Properties

Label 74.2.a.b
Level $74$
Weight $2$
Character orbit 74.a
Self dual yes
Analytic conductor $0.591$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,2,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.590892974957\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta q^{3} + q^{4} + (3 \beta - 1) q^{5} - \beta q^{6} - 2 \beta q^{7} + q^{8} + (\beta - 2) q^{9} + (3 \beta - 1) q^{10} + (\beta - 3) q^{11} - \beta q^{12} + ( - 3 \beta + 2) q^{13} - 2 \beta q^{14} + \cdots + ( - 4 \beta + 7) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + q^{5} - q^{6} - 2 q^{7} + 2 q^{8} - 3 q^{9} + q^{10} - 5 q^{11} - q^{12} + q^{13} - 2 q^{14} - 8 q^{15} + 2 q^{16} - 3 q^{18} + q^{20} + 6 q^{21} - 5 q^{22} - q^{23}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
1.00000 −1.61803 1.00000 3.85410 −1.61803 −3.23607 1.00000 −0.381966 3.85410
1.2 1.00000 0.618034 1.00000 −2.85410 0.618034 1.23607 1.00000 −2.61803 −2.85410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 74.2.a.b 2
3.b odd 2 1 666.2.a.i 2
4.b odd 2 1 592.2.a.g 2
5.b even 2 1 1850.2.a.t 2
5.c odd 4 2 1850.2.b.j 4
7.b odd 2 1 3626.2.a.s 2
8.b even 2 1 2368.2.a.y 2
8.d odd 2 1 2368.2.a.u 2
11.b odd 2 1 8954.2.a.j 2
12.b even 2 1 5328.2.a.bc 2
37.b even 2 1 2738.2.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.2.a.b 2 1.a even 1 1 trivial
592.2.a.g 2 4.b odd 2 1
666.2.a.i 2 3.b odd 2 1
1850.2.a.t 2 5.b even 2 1
1850.2.b.j 4 5.c odd 4 2
2368.2.a.u 2 8.d odd 2 1
2368.2.a.y 2 8.b even 2 1
2738.2.a.g 2 37.b even 2 1
3626.2.a.s 2 7.b odd 2 1
5328.2.a.bc 2 12.b even 2 1
8954.2.a.j 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(74))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 5T + 5 \) Copy content Toggle raw display
$13$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$17$ \( T^{2} - 20 \) Copy content Toggle raw display
$19$ \( T^{2} - 20 \) Copy content Toggle raw display
$23$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T - 59 \) Copy content Toggle raw display
$31$ \( T^{2} - 17T + 71 \) Copy content Toggle raw display
$37$ \( (T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 17T + 71 \) Copy content Toggle raw display
$43$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$61$ \( T^{2} - 19T + 89 \) Copy content Toggle raw display
$67$ \( T^{2} + 9T - 11 \) Copy content Toggle raw display
$71$ \( T^{2} + 12T - 44 \) Copy content Toggle raw display
$73$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$79$ \( T^{2} - 3T - 99 \) Copy content Toggle raw display
$83$ \( T^{2} + 20T + 80 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
show more
show less