Properties

Label 74.8.f
Level $74$
Weight $8$
Character orbit 74.f
Rep. character $\chi_{74}(7,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $126$
Newform subspaces $2$
Sturm bound $76$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.f (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(76\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(74, [\chi])\).

Total New Old
Modular forms 414 126 288
Cusp forms 390 126 264
Eisenstein series 24 0 24

Trace form

\( 126 q - 78 q^{3} - 165 q^{5} - 1836 q^{7} + 1536 q^{8} + 6474 q^{9} + 6000 q^{10} + 7986 q^{11} - 4992 q^{12} + 162 q^{13} + 13488 q^{14} - 20820 q^{15} - 31161 q^{17} + 100110 q^{19} - 10560 q^{20} + 223326 q^{21}+ \cdots + 26364066 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(74, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
74.8.f.a 74.f 37.f $60$ $23.116$ None 74.8.f.a \(0\) \(-39\) \(-624\) \(-918\) $\mathrm{SU}(2)[C_{9}]$
74.8.f.b 74.f 37.f $66$ $23.116$ None 74.8.f.b \(0\) \(-39\) \(459\) \(-918\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{8}^{\mathrm{old}}(74, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(74, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)