Properties

Label 735.4.a.v
Level $735$
Weight $4$
Character orbit 735.a
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 35x^{2} + 19x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + 10) q^{4} + 5 q^{5} - 3 \beta_1 q^{6} + (\beta_{3} + \beta_{2} + 8 \beta_1 + 7) q^{8} + 9 q^{9} + 5 \beta_1 q^{10} + ( - \beta_{3} + \beta_{2} - \beta_1 + 15) q^{11}+ \cdots + ( - 9 \beta_{3} + 9 \beta_{2} + \cdots + 135) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 12 q^{3} + 39 q^{4} + 20 q^{5} - 3 q^{6} + 33 q^{8} + 36 q^{9} + 5 q^{10} + 60 q^{11} - 117 q^{12} + 14 q^{13} - 60 q^{15} + 283 q^{16} + 46 q^{17} + 9 q^{18} + 40 q^{19} + 195 q^{20} - 14 q^{22}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 35x^{2} + 19x + 196 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 18 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 24\nu + 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 18 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 24\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.10889
−2.36338
2.92771
5.54456
−5.10889 −3.00000 18.1008 5.00000 15.3267 0 −51.6037 9.00000 −25.5444
1.2 −2.36338 −3.00000 −2.41442 5.00000 7.09015 0 24.6133 9.00000 −11.8169
1.3 2.92771 −3.00000 0.571487 5.00000 −8.78313 0 −21.7485 9.00000 14.6386
1.4 5.54456 −3.00000 22.7422 5.00000 −16.6337 0 81.7389 9.00000 27.7228
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.4.a.v 4
3.b odd 2 1 2205.4.a.bn 4
7.b odd 2 1 735.4.a.w yes 4
21.c even 2 1 2205.4.a.bo 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.4.a.v 4 1.a even 1 1 trivial
735.4.a.w yes 4 7.b odd 2 1
2205.4.a.bn 4 3.b odd 2 1
2205.4.a.bo 4 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(735))\):

\( T_{2}^{4} - T_{2}^{3} - 35T_{2}^{2} + 19T_{2} + 196 \) Copy content Toggle raw display
\( T_{11}^{4} - 60T_{11}^{3} - 1668T_{11}^{2} + 116640T_{11} - 491680 \) Copy content Toggle raw display
\( T_{13}^{4} - 14T_{13}^{3} - 5716T_{13}^{2} + 144360T_{13} - 295776 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + \cdots + 196 \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 60 T^{3} + \cdots - 491680 \) Copy content Toggle raw display
$13$ \( T^{4} - 14 T^{3} + \cdots - 295776 \) Copy content Toggle raw display
$17$ \( T^{4} - 46 T^{3} + \cdots - 2126592 \) Copy content Toggle raw display
$19$ \( T^{4} - 40 T^{3} + \cdots + 130207104 \) Copy content Toggle raw display
$23$ \( T^{4} - 490 T^{3} + \cdots + 133305088 \) Copy content Toggle raw display
$29$ \( T^{4} + 6 T^{3} + \cdots - 38756736 \) Copy content Toggle raw display
$31$ \( T^{4} - 122 T^{3} + \cdots - 21980448 \) Copy content Toggle raw display
$37$ \( T^{4} - 142 T^{3} + \cdots - 261622368 \) Copy content Toggle raw display
$41$ \( T^{4} - 168 T^{3} + \cdots - 436581360 \) Copy content Toggle raw display
$43$ \( T^{4} - 286 T^{3} + \cdots - 573525504 \) Copy content Toggle raw display
$47$ \( T^{4} + 306 T^{3} + \cdots - 136069632 \) Copy content Toggle raw display
$53$ \( T^{4} + 276 T^{3} + \cdots - 4771872 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 19163570688 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 1312588800 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 21214771200 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 602434684288 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 35615409120 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 140473174016 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 668329496064 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 257087585808 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 891636949152 \) Copy content Toggle raw display
show more
show less