Defining parameters
Level: | \( N \) | \(=\) | \( 7360 = 2^{6} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7360.eq (of order \(88\) and degree \(40\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 736 \) |
Character field: | \(\Q(\zeta_{88})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2304\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 46400 | 0 | 46400 |
Cusp forms | 45760 | 0 | 45760 |
Eisenstein series | 640 | 0 | 640 |
Decomposition of \(S_{2}^{\mathrm{old}}(7360, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(736, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3680, [\chi])\)\(^{\oplus 2}\)