Defining parameters
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.f (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(74, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 414 | 126 | 288 |
Cusp forms | 390 | 126 | 264 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(74, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
74.8.f.a | $60$ | $23.116$ | None | \(0\) | \(-39\) | \(-624\) | \(-918\) | ||
74.8.f.b | $66$ | $23.116$ | None | \(0\) | \(-39\) | \(459\) | \(-918\) |
Decomposition of \(S_{8}^{\mathrm{old}}(74, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(74, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)