 + 0.117238i
\(508\) 23.1776 13.3816i 1.02834 0.593713i
\(509\) −14.7985 + 25.6318i −0.655933 + 1.13611i 0.325726 + 0.945464i \(0.394391\pi\)
−0.981659 + 0.190645i \(0.938942\pi\)
\(510\) 0.0359750 5.20376i 0.00159300 0.230426i
\(511\) 0 0
\(512\) 21.4728 0.948975
\(513\) −10.9235 + 11.9600i −0.482285 + 0.528047i
\(514\) 1.13527 0.655446i 0.0500744 0.0289105i
\(515\) 2.38161 + 1.17503i 0.104946 + 0.0517778i
\(516\) 5.86040 + 12.0881i 0.257990 + 0.532149i
\(517\) 0.223928 0.00984835
\(518\) 0 0
\(519\) −19.6805 + 29.0292i −0.863878 + 1.27424i
\(520\) −0.747229 11.4328i −0.0327681 0.501361i
\(521\) 4.00301 + 6.93341i 0.175375 + 0.303758i 0.940291 0.340372i \(-0.110553\pi\)
−0.764916 + 0.644130i \(0.777220\pi\)
\(522\) 6.87090 + 5.42068i 0.300731 + 0.237257i
\(523\) −10.1669 + 17.6096i −0.444567 + 0.770013i −0.998022 0.0628663i \(-0.979976\pi\)
0.553455 + 0.832879i \(0.313309\pi\)
\(524\) −31.8898 −1.39311
\(525\) 0 0
\(526\) −8.91624 −0.388767
\(527\) 5.85988 10.1496i 0.255260 0.442124i
\(528\) 3.05958 + 0.221221i 0.133151 + 0.00962739i
\(529\) −18.5338 32.1015i −0.805817 1.39572i
\(530\) −0.216496 3.31244i −0.00940399 0.143883i
\(531\) 11.4383 + 28.7011i 0.496382 + 1.24552i
\(532\) 0 0
\(533\) −32.6527 −1.41435
\(534\) 3.33085 1.61482i 0.144140 0.0698803i
\(535\) −26.3670 13.0088i −1.13994 0.562419i
\(536\) −11.2775 + 6.51106i −0.487114 + 0.281235i
\(537\) −4.88525 10.0767i −0.210814 0.434841i
\(538\) −2.54774 −0.109841
\(539\) 0 0
\(540\) −7.94622 20.3465i −0.341951 0.875576i
\(541\) −5.50977 + 9.54320i −0.236883 + 0.410294i −0.959818 0.280622i \(-0.909459\pi\)
0.722935 + 0.690916i \(0.242793\pi\)
\(542\) 7.28724 4.20729i 0.313014 0.180719i
\(543\) 28.5557 + 2.06470i 1.22544 + 0.0886049i
\(544\) 12.8628 + 7.42635i 0.551489 + 0.318402i
\(545\) 16.2010 10.8208i 0.693973 0.463513i
\(546\) 0 0
\(547\) 32.5977i 1.39378i 0.717179 + 0.696889i \(0.245433\pi\)
−0.717179 + 0.696889i \(0.754567\pi\)
\(548\) 11.7082 20.2792i 0.500150 0.866285i
\(549\) −0.664934 0.524588i −0.0283787 0.0223889i
\(550\) 0.121227 + 0.923437i 0.00516912 + 0.0393755i
\(551\) 13.1236 22.7308i 0.559085 0.968363i
\(552\) 14.9365 + 10.1263i 0.635740 + 0.431004i
\(553\) 0 0
\(554\) 2.09845i 0.0891545i
\(555\) 34.7754 + 20.3994i 1.47613 + 0.865907i
\(556\) −30.9759 + 17.8840i −1.31367 + 0.758449i
\(557\) 15.3057 + 26.5103i 0.648524 + 1.12328i 0.983475 + 0.181041i \(0.0579468\pi\)
−0.334951 + 0.942235i \(0.608720\pi\)
\(558\) −0.451867 + 3.10842i −0.0191291 + 0.131590i
\(559\) 15.7251i 0.665099i
\(560\) 0 0
\(561\) 2.98915 + 2.02651i 0.126202 + 0.0855593i
\(562\) −5.67041 3.27381i −0.239192 0.138098i
\(563\) −4.24449 + 2.45056i −0.178884 + 0.103279i −0.586768 0.809755i \(-0.699600\pi\)
0.407884 + 0.913034i \(0.366267\pi\)
\(564\) 1.35269 + 0.0978056i 0.0569587 + 0.00411836i
\(565\) −0.849338 12.9951i −0.0357319 0.546708i
\(566\) −2.86100 −0.120257
\(567\) 0 0
\(568\) 1.35870i 0.0570098i
\(569\) 26.1233 + 15.0823i 1.09515 + 0.632283i 0.934942 0.354801i \(-0.115451\pi\)
0.160205 + 0.987084i \(0.448785\pi\)
\(570\) 3.63688 2.06636i 0.152332 0.0865504i
\(571\) 6.06919 + 10.5121i 0.253988 + 0.439920i 0.964620 0.263644i \(-0.0849244\pi\)
−0.710632 + 0.703564i \(0.751591\pi\)
\(572\) 3.33633 + 1.92623i 0.139499 + 0.0805399i
\(573\) −9.96787 + 14.7028i −0.416414 + 0.614220i
\(574\) 0 0
\(575\) 14.8428 35.7964i 0.618988 1.49281i
\(576\) 15.6201 + 2.27067i 0.650837 + 0.0946113i
\(577\) 0.280029 + 0.485025i 0.0116578 + 0.0201918i 0.871795 0.489870i \(-0.162956\pi\)
−0.860138 + 0.510062i \(0.829622\pi\)
\(578\) −0.339575 0.588162i −0.0141245 0.0244643i
\(579\) −12.4149 25.6079i −0.515945 1.06423i
\(580\) 19.6592 + 29.4338i 0.816302 + 1.22217i
\(581\) 0 0
\(582\) −3.97818 2.69703i −0.164901 0.111795i
\(583\) 1.99501 + 1.15182i 0.0826248 + 0.0477034i
\(584\) −4.48911 7.77537i −0.185761 0.321747i
\(585\) 2.02018 25.4889i 0.0835240 1.05383i
\(586\) 1.57121 + 0.907136i 0.0649059 + 0.0374734i
\(587\) 20.4166i 0.842683i 0.906902 + 0.421342i \(0.138441\pi\)
−0.906902 + 0.421342i \(0.861559\pi\)
\(588\) 0 0
\(589\) 9.42040 0.388161
\(590\) −0.520366 7.96174i −0.0214231 0.327780i
\(591\) 0.00266046 0.0367953i 0.000109437 0.00151356i
\(592\) −29.6975 + 17.1459i −1.22056 + 0.704691i
\(593\) 28.1524 + 16.2538i 1.15608 + 0.667463i 0.950361 0.311148i \(-0.100714\pi\)
0.205718 + 0.978611i \(0.434047\pi\)
\(594\) −0.945295 0.207951i −0.0387859 0.00853233i
\(595\) 0 0
\(596\) 20.3645i 0.834163i
\(597\) −8.41034 17.3478i −0.344212 0.709998i
\(598\) 5.11747 + 8.86372i 0.209269 + 0.362464i
\(599\) −7.74433 + 4.47119i −0.316425 + 0.182688i −0.649798 0.760107i \(-0.725146\pi\)
0.333373 + 0.942795i \(0.391813\pi\)
\(600\) 0.678941 + 11.6220i 0.0277176 + 0.474465i
\(601\) 9.31473i 0.379956i 0.981788 + 0.189978i \(0.0608417\pi\)
−0.981788 + 0.189978i \(0.939158\pi\)
\(602\) 0 0
\(603\) −26.9963 + 10.7589i −1.09938 + 0.438138i
\(604\) 3.00369 5.20254i 0.122218 0.211688i
\(605\) 21.4785 + 10.5970i 0.873226 + 0.430827i
\(606\) 0.00586470 0.0811112i 0.000238237 0.00329492i
\(607\) 6.89530 11.9430i 0.279871 0.484752i −0.691481 0.722395i \(-0.743041\pi\)
0.971353 + 0.237643i \(0.0763748\pi\)
\(608\) 11.9387i 0.484177i
\(609\) 0 0
\(610\) 0.121480 + 0.181880i 0.00491857 + 0.00736410i
\(611\) 1.37485 + 0.793773i 0.0556207 + 0.0321126i
\(612\) 17.1716 + 13.5472i 0.694119 + 0.547614i
\(613\) −5.54509 + 3.20146i −0.223964 + 0.129306i −0.607784 0.794102i \(-0.707941\pi\)
0.383820 + 0.923408i \(0.374608\pi\)
\(614\) 0.194241 0.336435i 0.00783892 0.0135774i
\(615\) 33.1780 + 0.229369i 1.33787 + 0.00924904i
\(616\) 0 0
\(617\) 26.2321 1.05607 0.528033 0.849224i \(-0.322930\pi\)
0.528033 + 0.849224i \(0.322930\pi\)
\(618\) 0.641322 0.310918i 0.0257978 0.0125070i
\(619\) 33.4262 19.2987i 1.34351 0.775678i 0.356193 0.934412i \(-0.384075\pi\)
0.987321 + 0.158734i \(0.0507413\pi\)
\(620\) −5.62082 + 11.3926i −0.225738 + 0.457538i
\(621\) 29.7359 + 27.1589i 1.19326 + 1.08985i
\(622\) 4.49304 0.180154
\(623\) 0 0
\(624\) 18.0008 + 12.2037i 0.720607 + 0.488540i
\(625\) 24.1529 6.45267i 0.966116 0.258107i
\(626\) −2.38086 4.12377i −0.0951582 0.164819i
\(627\) −0.209339 + 2.89525i −0.00836020 + 0.115625i
\(628\) 22.6455 39.2232i 0.903655 1.56518i
\(629\) −40.3705 −1.60968
\(630\) 0 0
\(631\) −11.8214 −0.470602 −0.235301 0.971923i \(-0.575608\pi\)
−0.235301 + 0.971923i \(0.575608\pi\)
\(632\) −2.60665 + 4.51486i −0.103687 + 0.179591i
\(633\) 0.593678 8.21082i 0.0235966 0.326351i
\(634\) −3.14576 5.44861i −0.124934 0.216392i
\(635\) −31.7650 + 2.07611i −1.26056 + 0.0823880i
\(636\) 11.5483 + 7.82921i 0.457918 + 0.310448i
\(637\) 0 0
\(638\) 1.56841 0.0620940
\(639\) 0.436200 3.00065i 0.0172558 0.118704i
\(640\) −19.0154 9.38174i −0.751652 0.370846i
\(641\) 22.3042 12.8773i 0.880963 0.508624i 0.00998712 0.999950i \(-0.496821\pi\)
0.870976 + 0.491326i \(0.163488\pi\)
\(642\) −7.10012 + 3.44219i −0.280219 + 0.135853i
\(643\) 33.0845 1.30472 0.652362 0.757907i \(-0.273778\pi\)
0.652362 + 0.757907i \(0.273778\pi\)
\(644\) 0 0
\(645\) 0.110461 15.9781i 0.00434938 0.629135i
\(646\) −2.09423 + 3.62731i −0.0823962 + 0.142714i
\(647\) 33.2497 19.1967i 1.30718 0.754700i 0.325555 0.945523i \(-0.394449\pi\)
0.981625 + 0.190823i \(0.0611156\pi\)
\(648\) −11.5977 3.44469i −0.455602 0.135320i
\(649\) 4.79517 + 2.76849i 0.188227 + 0.108673i
\(650\) −2.52907 + 6.09936i −0.0991984 + 0.239237i
\(651\) 0 0
\(652\) 20.8332i 0.815891i
\(653\) 14.5375 25.1797i 0.568896 0.985356i −0.427780 0.903883i \(-0.640704\pi\)
0.996676 0.0814732i \(-0.0259625\pi\)
\(654\) 0.377060 5.21490i 0.0147442 0.203919i
\(655\) 34.0157 + 16.7825i 1.32910 + 0.655747i
\(656\) −14.1102 + 24.4395i −0.550909 + 0.954203i
\(657\) −7.41785 18.6129i −0.289398 0.726157i
\(658\) 0 0
\(659\) 29.3766i 1.14435i 0.820132 + 0.572175i \(0.193900\pi\)
−0.820132 + 0.572175i \(0.806100\pi\)
\(660\) −3.37648 1.98066i −0.131429 0.0770970i
\(661\) 17.0023 9.81629i 0.661313 0.381809i −0.131464 0.991321i \(-0.541968\pi\)
0.792777 + 0.609512i \(0.208634\pi\)
\(662\) −5.36856 9.29861i −0.208655 0.361401i
\(663\) 11.1690 + 23.0380i 0.433768 + 0.894722i
\(664\) 14.5473i 0.564544i
\(665\) 0 0
\(666\) 10.0512 4.00572i 0.389474 0.155219i
\(667\) −56.5149 32.6289i −2.18826 1.26340i
\(668\) −19.9933 + 11.5431i −0.773564 + 0.446618i
\(669\) −1.24125 + 17.1670i −0.0479896 + 0.663716i
\(670\) 7.48883 0.489458i 0.289319 0.0189094i
\(671\) −0.151783 −0.00585954
\(672\) 0 0
\(673\) 7.40581i 0.285473i −0.989761 0.142736i \(-0.954410\pi\)
0.989761 0.142736i \(-0.0455901\pi\)
\(674\) −3.20250 1.84896i −0.123355 0.0712193i
\(675\) −2.23172 + 25.8847i −0.0858991 + 0.996304i
\(676\) 1.43635 + 2.48784i 0.0552443 + 0.0956860i
\(677\) 39.4283 + 22.7639i 1.51535 + 0.874890i 0.999838 + 0.0180093i \(0.00573286\pi\)
0.515515 + 0.856880i \(0.327600\pi\)
\(678\) −2.89282 1.96121i −0.111098 0.0753196i
\(679\) 0 0
\(680\) −6.47461 9.69381i −0.248290 0.371741i
\(681\) −10.7347 22.1421i −0.411354 0.848489i
\(682\) 0.281459 + 0.487502i 0.0107776 + 0.0186674i
\(683\) 3.71705 + 6.43812i 0.142229 + 0.246348i 0.928336 0.371743i \(-0.121240\pi\)
−0.786107 + 0.618091i \(0.787906\pi\)
\(684\) −2.52913 + 17.3980i −0.0967037 + 0.665231i
\(685\) −23.1610 + 15.4695i −0.884935 + 0.591059i
\(686\) 0 0
\(687\) −15.1655 + 22.3694i −0.578599 + 0.853446i
\(688\) 11.7697 + 6.79525i 0.448716 + 0.259066i
\(689\) 8.16585 + 14.1437i 0.311094 + 0.538831i
\(690\) −5.13754 9.04227i −0.195583 0.344233i
\(691\) −2.52569 1.45821i −0.0960819 0.0554729i 0.451189 0.892428i \(-0.351000\pi\)
−0.547271 + 0.836955i \(0.684333\pi\)
\(692\) 38.0665i 1.44707i
\(693\) 0 0
\(694\) −0.809869 −0.0307422
\(695\) 42.4526 2.77463i 1.61032 0.105248i
\(696\) 19.5537 + 1.41382i 0.741182 + 0.0535907i
\(697\) −28.7718 + 16.6114i −1.08981 + 0.629202i
\(698\) 1.38237 + 0.798112i 0.0523235 + 0.0302090i
\(699\) −15.2672 10.3505i −0.577457 0.391491i
\(700\) 0 0
\(701\) 25.2600i 0.954057i −0.878888 0.477029i \(-0.841714\pi\)
0.878888 0.477029i \(-0.158286\pi\)
\(702\) −5.06671 4.62761i −0.191231 0.174658i
\(703\) −16.2250 28.1025i −0.611937 1.05991i
\(704\) 2.44974 1.41436i 0.0923281 0.0533057i
\(705\) −1.39140 0.816201i −0.0524031 0.0307399i
\(706\) 2.08164i 0.0783435i
\(707\) 0 0
\(708\) 27.7572 + 18.8182i 1.04318 + 0.707230i
\(709\) −0.882570 + 1.52866i −0.0331456 + 0.0574099i −0.882122 0.471020i \(-0.843886\pi\)
0.848977 + 0.528430i \(0.177219\pi\)
\(710\) −0.346457 + 0.702220i −0.0130023 + 0.0263538i
\(711\) −7.20618 + 9.13408i −0.270253 + 0.342555i
\(712\) 4.14603 7.18114i 0.155379 0.269125i
\(713\) 23.4217i 0.877149i
\(714\) 0 0
\(715\) −2.54504 3.81044i −0.0951790 0.142502i
\(716\) −10.5263 6.07738i −0.393387 0.227122i
\(717\) 42.2285 + 3.05330i 1.57705 + 0.114028i
\(718\) 5.86285 3.38492i 0.218800 0.126324i
\(719\) −7.00072 + 12.1256i −0.261083 + 0.452209i −0.966530 0.256554i \(-0.917413\pi\)
0.705447 + 0.708763i \(0.250746\pi\)
\(720\) −18.2046 12.5265i −0.678446 0.466835i
\(721\) 0 0
\(722\) 3.21617 0.119693
\(723\) −14.2658 29.4257i −0.530551 1.09435i
\(724\) 26.9119 15.5376i 1.00017 0.577450i
\(725\) −5.47977 41.7418i −0.203514 1.55025i
\(726\) 5.78375 2.80401i 0.214655 0.104067i
\(727\) −32.1893 −1.19383 −0.596917 0.802303i \(-0.703608\pi\)
−0.596917 + 0.802303i \(0.703608\pi\)
\(728\) 0 0
\(729\) −24.5074 11.3309i −0.907681 0.419662i
\(730\) 0.337461 + 5.16324i 0.0124900 + 0.191100i
\(731\) 7.99980 + 13.8561i 0.295883 + 0.512485i
\(732\) −0.916886 0.0662948i −0.0338891 0.00245033i
\(733\) −1.23440 + 2.13804i −0.0455935 + 0.0789703i −0.887922 0.459995i \(-0.847851\pi\)
0.842328 + 0.538965i \(0.181185\pi\)
\(734\) −6.59617 −0.243469
\(735\) 0 0
\(736\) 29.6828 1.09412
\(737\) −2.60405 + 4.51035i −0.0959214 + 0.166141i
\(738\) 5.51515 6.99065i 0.203016 0.257329i
\(739\) 19.5506 + 33.8627i 0.719182 + 1.24566i 0.961324 + 0.275419i \(0.0888167\pi\)
−0.242142 + 0.970241i \(0.577850\pi\)
\(740\) 43.6668 2.85399i 1.60522 0.104915i
\(741\) −11.5483 + 17.0339i −0.424236 + 0.625758i
\(742\) 0 0
\(743\) −23.3132 −0.855280 −0.427640 0.903949i \(-0.640655\pi\)
−0.427640 + 0.903949i \(0.640655\pi\)
\(744\) 3.06956 + 6.33151i 0.112536 + 0.232124i
\(745\) 10.7171 21.7221i 0.392645 0.795836i
\(746\) 6.05608 3.49648i 0.221729 0.128015i
\(747\) 4.67029 32.1272i 0.170877 1.17547i
\(748\) 3.91973 0.143319
\(749\) 0 0
\(750\) 2.61261 6.17972i 0.0953989 0.225652i
\(751\) −0.654492 + 1.13361i −0.0238828 + 0.0413662i −0.877720 0.479174i \(-0.840936\pi\)
0.853837 + 0.520540i \(0.174270\pi\)
\(752\) 1.18823 0.686023i 0.0433302 0.0250167i
\(753\) 0.430052 5.94781i 0.0156720 0.216750i
\(754\) 9.62960 + 5.55965i 0.350689 + 0.202471i
\(755\) −5.94184 + 3.96863i −0.216246 + 0.144433i
\(756\) 0 0
\(757\) 16.4529i 0.597992i 0.954254 + 0.298996i \(0.0966518\pi\)
−0.954254 + 0.298996i \(0.903348\pi\)
\(758\) −1.08378 + 1.87717i −0.0393648 + 0.0681818i
\(759\) 7.19838 + 0.520474i 0.261285 + 0.0188920i
\(760\) 4.14585 8.40304i 0.150386 0.304810i
\(761\) 2.93936 5.09113i 0.106552 0.184553i −0.807819 0.589430i \(-0.799352\pi\)
0.914371 + 0.404877i \(0.132686\pi\)
\(762\) −4.79394 + 7.07117i −0.173666 + 0.256162i
\(763\) 0 0
\(764\) 19.2801i 0.697530i
\(765\) −11.1869 23.4871i −0.404462 0.849178i
\(766\) 4.85013 2.80022i 0.175242 0.101176i
\(767\) 19.6273 + 33.9955i 0.708701 + 1.22751i
\(768\) 11.2799 5.46857i 0.407027 0.197330i
\(769\) 3.63344i 0.131025i 0.997852 + 0.0655127i \(0.0208683\pi\)
−0.997852 + 0.0655127i \(0.979132\pi\)
\(770\) 0 0
\(771\) 3.67745 5.42432i 0.132440 0.195352i
\(772\) −26.7505 15.4444i −0.962773 0.555857i
\(773\) 26.1680 15.1081i 0.941198 0.543401i 0.0508627 0.998706i \(-0.483803\pi\)
0.890336 + 0.455304i \(0.150470\pi\)
\(774\) −3.36659 2.65601i −0.121010 0.0954685i
\(775\) 11.9911 9.19404i 0.430732 0.330260i
\(776\) −10.7664 −0.386492
\(777\) 0 0
\(778\) 10.9950i 0.394189i
\(779\) −23.1269 13.3523i −0.828607 0.478397i
\(780\) −13.7096 24.1295i −0.490884 0.863975i
\(781\) −0.271701 0.470600i −0.00972223 0.0168394i
\(782\) 9.01847 + 5.20682i 0.322500 + 0.186195i
\(783\) 42.7299 + 9.39994i 1.52704 + 0.335927i
\(784\) 0 0
\(785\) −44.7970 + 29.9204i −1.59887 + 1.06791i
\(786\) 9.15979 4.44074i 0.326719 0.158396i
\(787\) 25.4243 + 44.0362i 0.906279 + 1.56972i 0.819191 + 0.573521i \(0.194423\pi\)
0.0870888 + 0.996201i \(0.472244\pi\)
\(788\) −0.0200209 0.0346771i −0.000713213 0.00123532i
\(789\) −40.1089 + 19.4451i −1.42791 + 0.692264i
\(790\) 2.49845 1.66875i 0.0888909 0.0593713i
\(791\) 0 0
\(792\) −2.01413 + 0.802696i −0.0715689 + 0.0285226i
\(793\) −0.931907 0.538037i −0.0330930 0.0191063i
\(794\) 1.58258 + 2.74111i 0.0561637 + 0.0972784i
\(795\) −8.19788 14.4286i −0.290749 0.511729i
\(796\) −18.1219 10.4627i −0.642313 0.370839i
\(797\) 10.1940i 0.361089i 0.983567 + 0.180545i \(0.0577860\pi\)
−0.983567 + 0.180545i \(0.942214\pi\)
\(798\) 0 0
\(799\) 1.61526 0.0571439
\(800\) 11.6518 + 15.1965i 0.411953 + 0.537278i
\(801\) 11.4618 14.5283i 0.404984 0.513331i
\(802\) 2.40453 1.38826i 0.0849069 0.0490210i
\(803\) −3.10970 1.79539i −0.109739 0.0633578i
\(804\) −17.7004 + 26.1085i −0.624245 + 0.920776i
\(805\) 0 0
\(806\) 3.99083i 0.140571i
\(807\) −11.4608 + 5.55627i −0.403438 + 0.195590i
\(808\) −0.0910857 0.157765i −0.00320438 0.00555015i
\(809\) 10.9158 6.30222i 0.383778 0.221574i −0.295683 0.955286i \(-0.595547\pi\)
0.679461 + 0.733712i \(0.262214\pi\)
\(810\) 5.11571 + 4.73765i 0.179748 + 0.166464i
\(811\) 40.1743i 1.41071i −0.708853 0.705356i \(-0.750787\pi\)
0.708853 0.705356i \(-0.249213\pi\)
\(812\) 0 0
\(813\) 23.6055 34.8186i 0.827880 1.22114i
\(814\) 0.969529 1.67927i 0.0339820 0.0588585i
\(815\) −10.9638 + 22.2220i −0.384044 + 0.778403i
\(816\) 22.0697 + 1.59573i 0.772593 + 0.0558618i
\(817\) −6.43028 + 11.1376i −0.224967 + 0.389654i
\(818\) 2.66725i 0.0932581i
\(819\) 0 0
\(820\) 29.9467 20.0018i 1.04578 0.698492i
\(821\) 37.3677 + 21.5743i 1.30414 + 0.752947i 0.981112 0.193441i \(-0.0619649\pi\)
0.323031 + 0.946388i \(0.395298\pi\)
\(822\) −0.539046 + 7.45524i −0.0188014 + 0.260031i
\(823\) −25.5070 + 14.7265i −0.889120 + 0.513333i −0.873654 0.486547i \(-0.838256\pi\)
−0.0154652 + 0.999880i \(0.504923\pi\)
\(824\) 0.798276 1.38266i 0.0278093 0.0481671i
\(825\) 2.55922 + 3.88962i 0.0891005 + 0.135419i
\(826\) 0 0
\(827\) −4.77349 −0.165991 −0.0829953 0.996550i \(-0.526449\pi\)
−0.0829953 + 0.996550i \(0.526449\pi\)
\(828\) 43.2563 + 6.28811i 1.50326 + 0.218527i
\(829\) −30.2779 + 17.4809i −1.05159 + 0.607138i −0.923095 0.384571i \(-0.874349\pi\)
−0.128499 + 0.991710i \(0.541016\pi\)
\(830\) −3.70943 + 7.51849i −0.128756 + 0.260971i
\(831\) 4.57643 + 9.43967i 0.158754 + 0.327459i
\(832\) 20.0543 0.695257
\(833\) 0 0
\(834\) 6.40690 9.45032i 0.221853 0.327238i
\(835\) 27.4009 1.79088i 0.948247 0.0619759i
\(836\) 1.57535 + 2.72858i 0.0544845 + 0.0943700i
\(837\) 4.74636 + 14.9684i 0.164058 + 0.517384i
\(838\) 0.138893 0.240570i 0.00479798 0.00831034i
\(839\) 35.3328 1.21982 0.609911 0.792470i \(-0.291205\pi\)
0.609911 + 0.792470i \(0.291205\pi\)
\(840\) 0 0
\(841\) −41.8964 −1.44470
\(842\) −3.42657 + 5.93499i −0.118087 + 0.204533i
\(843\) −32.6476 2.36056i −1.12444 0.0813020i
\(844\) −4.46763 7.73815i −0.153782 0.266358i
\(845\) −0.222845 3.40959i −0.00766610 0.117293i
\(846\) −0.402157 + 0.160273i −0.0138264 + 0.00551029i
\(847\) 0 0
\(848\) 14.1148 0.484704
\(849\) −12.8700 + 6.23945i −0.441696 + 0.214137i
\(850\) 0.874445 + 6.66104i 0.0299932 + 0.228472i
\(851\) −69.8705 + 40.3397i −2.39513 + 1.38283i
\(852\) −1.43573 2.96145i −0.0491874 0.101458i
\(853\) 14.5110 0.496846 0.248423 0.968652i \(-0.420088\pi\)
0.248423 + 0.968652i \(0.420088\pi\)
\(854\) 0 0
\(855\) 11.8537 17.2269i 0.405388 0.589146i
\(856\) −8.83777 + 15.3075i −0.302069 + 0.523199i
\(857\) 8.15972 4.71102i 0.278731 0.160925i −0.354118 0.935201i \(-0.615219\pi\)
0.632849 + 0.774275i \(0.281886\pi\)
\(858\) −1.22654 0.0886838i −0.0418732 0.00302762i
\(859\) 8.09305 + 4.67252i 0.276131 + 0.159424i 0.631671 0.775237i \(-0.282370\pi\)
−0.355539 + 0.934661i \(0.615703\pi\)
\(860\) −9.63256 14.4219i −0.328467 0.491782i
\(861\) 0 0
\(862\) 6.16151i 0.209862i
\(863\) 6.19173 10.7244i 0.210769 0.365063i −0.741186 0.671299i \(-0.765737\pi\)
0.951955 + 0.306237i \(0.0990699\pi\)
\(864\) −18.9698 + 6.01516i −0.645365 + 0.204640i
\(865\) 20.0331 40.6042i 0.681145 1.38058i
\(866\) 3.49570 6.05472i 0.118789 0.205748i
\(867\) −2.81025 1.90523i −0.0954411 0.0647048i
\(868\) 0 0
\(869\) 2.08502i 0.0707295i
\(870\) −9.74546 5.71674i −0.330402 0.193816i
\(871\) −31.9763 + 18.4615i −1.08347 + 0.625544i
\(872\) −5.85618 10.1432i −0.198315 0.343492i
\(873\) −23.7773 3.45648i −0.804741 0.116984i
\(874\) 8.37053i 0.283137i
\(875\) 0 0
\(876\) −18.0008 12.2037i −0.608189 0.412325i
\(877\) −9.34124 5.39317i −0.315431 0.182114i 0.333923 0.942600i \(-0.391627\pi\)
−0.649354 + 0.760486i \(0.724961\pi\)
\(878\) −5.10424 + 2.94694i −0.172260 + 0.0994543i
\(879\) 9.04626 + 0.654084i 0.305123 + 0.0220617i
\(880\) −3.95178 + 0.258282i −0.133214 + 0.00870667i
\(881\) 16.5184 0.556520 0.278260 0.960506i \(-0.410242\pi\)
0.278260 + 0.960506i \(0.410242\pi\)
\(882\) 0 0
\(883\) 16.5025i 0.555352i 0.960675 + 0.277676i \(0.0895641\pi\)
−0.960675 + 0.277676i \(0.910436\pi\)
\(884\) 24.0660 + 13.8945i 0.809427 + 0.467323i
\(885\) −19.7043 34.6803i −0.662352 1.16577i
\(886\) −2.72733 4.72387i −0.0916263 0.158701i
\(887\) −38.9737 22.5015i −1.30861 0.755525i −0.326744 0.945113i \(-0.605952\pi\)
−0.981864 + 0.189587i \(0.939285\pi\)
\(888\) 13.6011 20.0619i 0.456422 0.673233i
\(889\) 0 0
\(890\) −3.97393 + 2.65424i −0.133206 + 0.0889702i
\(891\) −4.70584 + 1.12611i −0.157651 + 0.0377261i
\(892\) 9.34084 + 16.1788i 0.312754 + 0.541706i
\(893\) 0.649178 + 1.12441i 0.0217239 + 0.0376269i
\(894\) −2.83581 5.84934i −0.0948435 0.195631i
\(895\) 8.02974 + 12.0222i 0.268405 + 0.401856i
\(896\) 0 0
\(897\) 42.3510 + 28.7121i 1.41406 + 0.958670i
\(898\) 5.36714 + 3.09872i 0.179104 + 0.103406i
\(899\) −12.7227 22.0364i −0.424327 0.734955i
\(900\) 13.7607 + 24.6140i 0.458690 + 0.820467i
\(901\) 14.3906 + 8.30842i 0.479421 + 0.276794i
\(902\) 1.59574i 0.0531325i
\(903\) 0 0
\(904\) −7.82905 −0.260390
\(905\) −36.8828 + 2.41060i −1.22603 + 0.0801312i
\(906\) −0.138290 + 1.91261i −0.00459437 + 0.0635422i
\(907\) 6.72520 3.88280i 0.223307 0.128926i −0.384174 0.923261i \(-0.625514\pi\)
0.607480 + 0.794335i \(0.292180\pi\)
\(908\) −23.1302 13.3542i −0.767601 0.443175i
\(909\) −0.150511 0.377662i −0.00499213 0.0125262i
\(910\) 0 0
\(911\) 12.5284i 0.415085i 0.978226 + 0.207543i \(0.0665466\pi\)
−0.978226 + 0.207543i \(0.933453\pi\)
\(912\) 7.75903 + 16.0044i 0.256927 + 0.529957i
\(913\) −2.90904 5.03860i −0.0962751 0.166753i
\(914\) −3.67973 + 2.12449i −0.121714 + 0.0702719i
\(915\) 0.943120 + 0.553239i 0.0311786 + 0.0182895i
\(916\) 29.3334i 0.969204i
\(917\) 0 0
\(918\) −6.81871 1.50001i −0.225051 0.0495079i
\(919\) 17.1363 29.6809i 0.565274 0.979084i −0.431750 0.901993i \(-0.642104\pi\)
0.997024 0.0770906i \(-0.0245631\pi\)
\(920\) −20.8922 10.3077i −0.688797 0.339835i
\(921\) 0.140056 1.93703i 0.00461500 0.0638274i
\(922\) 0.698096 1.20914i 0.0229906 0.0398208i
\(923\) 3.85247i 0.126806i
\(924\) 0 0
\(925\) −48.0797 19.9360i −1.58085 0.655493i
\(926\) 5.76690 + 3.32952i 0.189512 + 0.109415i
\(927\) 2.20686 2.79727i 0.0724828 0.0918745i
\(928\) 27.9272 16.1238i 0.916755 0.529289i
\(929\) 22.7821 39.4597i 0.747455 1.29463i −0.201584 0.979471i \(-0.564609\pi\)
0.949039 0.315159i \(-0.102058\pi\)
\(930\) 0.0280336 4.05504i 0.000919257 0.132970i
\(931\) 0 0
\(932\) −20.0201 −0.655781
\(933\) 20.2115 9.79870i 0.661695 0.320795i
\(934\) 7.73313 4.46473i 0.253036 0.146090i
\(935\) −4.18103 2.06281i −0.136734 0.0674612i
\(936\) −15.2115 2.21128i −0.497205 0.0722780i
\(937\) −15.5172 −0.506924 −0.253462 0.967345i \(-0.581569\pi\)
−0.253462 + 0.967345i \(0.581569\pi\)
\(938\) 0 0
\(939\) −19.7034 13.3581i −0.642997 0.435924i
\(940\) −1.74715 + 0.114191i −0.0569858 + 0.00372450i
\(941\) −9.61292 16.6501i −0.313372 0.542777i 0.665718 0.746203i \(-0.268125\pi\)
−0.979090 + 0.203427i \(0.934792\pi\)
\(942\) −1.04260 + 14.4196i −0.0339698 + 0.469816i
\(943\) −33.1975 + 57.4998i −1.08106 + 1.87245i
\(944\) 33.9261 1.10420
\(945\) 0 0
\(946\) −0.768487 −0.0249857
\(947\) −18.6530 + 32.3080i −0.606142 + 1.04987i 0.385728 + 0.922613i \(0.373950\pi\)
−0.991870 + 0.127256i \(0.959383\pi\)
\(948\) −0.910680 + 12.5951i −0.0295775 + 0.409070i
\(949\) −12.7285 22.0463i −0.413183 0.715654i
\(950\) −4.28541 + 3.28580i −0.139037 + 0.106605i
\(951\) −26.0336 17.6496i −0.844197 0.572328i
\(952\) 0 0
\(953\) 10.1356 0.328326 0.164163 0.986433i \(-0.447508\pi\)
0.164163 + 0.986433i \(0.447508\pi\)
\(954\) −4.40727 0.640679i −0.142691 0.0207427i
\(955\) 10.1464 20.5654i 0.328331 0.665481i
\(956\) 39.7975 22.9771i 1.28714 0.743133i
\(957\) 7.05535 3.42049i 0.228067 0.110569i
\(958\) 7.76571 0.250899
\(959\) 0 0
\(960\) −20.3769 0.140871i −0.657662 0.00454660i
\(961\) −10.9337 + 18.9377i −0.352699 + 0.610893i
\(962\) 11.9053 6.87351i 0.383841 0.221611i
\(963\) −24.4323 + 30.9688i −0.787320 + 0.997955i
\(964\) −30.7387 17.7470i −0.990028 0.571593i
\(965\) 20.4060 + 30.5519i 0.656891 + 0.983500i
\(966\) 0 0
\(967\) 7.96860i 0.256253i −0.991758 0.128126i \(-0.959104\pi\)
0.991758 0.128126i \(-0.0408963\pi\)
\(968\) 7.19924 12.4695i 0.231392 0.400783i
\(969\) −1.51003 + 20.8843i −0.0485091 + 0.670901i
\(970\) 5.56443 + 2.74535i 0.178663 + 0.0881478i
\(971\) −12.8317 + 22.2252i −0.411790 + 0.713242i −0.995086 0.0990185i \(-0.968430\pi\)
0.583295 + 0.812260i \(0.301763\pi\)
\(972\) −28.9186 + 4.74717i −0.927566 + 0.152266i
\(973\) 0 0
\(974\) 1.61055i 0.0516053i
\(975\) 1.92507 + 32.9530i 0.0616516 + 1.05534i
\(976\) −0.805407 + 0.465002i −0.0257805 + 0.0148843i
\(977\) −0.810100 1.40313i −0.0259174 0.0448902i 0.852776 0.522277i \(-0.174917\pi\)
−0.878693 + 0.477387i \(0.841584\pi\)
\(978\) 2.90107 + 5.98397i 0.0927661 + 0.191346i
\(979\) 3.31635i 0.105991i
\(980\) 0 0
\(981\) −9.67681 24.2811i −0.308957 0.775234i
\(982\) 11.5810 + 6.68630i 0.369565 + 0.213368i
\(983\) −11.0789 + 6.39643i −0.353363 + 0.204014i −0.666166 0.745804i \(-0.732066\pi\)
0.312802 + 0.949818i \(0.398732\pi\)
\(984\) 1.43846 19.8945i 0.0458564 0.634213i
\(985\) 0.00310617 + 0.0475251i 9.89707e−5 + 0.00151428i
\(986\) 11.3134 0.360293
\(987\) 0 0
\(988\) 22.3370i 0.710633i
\(989\) 27.6910 + 15.9874i 0.880524 + 0.508371i
\(990\) 1.24564 + 0.0987264i 0.0395892 + 0.00313773i
\(991\) −15.1502 26.2409i −0.481262 0.833570i 0.518507 0.855073i \(-0.326488\pi\)
−0.999769 + 0.0215033i \(0.993155\pi\)
\(992\) 10.0234 + 5.78699i 0.318242 + 0.183737i
\(993\) −44.4290 30.1209i −1.40991 0.955857i
\(994\) 0 0
\(995\) 13.8238 + 20.6971i 0.438244 + 0.656141i
\(996\) −15.3720 31.7075i −0.487082 1.00469i
\(997\) 14.1419 + 24.4945i 0.447879 + 0.775749i 0.998248 0.0591728i \(-0.0188463\pi\)
−0.550369 + 0.834921i \(0.685513\pi\)
\(998\) 1.91023 + 3.30861i 0.0604672 + 0.104732i
\(999\) 36.4783 39.9396i 1.15412 1.26363i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.509.14 64
3.2 odd 2 inner 735.2.p.g.509.20 64
5.4 even 2 inner 735.2.p.g.509.19 64
7.2 even 3 735.2.g.c.734.17 yes 32
7.3 odd 6 inner 735.2.p.g.374.13 64
7.4 even 3 inner 735.2.p.g.374.16 64
7.5 odd 6 735.2.g.c.734.20 yes 32
7.6 odd 2 inner 735.2.p.g.509.15 64
15.14 odd 2 inner 735.2.p.g.509.13 64
21.2 odd 6 735.2.g.c.734.14 yes 32
21.5 even 6 735.2.g.c.734.15 yes 32
21.11 odd 6 inner 735.2.p.g.374.18 64
21.17 even 6 inner 735.2.p.g.374.19 64
21.20 even 2 inner 735.2.p.g.509.17 64
35.4 even 6 inner 735.2.p.g.374.17 64
35.9 even 6 735.2.g.c.734.16 yes 32
35.19 odd 6 735.2.g.c.734.13 32
35.24 odd 6 inner 735.2.p.g.374.20 64
35.34 odd 2 inner 735.2.p.g.509.18 64
105.44 odd 6 735.2.g.c.734.19 yes 32
105.59 even 6 inner 735.2.p.g.374.14 64
105.74 odd 6 inner 735.2.p.g.374.15 64
105.89 even 6 735.2.g.c.734.18 yes 32
105.104 even 2 inner 735.2.p.g.509.16 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.13 32 35.19 odd 6
735.2.g.c.734.14 yes 32 21.2 odd 6
735.2.g.c.734.15 yes 32 21.5 even 6
735.2.g.c.734.16 yes 32 35.9 even 6
735.2.g.c.734.17 yes 32 7.2 even 3
735.2.g.c.734.18 yes 32 105.89 even 6
735.2.g.c.734.19 yes 32 105.44 odd 6
735.2.g.c.734.20 yes 32 7.5 odd 6
735.2.p.g.374.13 64 7.3 odd 6 inner
735.2.p.g.374.14 64 105.59 even 6 inner
735.2.p.g.374.15 64 105.74 odd 6 inner
735.2.p.g.374.16 64 7.4 even 3 inner
735.2.p.g.374.17 64 35.4 even 6 inner
735.2.p.g.374.18 64 21.11 odd 6 inner
735.2.p.g.374.19 64 21.17 even 6 inner
735.2.p.g.374.20 64 35.24 odd 6 inner
735.2.p.g.509.13 64 15.14 odd 2 inner
735.2.p.g.509.14 64 1.1 even 1 trivial
735.2.p.g.509.15 64 7.6 odd 2 inner
735.2.p.g.509.16 64 105.104 even 2 inner
735.2.p.g.509.17 64 21.20 even 2 inner
735.2.p.g.509.18 64 35.34 odd 2 inner
735.2.p.g.509.19 64 5.4 even 2 inner
735.2.p.g.509.20 64 3.2 odd 2 inner