Properties

Label 735.4.a.t.1.3
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.51264.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 15x^{2} + 16x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.50184\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.912375 q^{2} -3.00000 q^{3} -7.16757 q^{4} +5.00000 q^{5} +2.73712 q^{6} +13.8385 q^{8} +9.00000 q^{9} -4.56187 q^{10} -21.7933 q^{11} +21.5027 q^{12} -34.4151 q^{13} -15.0000 q^{15} +44.7147 q^{16} +5.70794 q^{17} -8.21137 q^{18} +24.6906 q^{19} -35.8379 q^{20} +19.8837 q^{22} +92.6544 q^{23} -41.5155 q^{24} +25.0000 q^{25} +31.3995 q^{26} -27.0000 q^{27} -55.2788 q^{29} +13.6856 q^{30} +116.651 q^{31} -151.505 q^{32} +65.3800 q^{33} -5.20778 q^{34} -64.5082 q^{36} +90.6006 q^{37} -22.5271 q^{38} +103.245 q^{39} +69.1925 q^{40} +38.1301 q^{41} +229.920 q^{43} +156.205 q^{44} +45.0000 q^{45} -84.5355 q^{46} -19.6129 q^{47} -134.144 q^{48} -22.8094 q^{50} -17.1238 q^{51} +246.673 q^{52} -111.356 q^{53} +24.6341 q^{54} -108.967 q^{55} -74.0719 q^{57} +50.4350 q^{58} +402.344 q^{59} +107.514 q^{60} +359.954 q^{61} -106.429 q^{62} -219.488 q^{64} -172.075 q^{65} -59.6510 q^{66} -864.308 q^{67} -40.9120 q^{68} -277.963 q^{69} -1078.94 q^{71} +124.547 q^{72} +596.587 q^{73} -82.6617 q^{74} -75.0000 q^{75} -176.972 q^{76} -94.1984 q^{78} -723.054 q^{79} +223.573 q^{80} +81.0000 q^{81} -34.7889 q^{82} -1043.84 q^{83} +28.5397 q^{85} -209.773 q^{86} +165.836 q^{87} -301.587 q^{88} -243.768 q^{89} -41.0569 q^{90} -664.107 q^{92} -349.952 q^{93} +17.8943 q^{94} +123.453 q^{95} +454.514 q^{96} -609.252 q^{97} -196.140 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} - 12 q^{3} + 18 q^{4} + 20 q^{5} + 18 q^{6} - 30 q^{8} + 36 q^{9} - 30 q^{10} - 24 q^{11} - 54 q^{12} - 60 q^{15} - 46 q^{16} + 88 q^{17} - 54 q^{18} - 72 q^{19} + 90 q^{20} - 28 q^{22} + 90 q^{24}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.912375 −0.322573 −0.161287 0.986908i \(-0.551564\pi\)
−0.161287 + 0.986908i \(0.551564\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.16757 −0.895947
\(5\) 5.00000 0.447214
\(6\) 2.73712 0.186238
\(7\) 0 0
\(8\) 13.8385 0.611581
\(9\) 9.00000 0.333333
\(10\) −4.56187 −0.144259
\(11\) −21.7933 −0.597358 −0.298679 0.954354i \(-0.596546\pi\)
−0.298679 + 0.954354i \(0.596546\pi\)
\(12\) 21.5027 0.517275
\(13\) −34.4151 −0.734233 −0.367117 0.930175i \(-0.619655\pi\)
−0.367117 + 0.930175i \(0.619655\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 44.7147 0.698667
\(17\) 5.70794 0.0814340 0.0407170 0.999171i \(-0.487036\pi\)
0.0407170 + 0.999171i \(0.487036\pi\)
\(18\) −8.21137 −0.107524
\(19\) 24.6906 0.298127 0.149064 0.988828i \(-0.452374\pi\)
0.149064 + 0.988828i \(0.452374\pi\)
\(20\) −35.8379 −0.400679
\(21\) 0 0
\(22\) 19.8837 0.192692
\(23\) 92.6544 0.839990 0.419995 0.907526i \(-0.362032\pi\)
0.419995 + 0.907526i \(0.362032\pi\)
\(24\) −41.5155 −0.353097
\(25\) 25.0000 0.200000
\(26\) 31.3995 0.236844
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −55.2788 −0.353966 −0.176983 0.984214i \(-0.556634\pi\)
−0.176983 + 0.984214i \(0.556634\pi\)
\(30\) 13.6856 0.0832880
\(31\) 116.651 0.675841 0.337920 0.941175i \(-0.390277\pi\)
0.337920 + 0.941175i \(0.390277\pi\)
\(32\) −151.505 −0.836953
\(33\) 65.3800 0.344885
\(34\) −5.20778 −0.0262684
\(35\) 0 0
\(36\) −64.5082 −0.298649
\(37\) 90.6006 0.402558 0.201279 0.979534i \(-0.435490\pi\)
0.201279 + 0.979534i \(0.435490\pi\)
\(38\) −22.5271 −0.0961679
\(39\) 103.245 0.423910
\(40\) 69.1925 0.273508
\(41\) 38.1301 0.145242 0.0726209 0.997360i \(-0.476864\pi\)
0.0726209 + 0.997360i \(0.476864\pi\)
\(42\) 0 0
\(43\) 229.920 0.815407 0.407703 0.913114i \(-0.366330\pi\)
0.407703 + 0.913114i \(0.366330\pi\)
\(44\) 156.205 0.535201
\(45\) 45.0000 0.149071
\(46\) −84.5355 −0.270958
\(47\) −19.6129 −0.0608689 −0.0304345 0.999537i \(-0.509689\pi\)
−0.0304345 + 0.999537i \(0.509689\pi\)
\(48\) −134.144 −0.403375
\(49\) 0 0
\(50\) −22.8094 −0.0645146
\(51\) −17.1238 −0.0470159
\(52\) 246.673 0.657834
\(53\) −111.356 −0.288603 −0.144302 0.989534i \(-0.546094\pi\)
−0.144302 + 0.989534i \(0.546094\pi\)
\(54\) 24.6341 0.0620792
\(55\) −108.967 −0.267147
\(56\) 0 0
\(57\) −74.0719 −0.172124
\(58\) 50.4350 0.114180
\(59\) 402.344 0.887809 0.443905 0.896074i \(-0.353593\pi\)
0.443905 + 0.896074i \(0.353593\pi\)
\(60\) 107.514 0.231332
\(61\) 359.954 0.755530 0.377765 0.925901i \(-0.376693\pi\)
0.377765 + 0.925901i \(0.376693\pi\)
\(62\) −106.429 −0.218008
\(63\) 0 0
\(64\) −219.488 −0.428688
\(65\) −172.075 −0.328359
\(66\) −59.6510 −0.111251
\(67\) −864.308 −1.57600 −0.788000 0.615675i \(-0.788883\pi\)
−0.788000 + 0.615675i \(0.788883\pi\)
\(68\) −40.9120 −0.0729605
\(69\) −277.963 −0.484969
\(70\) 0 0
\(71\) −1078.94 −1.80348 −0.901739 0.432280i \(-0.857709\pi\)
−0.901739 + 0.432280i \(0.857709\pi\)
\(72\) 124.547 0.203860
\(73\) 596.587 0.956509 0.478255 0.878221i \(-0.341270\pi\)
0.478255 + 0.878221i \(0.341270\pi\)
\(74\) −82.6617 −0.129854
\(75\) −75.0000 −0.115470
\(76\) −176.972 −0.267106
\(77\) 0 0
\(78\) −94.1984 −0.136742
\(79\) −723.054 −1.02975 −0.514873 0.857267i \(-0.672161\pi\)
−0.514873 + 0.857267i \(0.672161\pi\)
\(80\) 223.573 0.312453
\(81\) 81.0000 0.111111
\(82\) −34.7889 −0.0468511
\(83\) −1043.84 −1.38044 −0.690219 0.723601i \(-0.742486\pi\)
−0.690219 + 0.723601i \(0.742486\pi\)
\(84\) 0 0
\(85\) 28.5397 0.0364184
\(86\) −209.773 −0.263028
\(87\) 165.836 0.204362
\(88\) −301.587 −0.365333
\(89\) −243.768 −0.290329 −0.145165 0.989408i \(-0.546371\pi\)
−0.145165 + 0.989408i \(0.546371\pi\)
\(90\) −41.0569 −0.0480864
\(91\) 0 0
\(92\) −664.107 −0.752586
\(93\) −349.952 −0.390197
\(94\) 17.8943 0.0196347
\(95\) 123.453 0.133327
\(96\) 454.514 0.483215
\(97\) −609.252 −0.637734 −0.318867 0.947800i \(-0.603302\pi\)
−0.318867 + 0.947800i \(0.603302\pi\)
\(98\) 0 0
\(99\) −196.140 −0.199119
\(100\) −179.189 −0.179189
\(101\) 441.823 0.435278 0.217639 0.976029i \(-0.430164\pi\)
0.217639 + 0.976029i \(0.430164\pi\)
\(102\) 15.6233 0.0151661
\(103\) −806.414 −0.771440 −0.385720 0.922616i \(-0.626047\pi\)
−0.385720 + 0.922616i \(0.626047\pi\)
\(104\) −476.254 −0.449043
\(105\) 0 0
\(106\) 101.599 0.0930956
\(107\) −618.019 −0.558375 −0.279188 0.960237i \(-0.590065\pi\)
−0.279188 + 0.960237i \(0.590065\pi\)
\(108\) 193.524 0.172425
\(109\) −2147.07 −1.88671 −0.943357 0.331779i \(-0.892351\pi\)
−0.943357 + 0.331779i \(0.892351\pi\)
\(110\) 99.4184 0.0861743
\(111\) −271.802 −0.232417
\(112\) 0 0
\(113\) −1235.34 −1.02842 −0.514209 0.857665i \(-0.671915\pi\)
−0.514209 + 0.857665i \(0.671915\pi\)
\(114\) 67.5813 0.0555226
\(115\) 463.272 0.375655
\(116\) 396.215 0.317135
\(117\) −309.736 −0.244744
\(118\) −367.089 −0.286383
\(119\) 0 0
\(120\) −207.578 −0.157910
\(121\) −856.051 −0.643164
\(122\) −328.413 −0.243714
\(123\) −114.390 −0.0838554
\(124\) −836.102 −0.605517
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2200.67 1.53762 0.768811 0.639475i \(-0.220848\pi\)
0.768811 + 0.639475i \(0.220848\pi\)
\(128\) 1412.29 0.975236
\(129\) −689.760 −0.470775
\(130\) 156.997 0.105920
\(131\) 2656.55 1.77179 0.885893 0.463890i \(-0.153547\pi\)
0.885893 + 0.463890i \(0.153547\pi\)
\(132\) −468.616 −0.308998
\(133\) 0 0
\(134\) 788.572 0.508375
\(135\) −135.000 −0.0860663
\(136\) 78.9893 0.0498035
\(137\) −2143.69 −1.33684 −0.668422 0.743782i \(-0.733030\pi\)
−0.668422 + 0.743782i \(0.733030\pi\)
\(138\) 253.607 0.156438
\(139\) −2827.76 −1.72552 −0.862761 0.505612i \(-0.831267\pi\)
−0.862761 + 0.505612i \(0.831267\pi\)
\(140\) 0 0
\(141\) 58.8388 0.0351427
\(142\) 984.400 0.581754
\(143\) 750.020 0.438600
\(144\) 402.432 0.232889
\(145\) −276.394 −0.158298
\(146\) −544.311 −0.308544
\(147\) 0 0
\(148\) −649.386 −0.360670
\(149\) −922.724 −0.507332 −0.253666 0.967292i \(-0.581636\pi\)
−0.253666 + 0.967292i \(0.581636\pi\)
\(150\) 68.4281 0.0372475
\(151\) −835.324 −0.450183 −0.225092 0.974338i \(-0.572268\pi\)
−0.225092 + 0.974338i \(0.572268\pi\)
\(152\) 341.682 0.182329
\(153\) 51.3714 0.0271447
\(154\) 0 0
\(155\) 583.253 0.302245
\(156\) −740.018 −0.379800
\(157\) −2055.05 −1.04465 −0.522327 0.852745i \(-0.674936\pi\)
−0.522327 + 0.852745i \(0.674936\pi\)
\(158\) 659.696 0.332168
\(159\) 334.069 0.166625
\(160\) −757.523 −0.374297
\(161\) 0 0
\(162\) −73.9023 −0.0358415
\(163\) 1361.53 0.654251 0.327126 0.944981i \(-0.393920\pi\)
0.327126 + 0.944981i \(0.393920\pi\)
\(164\) −273.300 −0.130129
\(165\) 326.900 0.154237
\(166\) 952.373 0.445292
\(167\) 1042.90 0.483247 0.241623 0.970370i \(-0.422320\pi\)
0.241623 + 0.970370i \(0.422320\pi\)
\(168\) 0 0
\(169\) −1012.60 −0.460902
\(170\) −26.0389 −0.0117476
\(171\) 222.216 0.0993758
\(172\) −1647.97 −0.730561
\(173\) 3397.23 1.49299 0.746494 0.665392i \(-0.231736\pi\)
0.746494 + 0.665392i \(0.231736\pi\)
\(174\) −151.305 −0.0659218
\(175\) 0 0
\(176\) −974.482 −0.417354
\(177\) −1207.03 −0.512577
\(178\) 222.407 0.0936524
\(179\) 125.381 0.0523543 0.0261771 0.999657i \(-0.491667\pi\)
0.0261771 + 0.999657i \(0.491667\pi\)
\(180\) −322.541 −0.133560
\(181\) 988.234 0.405828 0.202914 0.979197i \(-0.434959\pi\)
0.202914 + 0.979197i \(0.434959\pi\)
\(182\) 0 0
\(183\) −1079.86 −0.436206
\(184\) 1282.20 0.513722
\(185\) 453.003 0.180029
\(186\) 319.287 0.125867
\(187\) −124.395 −0.0486452
\(188\) 140.577 0.0545353
\(189\) 0 0
\(190\) −112.636 −0.0430076
\(191\) −2669.26 −1.01121 −0.505604 0.862766i \(-0.668730\pi\)
−0.505604 + 0.862766i \(0.668730\pi\)
\(192\) 658.465 0.247503
\(193\) −2228.29 −0.831067 −0.415534 0.909578i \(-0.636405\pi\)
−0.415534 + 0.909578i \(0.636405\pi\)
\(194\) 555.866 0.205716
\(195\) 516.226 0.189578
\(196\) 0 0
\(197\) −365.525 −0.132196 −0.0660979 0.997813i \(-0.521055\pi\)
−0.0660979 + 0.997813i \(0.521055\pi\)
\(198\) 178.953 0.0642305
\(199\) −2789.70 −0.993751 −0.496875 0.867822i \(-0.665519\pi\)
−0.496875 + 0.867822i \(0.665519\pi\)
\(200\) 345.963 0.122316
\(201\) 2592.92 0.909904
\(202\) −403.108 −0.140409
\(203\) 0 0
\(204\) 122.736 0.0421238
\(205\) 190.650 0.0649541
\(206\) 735.752 0.248846
\(207\) 833.890 0.279997
\(208\) −1538.86 −0.512984
\(209\) −538.091 −0.178089
\(210\) 0 0
\(211\) −578.631 −0.188789 −0.0943947 0.995535i \(-0.530092\pi\)
−0.0943947 + 0.995535i \(0.530092\pi\)
\(212\) 798.155 0.258573
\(213\) 3236.83 1.04124
\(214\) 563.865 0.180117
\(215\) 1149.60 0.364661
\(216\) −373.640 −0.117699
\(217\) 0 0
\(218\) 1958.93 0.608603
\(219\) −1789.76 −0.552241
\(220\) 781.026 0.239349
\(221\) −196.439 −0.0597915
\(222\) 247.985 0.0749715
\(223\) 4664.97 1.40085 0.700424 0.713727i \(-0.252994\pi\)
0.700424 + 0.713727i \(0.252994\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 1127.10 0.331740
\(227\) 2575.43 0.753028 0.376514 0.926411i \(-0.377123\pi\)
0.376514 + 0.926411i \(0.377123\pi\)
\(228\) 530.916 0.154214
\(229\) −4924.10 −1.42093 −0.710467 0.703731i \(-0.751516\pi\)
−0.710467 + 0.703731i \(0.751516\pi\)
\(230\) −422.678 −0.121176
\(231\) 0 0
\(232\) −764.976 −0.216479
\(233\) 6013.17 1.69071 0.845356 0.534203i \(-0.179388\pi\)
0.845356 + 0.534203i \(0.179388\pi\)
\(234\) 282.595 0.0789479
\(235\) −98.0646 −0.0272214
\(236\) −2883.83 −0.795430
\(237\) 2169.16 0.594524
\(238\) 0 0
\(239\) 302.198 0.0817890 0.0408945 0.999163i \(-0.486979\pi\)
0.0408945 + 0.999163i \(0.486979\pi\)
\(240\) −670.720 −0.180395
\(241\) −4196.17 −1.12157 −0.560786 0.827961i \(-0.689501\pi\)
−0.560786 + 0.827961i \(0.689501\pi\)
\(242\) 781.039 0.207467
\(243\) −243.000 −0.0641500
\(244\) −2579.99 −0.676915
\(245\) 0 0
\(246\) 104.367 0.0270495
\(247\) −849.731 −0.218895
\(248\) 1614.27 0.413332
\(249\) 3131.52 0.796996
\(250\) −114.047 −0.0288518
\(251\) 7388.87 1.85809 0.929046 0.369964i \(-0.120630\pi\)
0.929046 + 0.369964i \(0.120630\pi\)
\(252\) 0 0
\(253\) −2019.25 −0.501775
\(254\) −2007.84 −0.495996
\(255\) −85.6190 −0.0210262
\(256\) 467.368 0.114104
\(257\) −290.777 −0.0705766 −0.0352883 0.999377i \(-0.511235\pi\)
−0.0352883 + 0.999377i \(0.511235\pi\)
\(258\) 629.320 0.151859
\(259\) 0 0
\(260\) 1233.36 0.294192
\(261\) −497.509 −0.117989
\(262\) −2423.77 −0.571530
\(263\) 1165.41 0.273241 0.136620 0.990623i \(-0.456376\pi\)
0.136620 + 0.990623i \(0.456376\pi\)
\(264\) 904.762 0.210925
\(265\) −556.782 −0.129067
\(266\) 0 0
\(267\) 731.303 0.167622
\(268\) 6194.99 1.41201
\(269\) −4355.80 −0.987278 −0.493639 0.869667i \(-0.664334\pi\)
−0.493639 + 0.869667i \(0.664334\pi\)
\(270\) 123.171 0.0277627
\(271\) −4132.57 −0.926330 −0.463165 0.886272i \(-0.653286\pi\)
−0.463165 + 0.886272i \(0.653286\pi\)
\(272\) 255.229 0.0568952
\(273\) 0 0
\(274\) 1955.85 0.431230
\(275\) −544.833 −0.119472
\(276\) 1992.32 0.434506
\(277\) −2253.23 −0.488749 −0.244374 0.969681i \(-0.578583\pi\)
−0.244374 + 0.969681i \(0.578583\pi\)
\(278\) 2579.98 0.556607
\(279\) 1049.86 0.225280
\(280\) 0 0
\(281\) −4130.62 −0.876912 −0.438456 0.898753i \(-0.644474\pi\)
−0.438456 + 0.898753i \(0.644474\pi\)
\(282\) −53.6830 −0.0113361
\(283\) −5688.49 −1.19486 −0.597430 0.801921i \(-0.703811\pi\)
−0.597430 + 0.801921i \(0.703811\pi\)
\(284\) 7733.40 1.61582
\(285\) −370.360 −0.0769762
\(286\) −684.299 −0.141481
\(287\) 0 0
\(288\) −1363.54 −0.278984
\(289\) −4880.42 −0.993369
\(290\) 252.175 0.0510628
\(291\) 1827.76 0.368196
\(292\) −4276.08 −0.856981
\(293\) 4506.38 0.898518 0.449259 0.893402i \(-0.351688\pi\)
0.449259 + 0.893402i \(0.351688\pi\)
\(294\) 0 0
\(295\) 2011.72 0.397040
\(296\) 1253.78 0.246197
\(297\) 588.420 0.114962
\(298\) 841.870 0.163652
\(299\) −3188.71 −0.616749
\(300\) 537.568 0.103455
\(301\) 0 0
\(302\) 762.128 0.145217
\(303\) −1325.47 −0.251308
\(304\) 1104.03 0.208292
\(305\) 1799.77 0.337883
\(306\) −46.8700 −0.00875614
\(307\) 5380.42 1.00025 0.500125 0.865953i \(-0.333287\pi\)
0.500125 + 0.865953i \(0.333287\pi\)
\(308\) 0 0
\(309\) 2419.24 0.445391
\(310\) −532.145 −0.0974962
\(311\) −1862.37 −0.339568 −0.169784 0.985481i \(-0.554307\pi\)
−0.169784 + 0.985481i \(0.554307\pi\)
\(312\) 1428.76 0.259255
\(313\) −7756.59 −1.40073 −0.700364 0.713785i \(-0.746979\pi\)
−0.700364 + 0.713785i \(0.746979\pi\)
\(314\) 1874.97 0.336977
\(315\) 0 0
\(316\) 5182.54 0.922597
\(317\) −4108.22 −0.727888 −0.363944 0.931421i \(-0.618570\pi\)
−0.363944 + 0.931421i \(0.618570\pi\)
\(318\) −304.796 −0.0537488
\(319\) 1204.71 0.211444
\(320\) −1097.44 −0.191715
\(321\) 1854.06 0.322378
\(322\) 0 0
\(323\) 140.933 0.0242777
\(324\) −580.573 −0.0995496
\(325\) −860.377 −0.146847
\(326\) −1242.22 −0.211044
\(327\) 6441.21 1.08930
\(328\) 527.663 0.0888272
\(329\) 0 0
\(330\) −298.255 −0.0497528
\(331\) 10738.0 1.78312 0.891561 0.452901i \(-0.149611\pi\)
0.891561 + 0.452901i \(0.149611\pi\)
\(332\) 7481.80 1.23680
\(333\) 815.405 0.134186
\(334\) −951.518 −0.155882
\(335\) −4321.54 −0.704809
\(336\) 0 0
\(337\) 6108.83 0.987446 0.493723 0.869619i \(-0.335636\pi\)
0.493723 + 0.869619i \(0.335636\pi\)
\(338\) 923.872 0.148675
\(339\) 3706.03 0.593758
\(340\) −204.560 −0.0326289
\(341\) −2542.21 −0.403719
\(342\) −202.744 −0.0320560
\(343\) 0 0
\(344\) 3181.75 0.498688
\(345\) −1389.82 −0.216885
\(346\) −3099.55 −0.481598
\(347\) 4083.12 0.631680 0.315840 0.948812i \(-0.397714\pi\)
0.315840 + 0.948812i \(0.397714\pi\)
\(348\) −1188.64 −0.183098
\(349\) −6984.77 −1.07131 −0.535653 0.844438i \(-0.679935\pi\)
−0.535653 + 0.844438i \(0.679935\pi\)
\(350\) 0 0
\(351\) 929.207 0.141303
\(352\) 3301.79 0.499960
\(353\) −5150.68 −0.776610 −0.388305 0.921531i \(-0.626939\pi\)
−0.388305 + 0.921531i \(0.626939\pi\)
\(354\) 1101.27 0.165344
\(355\) −5394.71 −0.806540
\(356\) 1747.22 0.260120
\(357\) 0 0
\(358\) −114.394 −0.0168881
\(359\) −9534.37 −1.40169 −0.700843 0.713316i \(-0.747192\pi\)
−0.700843 + 0.713316i \(0.747192\pi\)
\(360\) 622.733 0.0911692
\(361\) −6249.37 −0.911120
\(362\) −901.640 −0.130909
\(363\) 2568.15 0.371331
\(364\) 0 0
\(365\) 2982.93 0.427764
\(366\) 985.238 0.140708
\(367\) −2838.67 −0.403752 −0.201876 0.979411i \(-0.564704\pi\)
−0.201876 + 0.979411i \(0.564704\pi\)
\(368\) 4143.01 0.586873
\(369\) 343.170 0.0484139
\(370\) −413.308 −0.0580727
\(371\) 0 0
\(372\) 2508.31 0.349596
\(373\) 5050.10 0.701030 0.350515 0.936557i \(-0.386007\pi\)
0.350515 + 0.936557i \(0.386007\pi\)
\(374\) 113.495 0.0156916
\(375\) −375.000 −0.0516398
\(376\) −271.414 −0.0372263
\(377\) 1902.42 0.259893
\(378\) 0 0
\(379\) 10250.5 1.38927 0.694633 0.719365i \(-0.255567\pi\)
0.694633 + 0.719365i \(0.255567\pi\)
\(380\) −884.860 −0.119454
\(381\) −6602.02 −0.887747
\(382\) 2435.36 0.326189
\(383\) 10788.3 1.43931 0.719656 0.694330i \(-0.244299\pi\)
0.719656 + 0.694330i \(0.244299\pi\)
\(384\) −4236.88 −0.563053
\(385\) 0 0
\(386\) 2033.04 0.268080
\(387\) 2069.28 0.271802
\(388\) 4366.86 0.571375
\(389\) 13666.5 1.78129 0.890644 0.454701i \(-0.150254\pi\)
0.890644 + 0.454701i \(0.150254\pi\)
\(390\) −470.992 −0.0611528
\(391\) 528.865 0.0684038
\(392\) 0 0
\(393\) −7969.65 −1.02294
\(394\) 333.496 0.0426428
\(395\) −3615.27 −0.460516
\(396\) 1405.85 0.178400
\(397\) 4595.66 0.580982 0.290491 0.956878i \(-0.406181\pi\)
0.290491 + 0.956878i \(0.406181\pi\)
\(398\) 2545.25 0.320557
\(399\) 0 0
\(400\) 1117.87 0.139733
\(401\) 743.095 0.0925396 0.0462698 0.998929i \(-0.485267\pi\)
0.0462698 + 0.998929i \(0.485267\pi\)
\(402\) −2365.72 −0.293511
\(403\) −4014.54 −0.496225
\(404\) −3166.80 −0.389986
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −1974.49 −0.240471
\(408\) −236.968 −0.0287541
\(409\) −10501.4 −1.26959 −0.634793 0.772683i \(-0.718914\pi\)
−0.634793 + 0.772683i \(0.718914\pi\)
\(410\) −173.944 −0.0209525
\(411\) 6431.06 0.771827
\(412\) 5780.03 0.691169
\(413\) 0 0
\(414\) −760.820 −0.0903194
\(415\) −5219.20 −0.617350
\(416\) 5214.04 0.614518
\(417\) 8483.28 0.996230
\(418\) 490.941 0.0574467
\(419\) −5007.49 −0.583847 −0.291924 0.956442i \(-0.594295\pi\)
−0.291924 + 0.956442i \(0.594295\pi\)
\(420\) 0 0
\(421\) 3845.77 0.445205 0.222603 0.974909i \(-0.428545\pi\)
0.222603 + 0.974909i \(0.428545\pi\)
\(422\) 527.928 0.0608984
\(423\) −176.516 −0.0202896
\(424\) −1541.01 −0.176504
\(425\) 142.698 0.0162868
\(426\) −2953.20 −0.335876
\(427\) 0 0
\(428\) 4429.70 0.500275
\(429\) −2250.06 −0.253226
\(430\) −1048.87 −0.117630
\(431\) 2164.42 0.241894 0.120947 0.992659i \(-0.461407\pi\)
0.120947 + 0.992659i \(0.461407\pi\)
\(432\) −1207.30 −0.134458
\(433\) 9645.06 1.07047 0.535233 0.844704i \(-0.320224\pi\)
0.535233 + 0.844704i \(0.320224\pi\)
\(434\) 0 0
\(435\) 829.182 0.0913936
\(436\) 15389.3 1.69040
\(437\) 2287.70 0.250424
\(438\) 1632.93 0.178138
\(439\) −3346.93 −0.363873 −0.181936 0.983310i \(-0.558236\pi\)
−0.181936 + 0.983310i \(0.558236\pi\)
\(440\) −1507.94 −0.163382
\(441\) 0 0
\(442\) 179.226 0.0192871
\(443\) −1595.52 −0.171118 −0.0855592 0.996333i \(-0.527268\pi\)
−0.0855592 + 0.996333i \(0.527268\pi\)
\(444\) 1948.16 0.208233
\(445\) −1218.84 −0.129839
\(446\) −4256.20 −0.451876
\(447\) 2768.17 0.292909
\(448\) 0 0
\(449\) −4120.69 −0.433112 −0.216556 0.976270i \(-0.569482\pi\)
−0.216556 + 0.976270i \(0.569482\pi\)
\(450\) −205.284 −0.0215049
\(451\) −830.981 −0.0867613
\(452\) 8854.41 0.921408
\(453\) 2505.97 0.259913
\(454\) −2349.76 −0.242907
\(455\) 0 0
\(456\) −1025.04 −0.105268
\(457\) −2387.24 −0.244355 −0.122177 0.992508i \(-0.538988\pi\)
−0.122177 + 0.992508i \(0.538988\pi\)
\(458\) 4492.62 0.458355
\(459\) −154.114 −0.0156720
\(460\) −3320.54 −0.336567
\(461\) 5144.27 0.519724 0.259862 0.965646i \(-0.416323\pi\)
0.259862 + 0.965646i \(0.416323\pi\)
\(462\) 0 0
\(463\) −5168.77 −0.518818 −0.259409 0.965768i \(-0.583528\pi\)
−0.259409 + 0.965768i \(0.583528\pi\)
\(464\) −2471.77 −0.247304
\(465\) −1749.76 −0.174501
\(466\) −5486.26 −0.545378
\(467\) 13240.9 1.31202 0.656011 0.754751i \(-0.272243\pi\)
0.656011 + 0.754751i \(0.272243\pi\)
\(468\) 2220.05 0.219278
\(469\) 0 0
\(470\) 89.4717 0.00878090
\(471\) 6165.14 0.603131
\(472\) 5567.84 0.542968
\(473\) −5010.73 −0.487090
\(474\) −1979.09 −0.191777
\(475\) 617.266 0.0596255
\(476\) 0 0
\(477\) −1002.21 −0.0962011
\(478\) −275.718 −0.0263829
\(479\) −5317.53 −0.507232 −0.253616 0.967305i \(-0.581620\pi\)
−0.253616 + 0.967305i \(0.581620\pi\)
\(480\) 2272.57 0.216100
\(481\) −3118.03 −0.295571
\(482\) 3828.48 0.361789
\(483\) 0 0
\(484\) 6135.81 0.576240
\(485\) −3046.26 −0.285203
\(486\) 221.707 0.0206931
\(487\) −6179.43 −0.574983 −0.287491 0.957783i \(-0.592821\pi\)
−0.287491 + 0.957783i \(0.592821\pi\)
\(488\) 4981.22 0.462068
\(489\) −4084.58 −0.377732
\(490\) 0 0
\(491\) −14637.1 −1.34534 −0.672670 0.739943i \(-0.734852\pi\)
−0.672670 + 0.739943i \(0.734852\pi\)
\(492\) 819.900 0.0751300
\(493\) −315.528 −0.0288249
\(494\) 775.273 0.0706096
\(495\) −980.700 −0.0890489
\(496\) 5215.99 0.472188
\(497\) 0 0
\(498\) −2857.12 −0.257089
\(499\) −19822.8 −1.77833 −0.889167 0.457582i \(-0.848716\pi\)
−0.889167 + 0.457582i \(0.848716\pi\)
\(500\) −895.947 −0.0801359
\(501\) −3128.71 −0.279003
\(502\) −6741.41 −0.599371
\(503\) 11114.5 0.985228 0.492614 0.870248i \(-0.336041\pi\)
0.492614 + 0.870248i \(0.336041\pi\)
\(504\) 0 0
\(505\) 2209.12 0.194662
\(506\) 1842.31 0.161859
\(507\) 3037.80 0.266102
\(508\) −15773.5 −1.37763
\(509\) −16458.2 −1.43320 −0.716599 0.697485i \(-0.754302\pi\)
−0.716599 + 0.697485i \(0.754302\pi\)
\(510\) 78.1166 0.00678248
\(511\) 0 0
\(512\) −11724.8 −1.01204
\(513\) −666.647 −0.0573747
\(514\) 265.298 0.0227661
\(515\) −4032.07 −0.344999
\(516\) 4943.91 0.421790
\(517\) 427.431 0.0363605
\(518\) 0 0
\(519\) −10191.7 −0.861977
\(520\) −2381.27 −0.200818
\(521\) −957.425 −0.0805097 −0.0402548 0.999189i \(-0.512817\pi\)
−0.0402548 + 0.999189i \(0.512817\pi\)
\(522\) 453.915 0.0380600
\(523\) 17562.5 1.46836 0.734181 0.678954i \(-0.237566\pi\)
0.734181 + 0.678954i \(0.237566\pi\)
\(524\) −19041.0 −1.58743
\(525\) 0 0
\(526\) −1063.29 −0.0881402
\(527\) 665.834 0.0550364
\(528\) 2923.45 0.240960
\(529\) −3582.16 −0.294416
\(530\) 507.993 0.0416336
\(531\) 3621.10 0.295936
\(532\) 0 0
\(533\) −1312.25 −0.106641
\(534\) −667.222 −0.0540703
\(535\) −3090.10 −0.249713
\(536\) −11960.7 −0.963852
\(537\) −376.143 −0.0302268
\(538\) 3974.12 0.318469
\(539\) 0 0
\(540\) 967.622 0.0771108
\(541\) 154.715 0.0122953 0.00614763 0.999981i \(-0.498043\pi\)
0.00614763 + 0.999981i \(0.498043\pi\)
\(542\) 3770.45 0.298809
\(543\) −2964.70 −0.234305
\(544\) −864.779 −0.0681564
\(545\) −10735.3 −0.843764
\(546\) 0 0
\(547\) −1178.60 −0.0921264 −0.0460632 0.998939i \(-0.514668\pi\)
−0.0460632 + 0.998939i \(0.514668\pi\)
\(548\) 15365.0 1.19774
\(549\) 3239.58 0.251843
\(550\) 497.092 0.0385383
\(551\) −1364.87 −0.105527
\(552\) −3846.60 −0.296598
\(553\) 0 0
\(554\) 2055.79 0.157657
\(555\) −1359.01 −0.103940
\(556\) 20268.2 1.54598
\(557\) −22450.8 −1.70785 −0.853924 0.520398i \(-0.825784\pi\)
−0.853924 + 0.520398i \(0.825784\pi\)
\(558\) −957.862 −0.0726694
\(559\) −7912.72 −0.598699
\(560\) 0 0
\(561\) 373.185 0.0280853
\(562\) 3768.67 0.282868
\(563\) −16467.4 −1.23271 −0.616357 0.787467i \(-0.711392\pi\)
−0.616357 + 0.787467i \(0.711392\pi\)
\(564\) −421.731 −0.0314860
\(565\) −6176.72 −0.459923
\(566\) 5190.03 0.385430
\(567\) 0 0
\(568\) −14931.0 −1.10297
\(569\) −18743.5 −1.38096 −0.690480 0.723351i \(-0.742601\pi\)
−0.690480 + 0.723351i \(0.742601\pi\)
\(570\) 337.907 0.0248304
\(571\) −6688.98 −0.490236 −0.245118 0.969493i \(-0.578827\pi\)
−0.245118 + 0.969493i \(0.578827\pi\)
\(572\) −5375.82 −0.392962
\(573\) 8007.77 0.583821
\(574\) 0 0
\(575\) 2316.36 0.167998
\(576\) −1975.40 −0.142896
\(577\) −6065.16 −0.437601 −0.218800 0.975770i \(-0.570214\pi\)
−0.218800 + 0.975770i \(0.570214\pi\)
\(578\) 4452.77 0.320434
\(579\) 6684.88 0.479817
\(580\) 1981.07 0.141827
\(581\) 0 0
\(582\) −1667.60 −0.118770
\(583\) 2426.83 0.172399
\(584\) 8255.87 0.584983
\(585\) −1548.68 −0.109453
\(586\) −4111.51 −0.289838
\(587\) −24343.0 −1.71166 −0.855828 0.517260i \(-0.826952\pi\)
−0.855828 + 0.517260i \(0.826952\pi\)
\(588\) 0 0
\(589\) 2880.18 0.201487
\(590\) −1835.44 −0.128075
\(591\) 1096.57 0.0763233
\(592\) 4051.18 0.281254
\(593\) 13866.9 0.960278 0.480139 0.877193i \(-0.340586\pi\)
0.480139 + 0.877193i \(0.340586\pi\)
\(594\) −536.859 −0.0370835
\(595\) 0 0
\(596\) 6613.69 0.454543
\(597\) 8369.09 0.573742
\(598\) 2909.30 0.198947
\(599\) 6098.42 0.415985 0.207992 0.978130i \(-0.433307\pi\)
0.207992 + 0.978130i \(0.433307\pi\)
\(600\) −1037.89 −0.0706193
\(601\) −17556.7 −1.19160 −0.595802 0.803131i \(-0.703166\pi\)
−0.595802 + 0.803131i \(0.703166\pi\)
\(602\) 0 0
\(603\) −7778.77 −0.525333
\(604\) 5987.24 0.403340
\(605\) −4280.25 −0.287631
\(606\) 1209.33 0.0810652
\(607\) 8367.17 0.559494 0.279747 0.960074i \(-0.409749\pi\)
0.279747 + 0.960074i \(0.409749\pi\)
\(608\) −3740.75 −0.249519
\(609\) 0 0
\(610\) −1642.06 −0.108992
\(611\) 674.981 0.0446920
\(612\) −368.208 −0.0243202
\(613\) −26940.0 −1.77503 −0.887516 0.460776i \(-0.847571\pi\)
−0.887516 + 0.460776i \(0.847571\pi\)
\(614\) −4908.96 −0.322654
\(615\) −571.951 −0.0375013
\(616\) 0 0
\(617\) −13320.3 −0.869136 −0.434568 0.900639i \(-0.643099\pi\)
−0.434568 + 0.900639i \(0.643099\pi\)
\(618\) −2207.26 −0.143671
\(619\) 7336.05 0.476350 0.238175 0.971222i \(-0.423451\pi\)
0.238175 + 0.971222i \(0.423451\pi\)
\(620\) −4180.51 −0.270796
\(621\) −2501.67 −0.161656
\(622\) 1699.18 0.109535
\(623\) 0 0
\(624\) 4616.58 0.296172
\(625\) 625.000 0.0400000
\(626\) 7076.91 0.451838
\(627\) 1614.27 0.102820
\(628\) 14729.7 0.935954
\(629\) 517.142 0.0327819
\(630\) 0 0
\(631\) 103.633 0.00653815 0.00326908 0.999995i \(-0.498959\pi\)
0.00326908 + 0.999995i \(0.498959\pi\)
\(632\) −10006.0 −0.629773
\(633\) 1735.89 0.108998
\(634\) 3748.23 0.234797
\(635\) 11003.4 0.687646
\(636\) −2394.46 −0.149287
\(637\) 0 0
\(638\) −1099.15 −0.0682063
\(639\) −9710.49 −0.601159
\(640\) 7061.46 0.436139
\(641\) 9950.30 0.613125 0.306562 0.951851i \(-0.400821\pi\)
0.306562 + 0.951851i \(0.400821\pi\)
\(642\) −1691.60 −0.103991
\(643\) −1176.12 −0.0721334 −0.0360667 0.999349i \(-0.511483\pi\)
−0.0360667 + 0.999349i \(0.511483\pi\)
\(644\) 0 0
\(645\) −3448.80 −0.210537
\(646\) −128.583 −0.00783134
\(647\) 5590.22 0.339682 0.169841 0.985471i \(-0.445675\pi\)
0.169841 + 0.985471i \(0.445675\pi\)
\(648\) 1120.92 0.0679535
\(649\) −8768.42 −0.530340
\(650\) 784.986 0.0473688
\(651\) 0 0
\(652\) −9758.83 −0.586174
\(653\) 24889.8 1.49160 0.745799 0.666171i \(-0.232068\pi\)
0.745799 + 0.666171i \(0.232068\pi\)
\(654\) −5876.79 −0.351377
\(655\) 13282.8 0.792367
\(656\) 1704.97 0.101476
\(657\) 5369.28 0.318836
\(658\) 0 0
\(659\) 30597.0 1.80863 0.904317 0.426861i \(-0.140381\pi\)
0.904317 + 0.426861i \(0.140381\pi\)
\(660\) −2343.08 −0.138188
\(661\) 11335.6 0.667024 0.333512 0.942746i \(-0.391766\pi\)
0.333512 + 0.942746i \(0.391766\pi\)
\(662\) −9797.07 −0.575187
\(663\) 589.317 0.0345207
\(664\) −14445.2 −0.844250
\(665\) 0 0
\(666\) −743.955 −0.0432848
\(667\) −5121.82 −0.297328
\(668\) −7475.08 −0.432963
\(669\) −13994.9 −0.808780
\(670\) 3942.86 0.227352
\(671\) −7844.59 −0.451322
\(672\) 0 0
\(673\) −7919.80 −0.453619 −0.226810 0.973939i \(-0.572830\pi\)
−0.226810 + 0.973939i \(0.572830\pi\)
\(674\) −5573.54 −0.318524
\(675\) −675.000 −0.0384900
\(676\) 7257.89 0.412943
\(677\) −1189.67 −0.0675373 −0.0337686 0.999430i \(-0.510751\pi\)
−0.0337686 + 0.999430i \(0.510751\pi\)
\(678\) −3381.29 −0.191530
\(679\) 0 0
\(680\) 394.947 0.0222728
\(681\) −7726.29 −0.434761
\(682\) 2319.44 0.130229
\(683\) −15705.9 −0.879895 −0.439947 0.898024i \(-0.645003\pi\)
−0.439947 + 0.898024i \(0.645003\pi\)
\(684\) −1592.75 −0.0890354
\(685\) −10718.4 −0.597855
\(686\) 0 0
\(687\) 14772.3 0.820376
\(688\) 10280.8 0.569698
\(689\) 3832.34 0.211902
\(690\) 1268.03 0.0699611
\(691\) 21910.8 1.20626 0.603131 0.797642i \(-0.293920\pi\)
0.603131 + 0.797642i \(0.293920\pi\)
\(692\) −24349.9 −1.33764
\(693\) 0 0
\(694\) −3725.33 −0.203763
\(695\) −14138.8 −0.771677
\(696\) 2294.93 0.124984
\(697\) 217.644 0.0118276
\(698\) 6372.72 0.345575
\(699\) −18039.5 −0.976133
\(700\) 0 0
\(701\) −11148.3 −0.600666 −0.300333 0.953834i \(-0.597098\pi\)
−0.300333 + 0.953834i \(0.597098\pi\)
\(702\) −847.785 −0.0455806
\(703\) 2236.99 0.120014
\(704\) 4783.39 0.256080
\(705\) 294.194 0.0157163
\(706\) 4699.35 0.250513
\(707\) 0 0
\(708\) 8651.49 0.459241
\(709\) −32409.1 −1.71671 −0.858357 0.513053i \(-0.828514\pi\)
−0.858357 + 0.513053i \(0.828514\pi\)
\(710\) 4922.00 0.260168
\(711\) −6507.48 −0.343249
\(712\) −3373.38 −0.177560
\(713\) 10808.2 0.567700
\(714\) 0 0
\(715\) 3750.10 0.196148
\(716\) −898.677 −0.0469066
\(717\) −906.594 −0.0472209
\(718\) 8698.92 0.452146
\(719\) 6557.21 0.340115 0.170058 0.985434i \(-0.445605\pi\)
0.170058 + 0.985434i \(0.445605\pi\)
\(720\) 2012.16 0.104151
\(721\) 0 0
\(722\) 5701.77 0.293903
\(723\) 12588.5 0.647540
\(724\) −7083.24 −0.363600
\(725\) −1381.97 −0.0707932
\(726\) −2343.12 −0.119781
\(727\) −13303.4 −0.678673 −0.339337 0.940665i \(-0.610203\pi\)
−0.339337 + 0.940665i \(0.610203\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −2721.55 −0.137985
\(731\) 1312.37 0.0664018
\(732\) 7739.98 0.390817
\(733\) −4179.54 −0.210607 −0.105304 0.994440i \(-0.533581\pi\)
−0.105304 + 0.994440i \(0.533581\pi\)
\(734\) 2589.93 0.130240
\(735\) 0 0
\(736\) −14037.6 −0.703032
\(737\) 18836.1 0.941436
\(738\) −313.100 −0.0156170
\(739\) 15706.6 0.781835 0.390918 0.920426i \(-0.372158\pi\)
0.390918 + 0.920426i \(0.372158\pi\)
\(740\) −3246.93 −0.161297
\(741\) 2549.19 0.126379
\(742\) 0 0
\(743\) −4706.99 −0.232413 −0.116206 0.993225i \(-0.537073\pi\)
−0.116206 + 0.993225i \(0.537073\pi\)
\(744\) −4842.81 −0.238637
\(745\) −4613.62 −0.226886
\(746\) −4607.58 −0.226134
\(747\) −9394.56 −0.460146
\(748\) 891.610 0.0435835
\(749\) 0 0
\(750\) 342.140 0.0166576
\(751\) 10206.7 0.495934 0.247967 0.968768i \(-0.420238\pi\)
0.247967 + 0.968768i \(0.420238\pi\)
\(752\) −876.986 −0.0425271
\(753\) −22166.6 −1.07277
\(754\) −1735.72 −0.0838346
\(755\) −4176.62 −0.201328
\(756\) 0 0
\(757\) −2215.43 −0.106369 −0.0531843 0.998585i \(-0.516937\pi\)
−0.0531843 + 0.998585i \(0.516937\pi\)
\(758\) −9352.27 −0.448140
\(759\) 6057.74 0.289700
\(760\) 1708.41 0.0815401
\(761\) 13185.5 0.628085 0.314043 0.949409i \(-0.398317\pi\)
0.314043 + 0.949409i \(0.398317\pi\)
\(762\) 6023.51 0.286363
\(763\) 0 0
\(764\) 19132.1 0.905988
\(765\) 256.857 0.0121395
\(766\) −9842.98 −0.464284
\(767\) −13846.7 −0.651859
\(768\) −1402.10 −0.0658777
\(769\) −20178.7 −0.946247 −0.473123 0.880996i \(-0.656874\pi\)
−0.473123 + 0.880996i \(0.656874\pi\)
\(770\) 0 0
\(771\) 872.332 0.0407474
\(772\) 15971.4 0.744592
\(773\) 24715.2 1.14999 0.574996 0.818156i \(-0.305003\pi\)
0.574996 + 0.818156i \(0.305003\pi\)
\(774\) −1887.96 −0.0876761
\(775\) 2916.27 0.135168
\(776\) −8431.14 −0.390026
\(777\) 0 0
\(778\) −12469.0 −0.574596
\(779\) 941.455 0.0433006
\(780\) −3700.09 −0.169852
\(781\) 23513.8 1.07732
\(782\) −482.523 −0.0220652
\(783\) 1492.53 0.0681208
\(784\) 0 0
\(785\) −10275.2 −0.467183
\(786\) 7271.31 0.329973
\(787\) −19544.5 −0.885244 −0.442622 0.896708i \(-0.645952\pi\)
−0.442622 + 0.896708i \(0.645952\pi\)
\(788\) 2619.93 0.118440
\(789\) −3496.23 −0.157756
\(790\) 3298.48 0.148550
\(791\) 0 0
\(792\) −2714.28 −0.121778
\(793\) −12387.8 −0.554735
\(794\) −4192.97 −0.187409
\(795\) 1670.34 0.0745170
\(796\) 19995.4 0.890348
\(797\) −9401.10 −0.417822 −0.208911 0.977935i \(-0.566992\pi\)
−0.208911 + 0.977935i \(0.566992\pi\)
\(798\) 0 0
\(799\) −111.949 −0.00495680
\(800\) −3787.61 −0.167391
\(801\) −2193.91 −0.0967764
\(802\) −677.981 −0.0298508
\(803\) −13001.6 −0.571378
\(804\) −18585.0 −0.815225
\(805\) 0 0
\(806\) 3662.77 0.160069
\(807\) 13067.4 0.570005
\(808\) 6114.18 0.266208
\(809\) −6808.77 −0.295901 −0.147950 0.988995i \(-0.547268\pi\)
−0.147950 + 0.988995i \(0.547268\pi\)
\(810\) −369.512 −0.0160288
\(811\) −23645.6 −1.02381 −0.511905 0.859042i \(-0.671060\pi\)
−0.511905 + 0.859042i \(0.671060\pi\)
\(812\) 0 0
\(813\) 12397.7 0.534817
\(814\) 1801.47 0.0775696
\(815\) 6807.63 0.292590
\(816\) −765.686 −0.0328485
\(817\) 5676.88 0.243095
\(818\) 9581.20 0.409534
\(819\) 0 0
\(820\) −1366.50 −0.0581954
\(821\) −29.4211 −0.00125067 −0.000625337 1.00000i \(-0.500199\pi\)
−0.000625337 1.00000i \(0.500199\pi\)
\(822\) −5867.54 −0.248971
\(823\) 1489.88 0.0631031 0.0315516 0.999502i \(-0.489955\pi\)
0.0315516 + 0.999502i \(0.489955\pi\)
\(824\) −11159.6 −0.471799
\(825\) 1634.50 0.0689770
\(826\) 0 0
\(827\) 3903.20 0.164121 0.0820603 0.996627i \(-0.473850\pi\)
0.0820603 + 0.996627i \(0.473850\pi\)
\(828\) −5976.96 −0.250862
\(829\) 15812.3 0.662464 0.331232 0.943549i \(-0.392536\pi\)
0.331232 + 0.943549i \(0.392536\pi\)
\(830\) 4761.87 0.199141
\(831\) 6759.69 0.282179
\(832\) 7553.72 0.314757
\(833\) 0 0
\(834\) −7739.93 −0.321357
\(835\) 5214.51 0.216115
\(836\) 3856.81 0.159558
\(837\) −3149.57 −0.130066
\(838\) 4568.71 0.188333
\(839\) 14730.3 0.606136 0.303068 0.952969i \(-0.401989\pi\)
0.303068 + 0.952969i \(0.401989\pi\)
\(840\) 0 0
\(841\) −21333.3 −0.874708
\(842\) −3508.78 −0.143611
\(843\) 12391.9 0.506285
\(844\) 4147.38 0.169145
\(845\) −5063.01 −0.206122
\(846\) 161.049 0.00654489
\(847\) 0 0
\(848\) −4979.26 −0.201637
\(849\) 17065.5 0.689853
\(850\) −130.194 −0.00525368
\(851\) 8394.54 0.338145
\(852\) −23200.2 −0.932894
\(853\) 12630.7 0.506996 0.253498 0.967336i \(-0.418419\pi\)
0.253498 + 0.967336i \(0.418419\pi\)
\(854\) 0 0
\(855\) 1111.08 0.0444422
\(856\) −8552.46 −0.341492
\(857\) 11507.3 0.458671 0.229335 0.973347i \(-0.426345\pi\)
0.229335 + 0.973347i \(0.426345\pi\)
\(858\) 2052.90 0.0816838
\(859\) −4264.27 −0.169377 −0.0846886 0.996407i \(-0.526990\pi\)
−0.0846886 + 0.996407i \(0.526990\pi\)
\(860\) −8239.85 −0.326717
\(861\) 0 0
\(862\) −1974.76 −0.0780284
\(863\) 17273.3 0.681333 0.340666 0.940184i \(-0.389347\pi\)
0.340666 + 0.940184i \(0.389347\pi\)
\(864\) 4090.62 0.161072
\(865\) 16986.2 0.667685
\(866\) −8799.91 −0.345304
\(867\) 14641.3 0.573522
\(868\) 0 0
\(869\) 15757.8 0.615127
\(870\) −756.524 −0.0294811
\(871\) 29745.2 1.15715
\(872\) −29712.2 −1.15388
\(873\) −5483.27 −0.212578
\(874\) −2087.24 −0.0807801
\(875\) 0 0
\(876\) 12828.2 0.494778
\(877\) −17372.6 −0.668906 −0.334453 0.942412i \(-0.608552\pi\)
−0.334453 + 0.942412i \(0.608552\pi\)
\(878\) 3053.65 0.117376
\(879\) −13519.1 −0.518759
\(880\) −4872.41 −0.186646
\(881\) 49105.7 1.87788 0.938941 0.344078i \(-0.111809\pi\)
0.938941 + 0.344078i \(0.111809\pi\)
\(882\) 0 0
\(883\) −1915.84 −0.0730161 −0.0365081 0.999333i \(-0.511623\pi\)
−0.0365081 + 0.999333i \(0.511623\pi\)
\(884\) 1407.99 0.0535700
\(885\) −6035.16 −0.229231
\(886\) 1455.71 0.0551982
\(887\) −175.503 −0.00664354 −0.00332177 0.999994i \(-0.501057\pi\)
−0.00332177 + 0.999994i \(0.501057\pi\)
\(888\) −3761.33 −0.142142
\(889\) 0 0
\(890\) 1112.04 0.0418826
\(891\) −1765.26 −0.0663731
\(892\) −33436.5 −1.25509
\(893\) −484.256 −0.0181467
\(894\) −2525.61 −0.0944844
\(895\) 626.905 0.0234135
\(896\) 0 0
\(897\) 9566.13 0.356080
\(898\) 3759.61 0.139710
\(899\) −6448.30 −0.239225
\(900\) −1612.70 −0.0597298
\(901\) −635.615 −0.0235021
\(902\) 758.166 0.0279869
\(903\) 0 0
\(904\) −17095.3 −0.628962
\(905\) 4941.17 0.181492
\(906\) −2286.38 −0.0838411
\(907\) 35638.4 1.30469 0.652346 0.757922i \(-0.273785\pi\)
0.652346 + 0.757922i \(0.273785\pi\)
\(908\) −18459.6 −0.674673
\(909\) 3976.41 0.145093
\(910\) 0 0
\(911\) −6181.19 −0.224799 −0.112400 0.993663i \(-0.535854\pi\)
−0.112400 + 0.993663i \(0.535854\pi\)
\(912\) −3312.10 −0.120257
\(913\) 22748.8 0.824615
\(914\) 2178.05 0.0788223
\(915\) −5399.31 −0.195077
\(916\) 35293.9 1.27308
\(917\) 0 0
\(918\) 140.610 0.00505536
\(919\) −21118.6 −0.758040 −0.379020 0.925388i \(-0.623739\pi\)
−0.379020 + 0.925388i \(0.623739\pi\)
\(920\) 6410.99 0.229744
\(921\) −16141.3 −0.577494
\(922\) −4693.50 −0.167649
\(923\) 37131.9 1.32417
\(924\) 0 0
\(925\) 2265.01 0.0805116
\(926\) 4715.85 0.167357
\(927\) −7257.73 −0.257147
\(928\) 8374.99 0.296253
\(929\) −38221.8 −1.34986 −0.674928 0.737884i \(-0.735825\pi\)
−0.674928 + 0.737884i \(0.735825\pi\)
\(930\) 1596.44 0.0562895
\(931\) 0 0
\(932\) −43099.8 −1.51479
\(933\) 5587.12 0.196049
\(934\) −12080.6 −0.423223
\(935\) −621.975 −0.0217548
\(936\) −4286.28 −0.149681
\(937\) 51676.0 1.80169 0.900844 0.434142i \(-0.142948\pi\)
0.900844 + 0.434142i \(0.142948\pi\)
\(938\) 0 0
\(939\) 23269.8 0.808711
\(940\) 702.885 0.0243889
\(941\) −37184.2 −1.28817 −0.644086 0.764953i \(-0.722762\pi\)
−0.644086 + 0.764953i \(0.722762\pi\)
\(942\) −5624.92 −0.194554
\(943\) 3532.92 0.122002
\(944\) 17990.7 0.620283
\(945\) 0 0
\(946\) 4571.66 0.157122
\(947\) 31923.3 1.09543 0.547713 0.836666i \(-0.315498\pi\)
0.547713 + 0.836666i \(0.315498\pi\)
\(948\) −15547.6 −0.532662
\(949\) −20531.6 −0.702301
\(950\) −563.178 −0.0192336
\(951\) 12324.6 0.420246
\(952\) 0 0
\(953\) 2088.54 0.0709912 0.0354956 0.999370i \(-0.488699\pi\)
0.0354956 + 0.999370i \(0.488699\pi\)
\(954\) 914.388 0.0310319
\(955\) −13346.3 −0.452226
\(956\) −2166.03 −0.0732786
\(957\) −3614.13 −0.122077
\(958\) 4851.58 0.163619
\(959\) 0 0
\(960\) 3292.33 0.110687
\(961\) −16183.6 −0.543239
\(962\) 2844.81 0.0953434
\(963\) −5562.17 −0.186125
\(964\) 30076.3 1.00487
\(965\) −11141.5 −0.371664
\(966\) 0 0
\(967\) 46995.4 1.56285 0.781423 0.624002i \(-0.214494\pi\)
0.781423 + 0.624002i \(0.214494\pi\)
\(968\) −11846.5 −0.393347
\(969\) −422.798 −0.0140167
\(970\) 2779.33 0.0919989
\(971\) 27063.6 0.894452 0.447226 0.894421i \(-0.352412\pi\)
0.447226 + 0.894421i \(0.352412\pi\)
\(972\) 1741.72 0.0574750
\(973\) 0 0
\(974\) 5637.95 0.185474
\(975\) 2581.13 0.0847819
\(976\) 16095.2 0.527864
\(977\) −15115.3 −0.494964 −0.247482 0.968892i \(-0.579603\pi\)
−0.247482 + 0.968892i \(0.579603\pi\)
\(978\) 3726.66 0.121846
\(979\) 5312.51 0.173431
\(980\) 0 0
\(981\) −19323.6 −0.628905
\(982\) 13354.5 0.433970
\(983\) −31800.7 −1.03182 −0.515912 0.856641i \(-0.672547\pi\)
−0.515912 + 0.856641i \(0.672547\pi\)
\(984\) −1582.99 −0.0512844
\(985\) −1827.62 −0.0591198
\(986\) 287.879 0.00929812
\(987\) 0 0
\(988\) 6090.51 0.196118
\(989\) 21303.1 0.684934
\(990\) 894.766 0.0287248
\(991\) 59005.2 1.89139 0.945693 0.325061i \(-0.105385\pi\)
0.945693 + 0.325061i \(0.105385\pi\)
\(992\) −17673.1 −0.565647
\(993\) −32214.0 −1.02949
\(994\) 0 0
\(995\) −13948.5 −0.444419
\(996\) −22445.4 −0.714066
\(997\) −3071.30 −0.0975618 −0.0487809 0.998810i \(-0.515534\pi\)
−0.0487809 + 0.998810i \(0.515534\pi\)
\(998\) 18085.8 0.573643
\(999\) −2446.22 −0.0774723
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.t.1.3 4
3.2 odd 2 2205.4.a.bp.1.2 4
7.6 odd 2 735.4.a.u.1.3 yes 4
21.20 even 2 2205.4.a.bq.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.4.a.t.1.3 4 1.1 even 1 trivial
735.4.a.u.1.3 yes 4 7.6 odd 2
2205.4.a.bp.1.2 4 3.2 odd 2
2205.4.a.bq.1.2 4 21.20 even 2