Defining parameters
Level: | \( N \) | \(=\) | \( 7360 = 2^{6} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7360.bk (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2336 | 528 | 1808 |
Cusp forms | 2272 | 528 | 1744 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{new}}(7360, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(7360, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1840, [\chi])\)\(^{\oplus 3}\)