Properties

Label 735.4.a.bb.1.5
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 55x^{6} + 80x^{5} + 969x^{4} - 866x^{3} - 5783x^{2} + 2328x + 9992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.83170\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83170 q^{2} -3.00000 q^{3} -4.64489 q^{4} -5.00000 q^{5} -5.49509 q^{6} -23.1616 q^{8} +9.00000 q^{9} -9.15848 q^{10} -13.3138 q^{11} +13.9347 q^{12} -11.2211 q^{13} +15.0000 q^{15} -5.26591 q^{16} -121.753 q^{17} +16.4853 q^{18} +7.26156 q^{19} +23.2244 q^{20} -24.3868 q^{22} -36.9105 q^{23} +69.4848 q^{24} +25.0000 q^{25} -20.5536 q^{26} -27.0000 q^{27} -53.5141 q^{29} +27.4754 q^{30} -47.4976 q^{31} +175.647 q^{32} +39.9413 q^{33} -223.014 q^{34} -41.8040 q^{36} +316.983 q^{37} +13.3010 q^{38} +33.6632 q^{39} +115.808 q^{40} -403.708 q^{41} +205.692 q^{43} +61.8410 q^{44} -45.0000 q^{45} -67.6088 q^{46} +166.899 q^{47} +15.7977 q^{48} +45.7924 q^{50} +365.258 q^{51} +52.1206 q^{52} +629.682 q^{53} -49.4558 q^{54} +66.5689 q^{55} -21.7847 q^{57} -98.0215 q^{58} +171.889 q^{59} -69.6733 q^{60} +430.858 q^{61} -87.0012 q^{62} +363.860 q^{64} +56.1054 q^{65} +73.1604 q^{66} -81.0331 q^{67} +565.527 q^{68} +110.731 q^{69} +97.0016 q^{71} -208.454 q^{72} -209.220 q^{73} +580.616 q^{74} -75.0000 q^{75} -33.7292 q^{76} +61.6608 q^{78} +997.659 q^{79} +26.3296 q^{80} +81.0000 q^{81} -739.470 q^{82} +330.407 q^{83} +608.763 q^{85} +376.765 q^{86} +160.542 q^{87} +308.368 q^{88} +62.9012 q^{89} -82.4263 q^{90} +171.445 q^{92} +142.493 q^{93} +305.708 q^{94} -36.3078 q^{95} -526.942 q^{96} -1713.93 q^{97} -119.824 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 24 q^{3} + 50 q^{4} - 40 q^{5} - 6 q^{6} + 66 q^{8} + 72 q^{9} - 10 q^{10} + 64 q^{11} - 150 q^{12} + 120 q^{15} + 206 q^{16} - 48 q^{17} + 18 q^{18} - 80 q^{19} - 250 q^{20} + 452 q^{22}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83170 0.647603 0.323801 0.946125i \(-0.395039\pi\)
0.323801 + 0.946125i \(0.395039\pi\)
\(3\) −3.00000 −0.577350
\(4\) −4.64489 −0.580611
\(5\) −5.00000 −0.447214
\(6\) −5.49509 −0.373893
\(7\) 0 0
\(8\) −23.1616 −1.02361
\(9\) 9.00000 0.333333
\(10\) −9.15848 −0.289617
\(11\) −13.3138 −0.364932 −0.182466 0.983212i \(-0.558408\pi\)
−0.182466 + 0.983212i \(0.558408\pi\)
\(12\) 13.9347 0.335216
\(13\) −11.2211 −0.239397 −0.119699 0.992810i \(-0.538193\pi\)
−0.119699 + 0.992810i \(0.538193\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) −5.26591 −0.0822799
\(17\) −121.753 −1.73702 −0.868511 0.495671i \(-0.834922\pi\)
−0.868511 + 0.495671i \(0.834922\pi\)
\(18\) 16.4853 0.215868
\(19\) 7.26156 0.0876799 0.0438399 0.999039i \(-0.486041\pi\)
0.0438399 + 0.999039i \(0.486041\pi\)
\(20\) 23.2244 0.259657
\(21\) 0 0
\(22\) −24.3868 −0.236331
\(23\) −36.9105 −0.334624 −0.167312 0.985904i \(-0.553509\pi\)
−0.167312 + 0.985904i \(0.553509\pi\)
\(24\) 69.4848 0.590980
\(25\) 25.0000 0.200000
\(26\) −20.5536 −0.155034
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −53.5141 −0.342666 −0.171333 0.985213i \(-0.554807\pi\)
−0.171333 + 0.985213i \(0.554807\pi\)
\(30\) 27.4754 0.167210
\(31\) −47.4976 −0.275188 −0.137594 0.990489i \(-0.543937\pi\)
−0.137594 + 0.990489i \(0.543937\pi\)
\(32\) 175.647 0.970323
\(33\) 39.9413 0.210694
\(34\) −223.014 −1.12490
\(35\) 0 0
\(36\) −41.8040 −0.193537
\(37\) 316.983 1.40842 0.704211 0.709990i \(-0.251301\pi\)
0.704211 + 0.709990i \(0.251301\pi\)
\(38\) 13.3010 0.0567817
\(39\) 33.6632 0.138216
\(40\) 115.808 0.457771
\(41\) −403.708 −1.53777 −0.768885 0.639387i \(-0.779188\pi\)
−0.768885 + 0.639387i \(0.779188\pi\)
\(42\) 0 0
\(43\) 205.692 0.729481 0.364741 0.931109i \(-0.381158\pi\)
0.364741 + 0.931109i \(0.381158\pi\)
\(44\) 61.8410 0.211884
\(45\) −45.0000 −0.149071
\(46\) −67.6088 −0.216704
\(47\) 166.899 0.517972 0.258986 0.965881i \(-0.416612\pi\)
0.258986 + 0.965881i \(0.416612\pi\)
\(48\) 15.7977 0.0475043
\(49\) 0 0
\(50\) 45.7924 0.129521
\(51\) 365.258 1.00287
\(52\) 52.1206 0.138997
\(53\) 629.682 1.63195 0.815976 0.578085i \(-0.196200\pi\)
0.815976 + 0.578085i \(0.196200\pi\)
\(54\) −49.4558 −0.124631
\(55\) 66.5689 0.163203
\(56\) 0 0
\(57\) −21.7847 −0.0506220
\(58\) −98.0215 −0.221911
\(59\) 171.889 0.379289 0.189644 0.981853i \(-0.439267\pi\)
0.189644 + 0.981853i \(0.439267\pi\)
\(60\) −69.6733 −0.149913
\(61\) 430.858 0.904356 0.452178 0.891928i \(-0.350647\pi\)
0.452178 + 0.891928i \(0.350647\pi\)
\(62\) −87.0012 −0.178212
\(63\) 0 0
\(64\) 363.860 0.710664
\(65\) 56.1054 0.107062
\(66\) 73.1604 0.136446
\(67\) −81.0331 −0.147758 −0.0738788 0.997267i \(-0.523538\pi\)
−0.0738788 + 0.997267i \(0.523538\pi\)
\(68\) 565.527 1.00853
\(69\) 110.731 0.193196
\(70\) 0 0
\(71\) 97.0016 0.162140 0.0810702 0.996708i \(-0.474166\pi\)
0.0810702 + 0.996708i \(0.474166\pi\)
\(72\) −208.454 −0.341203
\(73\) −209.220 −0.335443 −0.167721 0.985834i \(-0.553641\pi\)
−0.167721 + 0.985834i \(0.553641\pi\)
\(74\) 580.616 0.912098
\(75\) −75.0000 −0.115470
\(76\) −33.7292 −0.0509079
\(77\) 0 0
\(78\) 61.6608 0.0895091
\(79\) 997.659 1.42083 0.710414 0.703784i \(-0.248508\pi\)
0.710414 + 0.703784i \(0.248508\pi\)
\(80\) 26.3296 0.0367967
\(81\) 81.0000 0.111111
\(82\) −739.470 −0.995863
\(83\) 330.407 0.436950 0.218475 0.975843i \(-0.429892\pi\)
0.218475 + 0.975843i \(0.429892\pi\)
\(84\) 0 0
\(85\) 608.763 0.776819
\(86\) 376.765 0.472414
\(87\) 160.542 0.197838
\(88\) 308.368 0.373547
\(89\) 62.9012 0.0749159 0.0374580 0.999298i \(-0.488074\pi\)
0.0374580 + 0.999298i \(0.488074\pi\)
\(90\) −82.4263 −0.0965389
\(91\) 0 0
\(92\) 171.445 0.194287
\(93\) 142.493 0.158880
\(94\) 305.708 0.335440
\(95\) −36.3078 −0.0392116
\(96\) −526.942 −0.560216
\(97\) −1713.93 −1.79405 −0.897027 0.441977i \(-0.854277\pi\)
−0.897027 + 0.441977i \(0.854277\pi\)
\(98\) 0 0
\(99\) −119.824 −0.121644
\(100\) −116.122 −0.116122
\(101\) 590.869 0.582116 0.291058 0.956705i \(-0.405993\pi\)
0.291058 + 0.956705i \(0.405993\pi\)
\(102\) 669.042 0.649461
\(103\) 1309.69 1.25289 0.626443 0.779467i \(-0.284510\pi\)
0.626443 + 0.779467i \(0.284510\pi\)
\(104\) 259.898 0.245049
\(105\) 0 0
\(106\) 1153.39 1.05686
\(107\) −1567.21 −1.41596 −0.707980 0.706232i \(-0.750394\pi\)
−0.707980 + 0.706232i \(0.750394\pi\)
\(108\) 125.412 0.111739
\(109\) 1077.16 0.946540 0.473270 0.880917i \(-0.343073\pi\)
0.473270 + 0.880917i \(0.343073\pi\)
\(110\) 121.934 0.105690
\(111\) −950.948 −0.813153
\(112\) 0 0
\(113\) 1273.29 1.06001 0.530005 0.847994i \(-0.322190\pi\)
0.530005 + 0.847994i \(0.322190\pi\)
\(114\) −39.9029 −0.0327829
\(115\) 184.552 0.149649
\(116\) 248.567 0.198956
\(117\) −100.990 −0.0797991
\(118\) 314.848 0.245628
\(119\) 0 0
\(120\) −347.424 −0.264294
\(121\) −1153.74 −0.866825
\(122\) 789.201 0.585663
\(123\) 1211.12 0.887832
\(124\) 220.621 0.159777
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1417.11 0.990143 0.495072 0.868852i \(-0.335142\pi\)
0.495072 + 0.868852i \(0.335142\pi\)
\(128\) −738.697 −0.510095
\(129\) −617.075 −0.421166
\(130\) 102.768 0.0693335
\(131\) 1641.98 1.09512 0.547558 0.836768i \(-0.315558\pi\)
0.547558 + 0.836768i \(0.315558\pi\)
\(132\) −185.523 −0.122331
\(133\) 0 0
\(134\) −148.428 −0.0956882
\(135\) 135.000 0.0860663
\(136\) 2819.99 1.77803
\(137\) 1170.21 0.729763 0.364881 0.931054i \(-0.381110\pi\)
0.364881 + 0.931054i \(0.381110\pi\)
\(138\) 202.826 0.125114
\(139\) −2779.78 −1.69624 −0.848122 0.529802i \(-0.822266\pi\)
−0.848122 + 0.529802i \(0.822266\pi\)
\(140\) 0 0
\(141\) −500.696 −0.299051
\(142\) 177.678 0.105003
\(143\) 149.395 0.0873638
\(144\) −47.3932 −0.0274266
\(145\) 267.570 0.153245
\(146\) −383.227 −0.217233
\(147\) 0 0
\(148\) −1472.35 −0.817746
\(149\) −596.391 −0.327908 −0.163954 0.986468i \(-0.552425\pi\)
−0.163954 + 0.986468i \(0.552425\pi\)
\(150\) −137.377 −0.0747787
\(151\) −1714.83 −0.924177 −0.462088 0.886834i \(-0.652900\pi\)
−0.462088 + 0.886834i \(0.652900\pi\)
\(152\) −168.189 −0.0897498
\(153\) −1095.77 −0.579007
\(154\) 0 0
\(155\) 237.488 0.123068
\(156\) −156.362 −0.0802498
\(157\) −1009.54 −0.513186 −0.256593 0.966520i \(-0.582600\pi\)
−0.256593 + 0.966520i \(0.582600\pi\)
\(158\) 1827.41 0.920132
\(159\) −1889.05 −0.942208
\(160\) −878.236 −0.433942
\(161\) 0 0
\(162\) 148.367 0.0719558
\(163\) 1578.01 0.758277 0.379138 0.925340i \(-0.376220\pi\)
0.379138 + 0.925340i \(0.376220\pi\)
\(164\) 1875.18 0.892846
\(165\) −199.707 −0.0942251
\(166\) 605.205 0.282970
\(167\) −1136.75 −0.526733 −0.263367 0.964696i \(-0.584833\pi\)
−0.263367 + 0.964696i \(0.584833\pi\)
\(168\) 0 0
\(169\) −2071.09 −0.942689
\(170\) 1115.07 0.503070
\(171\) 65.3541 0.0292266
\(172\) −955.415 −0.423545
\(173\) 159.521 0.0701048 0.0350524 0.999385i \(-0.488840\pi\)
0.0350524 + 0.999385i \(0.488840\pi\)
\(174\) 294.065 0.128121
\(175\) 0 0
\(176\) 70.1092 0.0300266
\(177\) −515.667 −0.218982
\(178\) 115.216 0.0485158
\(179\) 702.548 0.293357 0.146679 0.989184i \(-0.453142\pi\)
0.146679 + 0.989184i \(0.453142\pi\)
\(180\) 209.020 0.0865524
\(181\) 1407.17 0.577867 0.288933 0.957349i \(-0.406699\pi\)
0.288933 + 0.957349i \(0.406699\pi\)
\(182\) 0 0
\(183\) −1292.57 −0.522130
\(184\) 854.905 0.342524
\(185\) −1584.91 −0.629866
\(186\) 261.004 0.102891
\(187\) 1620.99 0.633895
\(188\) −775.226 −0.300740
\(189\) 0 0
\(190\) −66.5049 −0.0253935
\(191\) −3630.53 −1.37537 −0.687686 0.726008i \(-0.741373\pi\)
−0.687686 + 0.726008i \(0.741373\pi\)
\(192\) −1091.58 −0.410302
\(193\) −3155.74 −1.17697 −0.588486 0.808508i \(-0.700276\pi\)
−0.588486 + 0.808508i \(0.700276\pi\)
\(194\) −3139.40 −1.16183
\(195\) −168.316 −0.0618121
\(196\) 0 0
\(197\) 2368.58 0.856622 0.428311 0.903631i \(-0.359109\pi\)
0.428311 + 0.903631i \(0.359109\pi\)
\(198\) −219.481 −0.0787770
\(199\) 3803.91 1.35504 0.677518 0.735506i \(-0.263056\pi\)
0.677518 + 0.735506i \(0.263056\pi\)
\(200\) −579.040 −0.204722
\(201\) 243.099 0.0853079
\(202\) 1082.29 0.376980
\(203\) 0 0
\(204\) −1696.58 −0.582277
\(205\) 2018.54 0.687711
\(206\) 2398.95 0.811372
\(207\) −332.194 −0.111541
\(208\) 59.0892 0.0196976
\(209\) −96.6788 −0.0319972
\(210\) 0 0
\(211\) −326.870 −0.106648 −0.0533239 0.998577i \(-0.516982\pi\)
−0.0533239 + 0.998577i \(0.516982\pi\)
\(212\) −2924.80 −0.947530
\(213\) −291.005 −0.0936118
\(214\) −2870.65 −0.916980
\(215\) −1028.46 −0.326234
\(216\) 625.363 0.196993
\(217\) 0 0
\(218\) 1973.02 0.612982
\(219\) 627.659 0.193668
\(220\) −309.205 −0.0947572
\(221\) 1366.20 0.415838
\(222\) −1741.85 −0.526600
\(223\) 4109.05 1.23391 0.616956 0.786998i \(-0.288366\pi\)
0.616956 + 0.786998i \(0.288366\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 2332.28 0.686466
\(227\) −5449.66 −1.59342 −0.796710 0.604361i \(-0.793428\pi\)
−0.796710 + 0.604361i \(0.793428\pi\)
\(228\) 101.187 0.0293917
\(229\) 3689.67 1.06472 0.532359 0.846519i \(-0.321306\pi\)
0.532359 + 0.846519i \(0.321306\pi\)
\(230\) 338.044 0.0969128
\(231\) 0 0
\(232\) 1239.47 0.350755
\(233\) 1884.41 0.529835 0.264918 0.964271i \(-0.414655\pi\)
0.264918 + 0.964271i \(0.414655\pi\)
\(234\) −184.982 −0.0516781
\(235\) −834.494 −0.231644
\(236\) −798.405 −0.220219
\(237\) −2992.98 −0.820315
\(238\) 0 0
\(239\) −5885.01 −1.59276 −0.796381 0.604796i \(-0.793255\pi\)
−0.796381 + 0.604796i \(0.793255\pi\)
\(240\) −78.9887 −0.0212446
\(241\) 1643.66 0.439324 0.219662 0.975576i \(-0.429504\pi\)
0.219662 + 0.975576i \(0.429504\pi\)
\(242\) −2113.31 −0.561358
\(243\) −243.000 −0.0641500
\(244\) −2001.29 −0.525079
\(245\) 0 0
\(246\) 2218.41 0.574962
\(247\) −81.4826 −0.0209903
\(248\) 1100.12 0.281684
\(249\) −991.221 −0.252273
\(250\) −228.962 −0.0579233
\(251\) 3803.30 0.956422 0.478211 0.878245i \(-0.341285\pi\)
0.478211 + 0.878245i \(0.341285\pi\)
\(252\) 0 0
\(253\) 491.417 0.122115
\(254\) 2595.72 0.641219
\(255\) −1826.29 −0.448497
\(256\) −4263.95 −1.04100
\(257\) −3752.95 −0.910906 −0.455453 0.890260i \(-0.650523\pi\)
−0.455453 + 0.890260i \(0.650523\pi\)
\(258\) −1130.29 −0.272748
\(259\) 0 0
\(260\) −260.603 −0.0621612
\(261\) −481.627 −0.114222
\(262\) 3007.60 0.709200
\(263\) 5889.59 1.38087 0.690433 0.723397i \(-0.257420\pi\)
0.690433 + 0.723397i \(0.257420\pi\)
\(264\) −925.105 −0.215668
\(265\) −3148.41 −0.729831
\(266\) 0 0
\(267\) −188.704 −0.0432527
\(268\) 376.389 0.0857897
\(269\) −5530.04 −1.25343 −0.626715 0.779249i \(-0.715601\pi\)
−0.626715 + 0.779249i \(0.715601\pi\)
\(270\) 247.279 0.0557368
\(271\) −44.6615 −0.0100110 −0.00500552 0.999987i \(-0.501593\pi\)
−0.00500552 + 0.999987i \(0.501593\pi\)
\(272\) 641.139 0.142922
\(273\) 0 0
\(274\) 2143.46 0.472596
\(275\) −332.844 −0.0729864
\(276\) −514.335 −0.112171
\(277\) −3276.62 −0.710734 −0.355367 0.934727i \(-0.615644\pi\)
−0.355367 + 0.934727i \(0.615644\pi\)
\(278\) −5091.71 −1.09849
\(279\) −427.478 −0.0917293
\(280\) 0 0
\(281\) 731.877 0.155374 0.0776871 0.996978i \(-0.475246\pi\)
0.0776871 + 0.996978i \(0.475246\pi\)
\(282\) −917.124 −0.193666
\(283\) −2793.06 −0.586678 −0.293339 0.956008i \(-0.594766\pi\)
−0.293339 + 0.956008i \(0.594766\pi\)
\(284\) −450.562 −0.0941405
\(285\) 108.923 0.0226388
\(286\) 273.646 0.0565770
\(287\) 0 0
\(288\) 1580.82 0.323441
\(289\) 9910.71 2.01724
\(290\) 490.108 0.0992418
\(291\) 5141.79 1.03580
\(292\) 971.802 0.194762
\(293\) 9681.56 1.93039 0.965193 0.261539i \(-0.0842301\pi\)
0.965193 + 0.261539i \(0.0842301\pi\)
\(294\) 0 0
\(295\) −859.445 −0.169623
\(296\) −7341.83 −1.44167
\(297\) 359.472 0.0702312
\(298\) −1092.41 −0.212354
\(299\) 414.175 0.0801082
\(300\) 348.367 0.0670432
\(301\) 0 0
\(302\) −3141.04 −0.598499
\(303\) −1772.61 −0.336085
\(304\) −38.2388 −0.00721429
\(305\) −2154.29 −0.404440
\(306\) −2007.13 −0.374966
\(307\) 8369.52 1.55594 0.777971 0.628301i \(-0.216249\pi\)
0.777971 + 0.628301i \(0.216249\pi\)
\(308\) 0 0
\(309\) −3929.06 −0.723354
\(310\) 435.006 0.0796990
\(311\) −8821.56 −1.60844 −0.804219 0.594332i \(-0.797416\pi\)
−0.804219 + 0.594332i \(0.797416\pi\)
\(312\) −779.694 −0.141479
\(313\) 10237.7 1.84878 0.924391 0.381447i \(-0.124574\pi\)
0.924391 + 0.381447i \(0.124574\pi\)
\(314\) −1849.17 −0.332341
\(315\) 0 0
\(316\) −4634.01 −0.824948
\(317\) −2085.93 −0.369582 −0.184791 0.982778i \(-0.559161\pi\)
−0.184791 + 0.982778i \(0.559161\pi\)
\(318\) −3460.16 −0.610176
\(319\) 712.474 0.125050
\(320\) −1819.30 −0.317818
\(321\) 4701.63 0.817505
\(322\) 0 0
\(323\) −884.115 −0.152302
\(324\) −376.236 −0.0645123
\(325\) −280.527 −0.0478795
\(326\) 2890.43 0.491062
\(327\) −3231.47 −0.546485
\(328\) 9350.52 1.57407
\(329\) 0 0
\(330\) −365.802 −0.0610204
\(331\) 160.030 0.0265742 0.0132871 0.999912i \(-0.495770\pi\)
0.0132871 + 0.999912i \(0.495770\pi\)
\(332\) −1534.70 −0.253698
\(333\) 2852.84 0.469474
\(334\) −2082.18 −0.341114
\(335\) 405.165 0.0660792
\(336\) 0 0
\(337\) 9314.75 1.50566 0.752829 0.658217i \(-0.228689\pi\)
0.752829 + 0.658217i \(0.228689\pi\)
\(338\) −3793.60 −0.610488
\(339\) −3819.87 −0.611997
\(340\) −2827.64 −0.451030
\(341\) 632.372 0.100425
\(342\) 119.709 0.0189272
\(343\) 0 0
\(344\) −4764.15 −0.746703
\(345\) −553.657 −0.0863997
\(346\) 292.193 0.0454000
\(347\) −5906.18 −0.913719 −0.456860 0.889539i \(-0.651026\pi\)
−0.456860 + 0.889539i \(0.651026\pi\)
\(348\) −745.700 −0.114867
\(349\) 9121.45 1.39903 0.699513 0.714620i \(-0.253400\pi\)
0.699513 + 0.714620i \(0.253400\pi\)
\(350\) 0 0
\(351\) 302.969 0.0460720
\(352\) −2338.53 −0.354102
\(353\) −330.631 −0.0498519 −0.0249260 0.999689i \(-0.507935\pi\)
−0.0249260 + 0.999689i \(0.507935\pi\)
\(354\) −944.545 −0.141814
\(355\) −485.008 −0.0725114
\(356\) −292.169 −0.0434970
\(357\) 0 0
\(358\) 1286.85 0.189979
\(359\) 9546.43 1.40346 0.701729 0.712444i \(-0.252412\pi\)
0.701729 + 0.712444i \(0.252412\pi\)
\(360\) 1042.27 0.152590
\(361\) −6806.27 −0.992312
\(362\) 2577.50 0.374228
\(363\) 3461.23 0.500461
\(364\) 0 0
\(365\) 1046.10 0.150014
\(366\) −2367.60 −0.338133
\(367\) −7546.11 −1.07331 −0.536653 0.843803i \(-0.680312\pi\)
−0.536653 + 0.843803i \(0.680312\pi\)
\(368\) 194.367 0.0275329
\(369\) −3633.37 −0.512590
\(370\) −2903.08 −0.407903
\(371\) 0 0
\(372\) −661.863 −0.0922473
\(373\) −9406.12 −1.30571 −0.652856 0.757482i \(-0.726429\pi\)
−0.652856 + 0.757482i \(0.726429\pi\)
\(374\) 2969.16 0.410512
\(375\) 375.000 0.0516398
\(376\) −3865.64 −0.530200
\(377\) 600.485 0.0820333
\(378\) 0 0
\(379\) −13028.9 −1.76584 −0.882918 0.469526i \(-0.844425\pi\)
−0.882918 + 0.469526i \(0.844425\pi\)
\(380\) 168.646 0.0227667
\(381\) −4251.33 −0.571659
\(382\) −6650.03 −0.890695
\(383\) 8038.42 1.07244 0.536219 0.844079i \(-0.319852\pi\)
0.536219 + 0.844079i \(0.319852\pi\)
\(384\) 2216.09 0.294504
\(385\) 0 0
\(386\) −5780.37 −0.762210
\(387\) 1851.23 0.243160
\(388\) 7961.01 1.04165
\(389\) −5950.65 −0.775604 −0.387802 0.921743i \(-0.626766\pi\)
−0.387802 + 0.921743i \(0.626766\pi\)
\(390\) −308.304 −0.0400297
\(391\) 4493.95 0.581250
\(392\) 0 0
\(393\) −4925.93 −0.632266
\(394\) 4338.53 0.554751
\(395\) −4988.30 −0.635414
\(396\) 556.569 0.0706279
\(397\) 11519.9 1.45634 0.728172 0.685395i \(-0.240370\pi\)
0.728172 + 0.685395i \(0.240370\pi\)
\(398\) 6967.61 0.877524
\(399\) 0 0
\(400\) −131.648 −0.0164560
\(401\) 8174.35 1.01797 0.508987 0.860774i \(-0.330020\pi\)
0.508987 + 0.860774i \(0.330020\pi\)
\(402\) 445.284 0.0552456
\(403\) 532.974 0.0658792
\(404\) −2744.52 −0.337983
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) −4220.24 −0.513979
\(408\) −8459.96 −1.02654
\(409\) 125.495 0.0151720 0.00758598 0.999971i \(-0.497585\pi\)
0.00758598 + 0.999971i \(0.497585\pi\)
\(410\) 3697.35 0.445364
\(411\) −3510.62 −0.421329
\(412\) −6083.35 −0.727439
\(413\) 0 0
\(414\) −608.479 −0.0722345
\(415\) −1652.04 −0.195410
\(416\) −1970.95 −0.232293
\(417\) 8339.34 0.979326
\(418\) −177.086 −0.0207215
\(419\) −16735.8 −1.95131 −0.975654 0.219314i \(-0.929618\pi\)
−0.975654 + 0.219314i \(0.929618\pi\)
\(420\) 0 0
\(421\) 9780.23 1.13221 0.566104 0.824334i \(-0.308450\pi\)
0.566104 + 0.824334i \(0.308450\pi\)
\(422\) −598.727 −0.0690654
\(423\) 1502.09 0.172657
\(424\) −14584.4 −1.67048
\(425\) −3043.82 −0.347404
\(426\) −533.033 −0.0606233
\(427\) 0 0
\(428\) 7279.51 0.822122
\(429\) −448.185 −0.0504395
\(430\) −1883.82 −0.211270
\(431\) 5238.31 0.585430 0.292715 0.956200i \(-0.405441\pi\)
0.292715 + 0.956200i \(0.405441\pi\)
\(432\) 142.180 0.0158348
\(433\) 7563.10 0.839398 0.419699 0.907663i \(-0.362136\pi\)
0.419699 + 0.907663i \(0.362136\pi\)
\(434\) 0 0
\(435\) −802.711 −0.0884760
\(436\) −5003.27 −0.549572
\(437\) −268.028 −0.0293398
\(438\) 1149.68 0.125420
\(439\) 2039.02 0.221679 0.110839 0.993838i \(-0.464646\pi\)
0.110839 + 0.993838i \(0.464646\pi\)
\(440\) −1541.84 −0.167055
\(441\) 0 0
\(442\) 2502.46 0.269298
\(443\) −12956.2 −1.38954 −0.694769 0.719233i \(-0.744493\pi\)
−0.694769 + 0.719233i \(0.744493\pi\)
\(444\) 4417.05 0.472126
\(445\) −314.506 −0.0335034
\(446\) 7526.53 0.799085
\(447\) 1789.17 0.189318
\(448\) 0 0
\(449\) −4257.39 −0.447480 −0.223740 0.974649i \(-0.571827\pi\)
−0.223740 + 0.974649i \(0.571827\pi\)
\(450\) 412.132 0.0431735
\(451\) 5374.87 0.561182
\(452\) −5914.30 −0.615454
\(453\) 5144.48 0.533574
\(454\) −9982.12 −1.03190
\(455\) 0 0
\(456\) 504.568 0.0518171
\(457\) 15880.9 1.62555 0.812777 0.582575i \(-0.197955\pi\)
0.812777 + 0.582575i \(0.197955\pi\)
\(458\) 6758.36 0.689514
\(459\) 3287.32 0.334290
\(460\) −857.225 −0.0868876
\(461\) −187.474 −0.0189404 −0.00947022 0.999955i \(-0.503015\pi\)
−0.00947022 + 0.999955i \(0.503015\pi\)
\(462\) 0 0
\(463\) 10377.8 1.04168 0.520838 0.853656i \(-0.325620\pi\)
0.520838 + 0.853656i \(0.325620\pi\)
\(464\) 281.801 0.0281945
\(465\) −712.464 −0.0710532
\(466\) 3451.66 0.343123
\(467\) −7514.27 −0.744581 −0.372290 0.928116i \(-0.621427\pi\)
−0.372290 + 0.928116i \(0.621427\pi\)
\(468\) 469.086 0.0463323
\(469\) 0 0
\(470\) −1528.54 −0.150013
\(471\) 3028.63 0.296288
\(472\) −3981.22 −0.388243
\(473\) −2738.53 −0.266211
\(474\) −5482.23 −0.531238
\(475\) 181.539 0.0175360
\(476\) 0 0
\(477\) 5667.14 0.543984
\(478\) −10779.6 −1.03148
\(479\) 4624.70 0.441144 0.220572 0.975371i \(-0.429208\pi\)
0.220572 + 0.975371i \(0.429208\pi\)
\(480\) 2634.71 0.250536
\(481\) −3556.89 −0.337173
\(482\) 3010.68 0.284508
\(483\) 0 0
\(484\) 5359.01 0.503288
\(485\) 8569.65 0.802325
\(486\) −445.102 −0.0415437
\(487\) 7475.38 0.695568 0.347784 0.937575i \(-0.386934\pi\)
0.347784 + 0.937575i \(0.386934\pi\)
\(488\) −9979.36 −0.925706
\(489\) −4734.02 −0.437791
\(490\) 0 0
\(491\) −10657.8 −0.979596 −0.489798 0.871836i \(-0.662929\pi\)
−0.489798 + 0.871836i \(0.662929\pi\)
\(492\) −5625.53 −0.515485
\(493\) 6515.48 0.595218
\(494\) −149.251 −0.0135934
\(495\) 599.120 0.0544009
\(496\) 250.118 0.0226424
\(497\) 0 0
\(498\) −1815.62 −0.163373
\(499\) 18206.5 1.63334 0.816670 0.577106i \(-0.195818\pi\)
0.816670 + 0.577106i \(0.195818\pi\)
\(500\) 580.611 0.0519314
\(501\) 3410.25 0.304110
\(502\) 6966.49 0.619381
\(503\) −6417.85 −0.568902 −0.284451 0.958691i \(-0.591811\pi\)
−0.284451 + 0.958691i \(0.591811\pi\)
\(504\) 0 0
\(505\) −2954.35 −0.260330
\(506\) 900.128 0.0790821
\(507\) 6213.26 0.544262
\(508\) −6582.32 −0.574888
\(509\) −19812.9 −1.72532 −0.862662 0.505781i \(-0.831204\pi\)
−0.862662 + 0.505781i \(0.831204\pi\)
\(510\) −3345.21 −0.290448
\(511\) 0 0
\(512\) −1900.68 −0.164060
\(513\) −196.062 −0.0168740
\(514\) −6874.27 −0.589905
\(515\) −6548.43 −0.560308
\(516\) 2866.25 0.244534
\(517\) −2222.05 −0.189025
\(518\) 0 0
\(519\) −478.562 −0.0404750
\(520\) −1299.49 −0.109589
\(521\) −12726.1 −1.07013 −0.535067 0.844810i \(-0.679714\pi\)
−0.535067 + 0.844810i \(0.679714\pi\)
\(522\) −882.194 −0.0739704
\(523\) 15027.0 1.25638 0.628189 0.778060i \(-0.283796\pi\)
0.628189 + 0.778060i \(0.283796\pi\)
\(524\) −7626.80 −0.635836
\(525\) 0 0
\(526\) 10787.9 0.894252
\(527\) 5782.96 0.478007
\(528\) −210.328 −0.0173359
\(529\) −10804.6 −0.888026
\(530\) −5766.93 −0.472641
\(531\) 1547.00 0.126430
\(532\) 0 0
\(533\) 4530.03 0.368138
\(534\) −345.648 −0.0280106
\(535\) 7836.05 0.633237
\(536\) 1876.86 0.151246
\(537\) −2107.64 −0.169370
\(538\) −10129.4 −0.811724
\(539\) 0 0
\(540\) −627.060 −0.0499710
\(541\) −21168.2 −1.68224 −0.841122 0.540846i \(-0.818104\pi\)
−0.841122 + 0.540846i \(0.818104\pi\)
\(542\) −81.8063 −0.00648317
\(543\) −4221.50 −0.333632
\(544\) −21385.5 −1.68547
\(545\) −5385.78 −0.423306
\(546\) 0 0
\(547\) 420.240 0.0328486 0.0164243 0.999865i \(-0.494772\pi\)
0.0164243 + 0.999865i \(0.494772\pi\)
\(548\) −5435.48 −0.423708
\(549\) 3877.72 0.301452
\(550\) −609.670 −0.0472662
\(551\) −388.596 −0.0300449
\(552\) −2564.72 −0.197756
\(553\) 0 0
\(554\) −6001.78 −0.460273
\(555\) 4754.74 0.363653
\(556\) 12911.8 0.984857
\(557\) 1441.25 0.109637 0.0548184 0.998496i \(-0.482542\pi\)
0.0548184 + 0.998496i \(0.482542\pi\)
\(558\) −783.011 −0.0594041
\(559\) −2308.08 −0.174636
\(560\) 0 0
\(561\) −4862.96 −0.365979
\(562\) 1340.58 0.100621
\(563\) 10789.1 0.807646 0.403823 0.914837i \(-0.367681\pi\)
0.403823 + 0.914837i \(0.367681\pi\)
\(564\) 2325.68 0.173633
\(565\) −6366.46 −0.474051
\(566\) −5116.03 −0.379934
\(567\) 0 0
\(568\) −2246.71 −0.165968
\(569\) 18119.7 1.33500 0.667501 0.744609i \(-0.267364\pi\)
0.667501 + 0.744609i \(0.267364\pi\)
\(570\) 199.515 0.0146610
\(571\) 12036.4 0.882151 0.441076 0.897470i \(-0.354597\pi\)
0.441076 + 0.897470i \(0.354597\pi\)
\(572\) −693.922 −0.0507244
\(573\) 10891.6 0.794072
\(574\) 0 0
\(575\) −922.761 −0.0669249
\(576\) 3274.74 0.236888
\(577\) 10430.6 0.752567 0.376284 0.926504i \(-0.377202\pi\)
0.376284 + 0.926504i \(0.377202\pi\)
\(578\) 18153.4 1.30637
\(579\) 9467.23 0.679525
\(580\) −1242.83 −0.0889757
\(581\) 0 0
\(582\) 9418.19 0.670785
\(583\) −8383.45 −0.595552
\(584\) 4845.86 0.343362
\(585\) 504.948 0.0356873
\(586\) 17733.7 1.25012
\(587\) 8903.66 0.626054 0.313027 0.949744i \(-0.398657\pi\)
0.313027 + 0.949744i \(0.398657\pi\)
\(588\) 0 0
\(589\) −344.907 −0.0241284
\(590\) −1574.24 −0.109848
\(591\) −7105.75 −0.494571
\(592\) −1669.20 −0.115885
\(593\) −5276.59 −0.365402 −0.182701 0.983168i \(-0.558484\pi\)
−0.182701 + 0.983168i \(0.558484\pi\)
\(594\) 658.443 0.0454819
\(595\) 0 0
\(596\) 2770.17 0.190387
\(597\) −11411.7 −0.782330
\(598\) 758.643 0.0518783
\(599\) 23429.2 1.59815 0.799073 0.601233i \(-0.205324\pi\)
0.799073 + 0.601233i \(0.205324\pi\)
\(600\) 1737.12 0.118196
\(601\) 8166.03 0.554241 0.277121 0.960835i \(-0.410620\pi\)
0.277121 + 0.960835i \(0.410620\pi\)
\(602\) 0 0
\(603\) −729.298 −0.0492526
\(604\) 7965.18 0.536587
\(605\) 5768.72 0.387656
\(606\) −3246.88 −0.217649
\(607\) 2034.40 0.136036 0.0680178 0.997684i \(-0.478333\pi\)
0.0680178 + 0.997684i \(0.478333\pi\)
\(608\) 1275.47 0.0850778
\(609\) 0 0
\(610\) −3946.00 −0.261917
\(611\) −1872.78 −0.124001
\(612\) 5089.75 0.336178
\(613\) 13091.6 0.862586 0.431293 0.902212i \(-0.358057\pi\)
0.431293 + 0.902212i \(0.358057\pi\)
\(614\) 15330.4 1.00763
\(615\) −6055.62 −0.397050
\(616\) 0 0
\(617\) 1800.49 0.117479 0.0587397 0.998273i \(-0.481292\pi\)
0.0587397 + 0.998273i \(0.481292\pi\)
\(618\) −7196.85 −0.468446
\(619\) −15939.3 −1.03498 −0.517490 0.855689i \(-0.673134\pi\)
−0.517490 + 0.855689i \(0.673134\pi\)
\(620\) −1103.11 −0.0714545
\(621\) 996.582 0.0643985
\(622\) −16158.4 −1.04163
\(623\) 0 0
\(624\) −177.268 −0.0113724
\(625\) 625.000 0.0400000
\(626\) 18752.3 1.19728
\(627\) 290.036 0.0184736
\(628\) 4689.21 0.297961
\(629\) −38593.5 −2.44646
\(630\) 0 0
\(631\) 9594.47 0.605309 0.302654 0.953100i \(-0.402127\pi\)
0.302654 + 0.953100i \(0.402127\pi\)
\(632\) −23107.4 −1.45437
\(633\) 980.611 0.0615731
\(634\) −3820.79 −0.239342
\(635\) −7085.55 −0.442806
\(636\) 8774.41 0.547056
\(637\) 0 0
\(638\) 1305.04 0.0809826
\(639\) 873.014 0.0540468
\(640\) 3693.49 0.228122
\(641\) 17390.0 1.07155 0.535774 0.844362i \(-0.320020\pi\)
0.535774 + 0.844362i \(0.320020\pi\)
\(642\) 8611.95 0.529419
\(643\) −8460.25 −0.518880 −0.259440 0.965759i \(-0.583538\pi\)
−0.259440 + 0.965759i \(0.583538\pi\)
\(644\) 0 0
\(645\) 3085.38 0.188351
\(646\) −1619.43 −0.0986310
\(647\) 661.813 0.0402141 0.0201071 0.999798i \(-0.493599\pi\)
0.0201071 + 0.999798i \(0.493599\pi\)
\(648\) −1876.09 −0.113734
\(649\) −2288.49 −0.138415
\(650\) −513.840 −0.0310069
\(651\) 0 0
\(652\) −7329.67 −0.440264
\(653\) 10775.2 0.645739 0.322869 0.946444i \(-0.395353\pi\)
0.322869 + 0.946444i \(0.395353\pi\)
\(654\) −5919.07 −0.353905
\(655\) −8209.89 −0.489751
\(656\) 2125.89 0.126528
\(657\) −1882.98 −0.111814
\(658\) 0 0
\(659\) 23424.7 1.38467 0.692335 0.721576i \(-0.256582\pi\)
0.692335 + 0.721576i \(0.256582\pi\)
\(660\) 927.615 0.0547081
\(661\) 4881.40 0.287238 0.143619 0.989633i \(-0.454126\pi\)
0.143619 + 0.989633i \(0.454126\pi\)
\(662\) 293.127 0.0172095
\(663\) −4098.59 −0.240084
\(664\) −7652.75 −0.447266
\(665\) 0 0
\(666\) 5225.55 0.304033
\(667\) 1975.23 0.114664
\(668\) 5280.08 0.305827
\(669\) −12327.2 −0.712400
\(670\) 742.140 0.0427931
\(671\) −5736.35 −0.330029
\(672\) 0 0
\(673\) 18795.2 1.07653 0.538264 0.842776i \(-0.319080\pi\)
0.538264 + 0.842776i \(0.319080\pi\)
\(674\) 17061.8 0.975067
\(675\) −675.000 −0.0384900
\(676\) 9619.97 0.547336
\(677\) 3149.57 0.178800 0.0894002 0.995996i \(-0.471505\pi\)
0.0894002 + 0.995996i \(0.471505\pi\)
\(678\) −6996.85 −0.396331
\(679\) 0 0
\(680\) −14099.9 −0.795158
\(681\) 16349.0 0.919962
\(682\) 1158.31 0.0650354
\(683\) −2156.91 −0.120837 −0.0604187 0.998173i \(-0.519244\pi\)
−0.0604187 + 0.998173i \(0.519244\pi\)
\(684\) −303.562 −0.0169693
\(685\) −5851.03 −0.326360
\(686\) 0 0
\(687\) −11069.0 −0.614715
\(688\) −1083.16 −0.0600217
\(689\) −7065.71 −0.390685
\(690\) −1014.13 −0.0559526
\(691\) 19743.6 1.08695 0.543475 0.839425i \(-0.317108\pi\)
0.543475 + 0.839425i \(0.317108\pi\)
\(692\) −740.955 −0.0407036
\(693\) 0 0
\(694\) −10818.3 −0.591727
\(695\) 13898.9 0.758583
\(696\) −3718.41 −0.202509
\(697\) 49152.5 2.67114
\(698\) 16707.7 0.906013
\(699\) −5653.22 −0.305901
\(700\) 0 0
\(701\) 33027.9 1.77952 0.889761 0.456427i \(-0.150871\pi\)
0.889761 + 0.456427i \(0.150871\pi\)
\(702\) 554.947 0.0298364
\(703\) 2301.79 0.123490
\(704\) −4844.35 −0.259344
\(705\) 2503.48 0.133740
\(706\) −605.616 −0.0322842
\(707\) 0 0
\(708\) 2395.21 0.127144
\(709\) 7162.52 0.379399 0.189700 0.981842i \(-0.439249\pi\)
0.189700 + 0.981842i \(0.439249\pi\)
\(710\) −888.388 −0.0469586
\(711\) 8978.93 0.473609
\(712\) −1456.89 −0.0766845
\(713\) 1753.16 0.0920846
\(714\) 0 0
\(715\) −746.974 −0.0390703
\(716\) −3263.26 −0.170326
\(717\) 17655.0 0.919581
\(718\) 17486.2 0.908883
\(719\) 15221.7 0.789534 0.394767 0.918781i \(-0.370825\pi\)
0.394767 + 0.918781i \(0.370825\pi\)
\(720\) 236.966 0.0122656
\(721\) 0 0
\(722\) −12467.0 −0.642624
\(723\) −4930.97 −0.253644
\(724\) −6536.13 −0.335516
\(725\) −1337.85 −0.0685332
\(726\) 6339.92 0.324100
\(727\) 21110.6 1.07696 0.538479 0.842639i \(-0.318999\pi\)
0.538479 + 0.842639i \(0.318999\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 1916.13 0.0971498
\(731\) −25043.5 −1.26712
\(732\) 6003.86 0.303154
\(733\) 3192.56 0.160873 0.0804365 0.996760i \(-0.474369\pi\)
0.0804365 + 0.996760i \(0.474369\pi\)
\(734\) −13822.2 −0.695076
\(735\) 0 0
\(736\) −6483.22 −0.324694
\(737\) 1078.86 0.0539215
\(738\) −6655.23 −0.331954
\(739\) −2086.23 −0.103847 −0.0519237 0.998651i \(-0.516535\pi\)
−0.0519237 + 0.998651i \(0.516535\pi\)
\(740\) 7361.75 0.365707
\(741\) 244.448 0.0121188
\(742\) 0 0
\(743\) 24803.5 1.22470 0.612351 0.790586i \(-0.290224\pi\)
0.612351 + 0.790586i \(0.290224\pi\)
\(744\) −3300.36 −0.162631
\(745\) 2981.96 0.146645
\(746\) −17229.2 −0.845582
\(747\) 2973.66 0.145650
\(748\) −7529.30 −0.368046
\(749\) 0 0
\(750\) 686.886 0.0334421
\(751\) −31030.6 −1.50776 −0.753878 0.657015i \(-0.771819\pi\)
−0.753878 + 0.657015i \(0.771819\pi\)
\(752\) −878.875 −0.0426187
\(753\) −11409.9 −0.552191
\(754\) 1099.91 0.0531250
\(755\) 8574.14 0.413304
\(756\) 0 0
\(757\) 8976.32 0.430977 0.215489 0.976506i \(-0.430866\pi\)
0.215489 + 0.976506i \(0.430866\pi\)
\(758\) −23865.1 −1.14356
\(759\) −1474.25 −0.0705033
\(760\) 840.947 0.0401373
\(761\) 32657.8 1.55564 0.777822 0.628484i \(-0.216324\pi\)
0.777822 + 0.628484i \(0.216324\pi\)
\(762\) −7787.15 −0.370208
\(763\) 0 0
\(764\) 16863.4 0.798556
\(765\) 5478.87 0.258940
\(766\) 14723.9 0.694514
\(767\) −1928.78 −0.0908007
\(768\) 12791.8 0.601023
\(769\) 6824.24 0.320011 0.160005 0.987116i \(-0.448849\pi\)
0.160005 + 0.987116i \(0.448849\pi\)
\(770\) 0 0
\(771\) 11258.9 0.525912
\(772\) 14658.1 0.683363
\(773\) −8628.75 −0.401494 −0.200747 0.979643i \(-0.564337\pi\)
−0.200747 + 0.979643i \(0.564337\pi\)
\(774\) 3390.88 0.157471
\(775\) −1187.44 −0.0550376
\(776\) 39697.3 1.83641
\(777\) 0 0
\(778\) −10899.8 −0.502283
\(779\) −2931.55 −0.134831
\(780\) 781.809 0.0358888
\(781\) −1291.46 −0.0591703
\(782\) 8231.55 0.376419
\(783\) 1444.88 0.0659461
\(784\) 0 0
\(785\) 5047.71 0.229504
\(786\) −9022.81 −0.409457
\(787\) −11886.5 −0.538385 −0.269193 0.963086i \(-0.586757\pi\)
−0.269193 + 0.963086i \(0.586757\pi\)
\(788\) −11001.8 −0.497364
\(789\) −17668.8 −0.797243
\(790\) −9137.04 −0.411495
\(791\) 0 0
\(792\) 2775.31 0.124516
\(793\) −4834.69 −0.216500
\(794\) 21101.0 0.943132
\(795\) 9445.23 0.421368
\(796\) −17668.7 −0.786748
\(797\) 40174.0 1.78549 0.892745 0.450563i \(-0.148777\pi\)
0.892745 + 0.450563i \(0.148777\pi\)
\(798\) 0 0
\(799\) −20320.4 −0.899729
\(800\) 4391.18 0.194065
\(801\) 566.111 0.0249720
\(802\) 14972.9 0.659243
\(803\) 2785.50 0.122414
\(804\) −1129.17 −0.0495307
\(805\) 0 0
\(806\) 976.247 0.0426636
\(807\) 16590.1 0.723668
\(808\) −13685.5 −0.595858
\(809\) −15041.0 −0.653661 −0.326831 0.945083i \(-0.605981\pi\)
−0.326831 + 0.945083i \(0.605981\pi\)
\(810\) −741.837 −0.0321796
\(811\) −19457.6 −0.842478 −0.421239 0.906950i \(-0.638405\pi\)
−0.421239 + 0.906950i \(0.638405\pi\)
\(812\) 0 0
\(813\) 133.984 0.00577988
\(814\) −7730.19 −0.332854
\(815\) −7890.04 −0.339112
\(816\) −1923.42 −0.0825160
\(817\) 1493.64 0.0639608
\(818\) 229.869 0.00982540
\(819\) 0 0
\(820\) −9375.89 −0.399293
\(821\) 12604.3 0.535802 0.267901 0.963446i \(-0.413670\pi\)
0.267901 + 0.963446i \(0.413670\pi\)
\(822\) −6430.39 −0.272853
\(823\) 31260.2 1.32401 0.662005 0.749499i \(-0.269706\pi\)
0.662005 + 0.749499i \(0.269706\pi\)
\(824\) −30334.4 −1.28246
\(825\) 998.533 0.0421387
\(826\) 0 0
\(827\) −26591.8 −1.11812 −0.559062 0.829126i \(-0.688839\pi\)
−0.559062 + 0.829126i \(0.688839\pi\)
\(828\) 1543.00 0.0647622
\(829\) −29416.3 −1.23241 −0.616206 0.787585i \(-0.711331\pi\)
−0.616206 + 0.787585i \(0.711331\pi\)
\(830\) −3026.03 −0.126548
\(831\) 9829.87 0.410342
\(832\) −4082.90 −0.170131
\(833\) 0 0
\(834\) 15275.1 0.634214
\(835\) 5683.76 0.235562
\(836\) 449.062 0.0185779
\(837\) 1282.44 0.0529599
\(838\) −30654.9 −1.26367
\(839\) −30432.1 −1.25224 −0.626122 0.779725i \(-0.715359\pi\)
−0.626122 + 0.779725i \(0.715359\pi\)
\(840\) 0 0
\(841\) −21525.2 −0.882580
\(842\) 17914.4 0.733220
\(843\) −2195.63 −0.0897053
\(844\) 1518.28 0.0619209
\(845\) 10355.4 0.421583
\(846\) 2751.37 0.111813
\(847\) 0 0
\(848\) −3315.85 −0.134277
\(849\) 8379.17 0.338719
\(850\) −5575.35 −0.224980
\(851\) −11700.0 −0.471293
\(852\) 1351.68 0.0543521
\(853\) 42852.3 1.72009 0.860045 0.510219i \(-0.170436\pi\)
0.860045 + 0.510219i \(0.170436\pi\)
\(854\) 0 0
\(855\) −326.770 −0.0130705
\(856\) 36299.1 1.44939
\(857\) 13976.6 0.557098 0.278549 0.960422i \(-0.410147\pi\)
0.278549 + 0.960422i \(0.410147\pi\)
\(858\) −820.938 −0.0326648
\(859\) −24712.9 −0.981599 −0.490799 0.871273i \(-0.663295\pi\)
−0.490799 + 0.871273i \(0.663295\pi\)
\(860\) 4777.08 0.189415
\(861\) 0 0
\(862\) 9594.99 0.379126
\(863\) −18395.3 −0.725591 −0.362795 0.931869i \(-0.618178\pi\)
−0.362795 + 0.931869i \(0.618178\pi\)
\(864\) −4742.47 −0.186739
\(865\) −797.603 −0.0313518
\(866\) 13853.3 0.543596
\(867\) −29732.1 −1.16466
\(868\) 0 0
\(869\) −13282.6 −0.518506
\(870\) −1470.32 −0.0572973
\(871\) 909.278 0.0353728
\(872\) −24948.7 −0.968886
\(873\) −15425.4 −0.598018
\(874\) −490.945 −0.0190005
\(875\) 0 0
\(876\) −2915.41 −0.112446
\(877\) 15590.6 0.600294 0.300147 0.953893i \(-0.402964\pi\)
0.300147 + 0.953893i \(0.402964\pi\)
\(878\) 3734.86 0.143560
\(879\) −29044.7 −1.11451
\(880\) −350.546 −0.0134283
\(881\) −10854.5 −0.415095 −0.207547 0.978225i \(-0.566548\pi\)
−0.207547 + 0.978225i \(0.566548\pi\)
\(882\) 0 0
\(883\) 537.994 0.0205039 0.0102519 0.999947i \(-0.496737\pi\)
0.0102519 + 0.999947i \(0.496737\pi\)
\(884\) −6345.83 −0.241440
\(885\) 2578.33 0.0979319
\(886\) −23731.7 −0.899868
\(887\) −28177.3 −1.06663 −0.533316 0.845916i \(-0.679054\pi\)
−0.533316 + 0.845916i \(0.679054\pi\)
\(888\) 22025.5 0.832350
\(889\) 0 0
\(890\) −576.080 −0.0216969
\(891\) −1078.42 −0.0405480
\(892\) −19086.1 −0.716423
\(893\) 1211.95 0.0454157
\(894\) 3277.22 0.122603
\(895\) −3512.74 −0.131193
\(896\) 0 0
\(897\) −1242.52 −0.0462505
\(898\) −7798.24 −0.289789
\(899\) 2541.79 0.0942975
\(900\) −1045.10 −0.0387074
\(901\) −76665.5 −2.83474
\(902\) 9845.14 0.363423
\(903\) 0 0
\(904\) −29491.5 −1.08503
\(905\) −7035.84 −0.258430
\(906\) 9423.13 0.345544
\(907\) 48750.3 1.78470 0.892352 0.451339i \(-0.149054\pi\)
0.892352 + 0.451339i \(0.149054\pi\)
\(908\) 25313.0 0.925157
\(909\) 5317.82 0.194039
\(910\) 0 0
\(911\) 29158.5 1.06044 0.530222 0.847859i \(-0.322109\pi\)
0.530222 + 0.847859i \(0.322109\pi\)
\(912\) 114.716 0.00416517
\(913\) −4398.96 −0.159457
\(914\) 29089.0 1.05271
\(915\) 6462.87 0.233504
\(916\) −17138.1 −0.618187
\(917\) 0 0
\(918\) 6021.38 0.216487
\(919\) −22696.7 −0.814684 −0.407342 0.913276i \(-0.633544\pi\)
−0.407342 + 0.913276i \(0.633544\pi\)
\(920\) −4274.53 −0.153181
\(921\) −25108.6 −0.898323
\(922\) −343.396 −0.0122659
\(923\) −1088.46 −0.0388160
\(924\) 0 0
\(925\) 7924.57 0.281685
\(926\) 19008.9 0.674591
\(927\) 11787.2 0.417629
\(928\) −9399.60 −0.332497
\(929\) 31842.1 1.12455 0.562274 0.826951i \(-0.309927\pi\)
0.562274 + 0.826951i \(0.309927\pi\)
\(930\) −1305.02 −0.0460142
\(931\) 0 0
\(932\) −8752.86 −0.307628
\(933\) 26464.7 0.928633
\(934\) −13763.9 −0.482192
\(935\) −8104.94 −0.283486
\(936\) 2339.08 0.0816830
\(937\) 24904.2 0.868287 0.434143 0.900844i \(-0.357051\pi\)
0.434143 + 0.900844i \(0.357051\pi\)
\(938\) 0 0
\(939\) −30713.1 −1.06739
\(940\) 3876.13 0.134495
\(941\) 16348.0 0.566346 0.283173 0.959069i \(-0.408613\pi\)
0.283173 + 0.959069i \(0.408613\pi\)
\(942\) 5547.52 0.191877
\(943\) 14901.0 0.514575
\(944\) −905.152 −0.0312078
\(945\) 0 0
\(946\) −5016.16 −0.172399
\(947\) −17252.5 −0.592009 −0.296004 0.955187i \(-0.595654\pi\)
−0.296004 + 0.955187i \(0.595654\pi\)
\(948\) 13902.0 0.476284
\(949\) 2347.67 0.0803041
\(950\) 332.525 0.0113563
\(951\) 6257.78 0.213378
\(952\) 0 0
\(953\) 45959.4 1.56219 0.781096 0.624411i \(-0.214661\pi\)
0.781096 + 0.624411i \(0.214661\pi\)
\(954\) 10380.5 0.352286
\(955\) 18152.7 0.615085
\(956\) 27335.2 0.924775
\(957\) −2137.42 −0.0721976
\(958\) 8471.05 0.285686
\(959\) 0 0
\(960\) 5457.90 0.183493
\(961\) −27535.0 −0.924272
\(962\) −6515.14 −0.218354
\(963\) −14104.9 −0.471987
\(964\) −7634.60 −0.255077
\(965\) 15778.7 0.526358
\(966\) 0 0
\(967\) −46208.8 −1.53668 −0.768342 0.640039i \(-0.778918\pi\)
−0.768342 + 0.640039i \(0.778918\pi\)
\(968\) 26722.5 0.887288
\(969\) 2652.34 0.0879315
\(970\) 15697.0 0.519588
\(971\) −23927.9 −0.790818 −0.395409 0.918505i \(-0.629397\pi\)
−0.395409 + 0.918505i \(0.629397\pi\)
\(972\) 1128.71 0.0372462
\(973\) 0 0
\(974\) 13692.6 0.450452
\(975\) 841.581 0.0276432
\(976\) −2268.86 −0.0744103
\(977\) −34491.2 −1.12945 −0.564724 0.825279i \(-0.691018\pi\)
−0.564724 + 0.825279i \(0.691018\pi\)
\(978\) −8671.29 −0.283515
\(979\) −837.453 −0.0273392
\(980\) 0 0
\(981\) 9694.41 0.315513
\(982\) −19521.9 −0.634389
\(983\) 853.837 0.0277041 0.0138521 0.999904i \(-0.495591\pi\)
0.0138521 + 0.999904i \(0.495591\pi\)
\(984\) −28051.5 −0.908791
\(985\) −11842.9 −0.383093
\(986\) 11934.4 0.385465
\(987\) 0 0
\(988\) 378.477 0.0121872
\(989\) −7592.18 −0.244102
\(990\) 1097.41 0.0352301
\(991\) −39350.8 −1.26137 −0.630686 0.776038i \(-0.717227\pi\)
−0.630686 + 0.776038i \(0.717227\pi\)
\(992\) −8342.82 −0.267021
\(993\) −480.090 −0.0153426
\(994\) 0 0
\(995\) −19019.6 −0.605990
\(996\) 4604.11 0.146473
\(997\) 31911.5 1.01369 0.506844 0.862038i \(-0.330812\pi\)
0.506844 + 0.862038i \(0.330812\pi\)
\(998\) 33348.8 1.05775
\(999\) −8558.53 −0.271051
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.bb.1.5 8
3.2 odd 2 2205.4.a.ce.1.4 8
7.6 odd 2 735.4.a.bc.1.5 yes 8
21.20 even 2 2205.4.a.cd.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.4.a.bb.1.5 8 1.1 even 1 trivial
735.4.a.bc.1.5 yes 8 7.6 odd 2
2205.4.a.cd.1.4 8 21.20 even 2
2205.4.a.ce.1.4 8 3.2 odd 2