Properties

Label 736.4.a
Level $736$
Weight $4$
Character orbit 736.a
Rep. character $\chi_{736}(1,\cdot)$
Character field $\Q$
Dimension $66$
Newform subspaces $10$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 736.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(736))\).

Total New Old
Modular forms 296 66 230
Cusp forms 280 66 214
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(17\)
\(+\)\(-\)\(-\)\(15\)
\(-\)\(+\)\(-\)\(16\)
\(-\)\(-\)\(+\)\(18\)
Plus space\(+\)\(35\)
Minus space\(-\)\(31\)

Trace form

\( 66 q - 4 q^{5} + 554 q^{9} + 236 q^{13} + 308 q^{17} - 240 q^{21} + 1182 q^{25} + 284 q^{29} + 1280 q^{33} - 1668 q^{37} - 588 q^{41} - 180 q^{45} + 4770 q^{49} - 212 q^{53} + 416 q^{57} - 1780 q^{61} - 840 q^{65}+ \cdots + 228 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(736))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
736.4.a.a 736.a 1.a $3$ $43.425$ 3.3.11032.1 None 736.4.a.a \(0\) \(-2\) \(0\) \(16\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-\beta _{1}-\beta _{2})q^{5}+(4+\cdots)q^{7}+\cdots\)
736.4.a.b 736.a 1.a $3$ $43.425$ 3.3.11032.1 None 736.4.a.a \(0\) \(2\) \(0\) \(-16\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(-\beta _{1}-\beta _{2})q^{5}+(-4+\cdots)q^{7}+\cdots\)
736.4.a.c 736.a 1.a $4$ $43.425$ 4.4.310848.1 None 736.4.a.c \(0\) \(0\) \(-20\) \(-44\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+(-5+\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
736.4.a.d 736.a 1.a $4$ $43.425$ 4.4.310848.1 None 736.4.a.c \(0\) \(0\) \(-20\) \(44\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(-5+\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
736.4.a.e 736.a 1.a $8$ $43.425$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 736.4.a.e \(0\) \(-12\) \(-12\) \(14\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(-1-\beta _{3})q^{5}+(2+\cdots)q^{7}+\cdots\)
736.4.a.f 736.a 1.a $8$ $43.425$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 736.4.a.e \(0\) \(12\) \(-12\) \(-14\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{3}+(-1-\beta _{3})q^{5}+(-2+\cdots)q^{7}+\cdots\)
736.4.a.g 736.a 1.a $9$ $43.425$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 736.4.a.g \(0\) \(-14\) \(30\) \(28\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(3-\beta _{4})q^{5}+(3-\beta _{6}+\cdots)q^{7}+\cdots\)
736.4.a.h 736.a 1.a $9$ $43.425$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 736.4.a.h \(0\) \(0\) \(0\) \(-42\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-\beta _{5}q^{5}+(-5+\beta _{3})q^{7}+(8+\cdots)q^{9}+\cdots\)
736.4.a.i 736.a 1.a $9$ $43.425$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 736.4.a.h \(0\) \(0\) \(0\) \(42\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-\beta _{5}q^{5}+(5-\beta _{3})q^{7}+(8-\beta _{3}+\cdots)q^{9}+\cdots\)
736.4.a.j 736.a 1.a $9$ $43.425$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 736.4.a.g \(0\) \(14\) \(30\) \(-28\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{3}+(3-\beta _{4})q^{5}+(-3+\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(736))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(736)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 2}\)