Properties

Label 740.2.a.d.1.1
Level $740$
Weight $2$
Character 740.1
Self dual yes
Analytic conductor $5.909$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,2,Mod(1,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 740.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{3} +1.00000 q^{5} +1.26795 q^{7} +4.46410 q^{9} -5.46410 q^{11} +4.00000 q^{13} -2.73205 q^{15} -4.00000 q^{17} +6.19615 q^{19} -3.46410 q^{21} -8.92820 q^{23} +1.00000 q^{25} -4.00000 q^{27} +7.46410 q^{29} +10.1962 q^{31} +14.9282 q^{33} +1.26795 q^{35} +1.00000 q^{37} -10.9282 q^{39} +4.92820 q^{41} +6.00000 q^{43} +4.46410 q^{45} +1.26795 q^{47} -5.39230 q^{49} +10.9282 q^{51} +12.9282 q^{53} -5.46410 q^{55} -16.9282 q^{57} +3.66025 q^{59} +14.0000 q^{61} +5.66025 q^{63} +4.00000 q^{65} -5.26795 q^{67} +24.3923 q^{69} +8.00000 q^{71} -10.3923 q^{73} -2.73205 q^{75} -6.92820 q^{77} +6.19615 q^{79} -2.46410 q^{81} +1.66025 q^{83} -4.00000 q^{85} -20.3923 q^{87} -2.00000 q^{89} +5.07180 q^{91} -27.8564 q^{93} +6.19615 q^{95} -14.0000 q^{97} -24.3923 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} + 6 q^{7} + 2 q^{9} - 4 q^{11} + 8 q^{13} - 2 q^{15} - 8 q^{17} + 2 q^{19} - 4 q^{23} + 2 q^{25} - 8 q^{27} + 8 q^{29} + 10 q^{31} + 16 q^{33} + 6 q^{35} + 2 q^{37} - 8 q^{39} - 4 q^{41}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.26795 0.479240 0.239620 0.970867i \(-0.422977\pi\)
0.239620 + 0.970867i \(0.422977\pi\)
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) −5.46410 −1.64749 −0.823744 0.566961i \(-0.808119\pi\)
−0.823744 + 0.566961i \(0.808119\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −2.73205 −0.705412
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 6.19615 1.42149 0.710747 0.703447i \(-0.248357\pi\)
0.710747 + 0.703447i \(0.248357\pi\)
\(20\) 0 0
\(21\) −3.46410 −0.755929
\(22\) 0 0
\(23\) −8.92820 −1.86166 −0.930830 0.365454i \(-0.880914\pi\)
−0.930830 + 0.365454i \(0.880914\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 7.46410 1.38605 0.693024 0.720914i \(-0.256278\pi\)
0.693024 + 0.720914i \(0.256278\pi\)
\(30\) 0 0
\(31\) 10.1962 1.83128 0.915642 0.401996i \(-0.131683\pi\)
0.915642 + 0.401996i \(0.131683\pi\)
\(32\) 0 0
\(33\) 14.9282 2.59867
\(34\) 0 0
\(35\) 1.26795 0.214323
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −10.9282 −1.74991
\(40\) 0 0
\(41\) 4.92820 0.769656 0.384828 0.922988i \(-0.374261\pi\)
0.384828 + 0.922988i \(0.374261\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 4.46410 0.665469
\(46\) 0 0
\(47\) 1.26795 0.184949 0.0924747 0.995715i \(-0.470522\pi\)
0.0924747 + 0.995715i \(0.470522\pi\)
\(48\) 0 0
\(49\) −5.39230 −0.770329
\(50\) 0 0
\(51\) 10.9282 1.53025
\(52\) 0 0
\(53\) 12.9282 1.77583 0.887913 0.460012i \(-0.152155\pi\)
0.887913 + 0.460012i \(0.152155\pi\)
\(54\) 0 0
\(55\) −5.46410 −0.736779
\(56\) 0 0
\(57\) −16.9282 −2.24220
\(58\) 0 0
\(59\) 3.66025 0.476524 0.238262 0.971201i \(-0.423422\pi\)
0.238262 + 0.971201i \(0.423422\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 5.66025 0.713125
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −5.26795 −0.643582 −0.321791 0.946811i \(-0.604285\pi\)
−0.321791 + 0.946811i \(0.604285\pi\)
\(68\) 0 0
\(69\) 24.3923 2.93649
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −10.3923 −1.21633 −0.608164 0.793812i \(-0.708094\pi\)
−0.608164 + 0.793812i \(0.708094\pi\)
\(74\) 0 0
\(75\) −2.73205 −0.315470
\(76\) 0 0
\(77\) −6.92820 −0.789542
\(78\) 0 0
\(79\) 6.19615 0.697122 0.348561 0.937286i \(-0.386670\pi\)
0.348561 + 0.937286i \(0.386670\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) 1.66025 0.182237 0.0911183 0.995840i \(-0.470956\pi\)
0.0911183 + 0.995840i \(0.470956\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) −20.3923 −2.18628
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 5.07180 0.531669
\(92\) 0 0
\(93\) −27.8564 −2.88857
\(94\) 0 0
\(95\) 6.19615 0.635712
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −24.3923 −2.45152
\(100\) 0 0
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) 6.39230 0.629853 0.314926 0.949116i \(-0.398020\pi\)
0.314926 + 0.949116i \(0.398020\pi\)
\(104\) 0 0
\(105\) −3.46410 −0.338062
\(106\) 0 0
\(107\) −0.196152 −0.0189628 −0.00948139 0.999955i \(-0.503018\pi\)
−0.00948139 + 0.999955i \(0.503018\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −2.73205 −0.259315
\(112\) 0 0
\(113\) 17.8564 1.67979 0.839895 0.542749i \(-0.182617\pi\)
0.839895 + 0.542749i \(0.182617\pi\)
\(114\) 0 0
\(115\) −8.92820 −0.832559
\(116\) 0 0
\(117\) 17.8564 1.65083
\(118\) 0 0
\(119\) −5.07180 −0.464931
\(120\) 0 0
\(121\) 18.8564 1.71422
\(122\) 0 0
\(123\) −13.4641 −1.21402
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.33975 −0.207619 −0.103809 0.994597i \(-0.533103\pi\)
−0.103809 + 0.994597i \(0.533103\pi\)
\(128\) 0 0
\(129\) −16.3923 −1.44326
\(130\) 0 0
\(131\) −16.7321 −1.46189 −0.730943 0.682438i \(-0.760920\pi\)
−0.730943 + 0.682438i \(0.760920\pi\)
\(132\) 0 0
\(133\) 7.85641 0.681237
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) −21.3205 −1.82153 −0.910767 0.412921i \(-0.864509\pi\)
−0.910767 + 0.412921i \(0.864509\pi\)
\(138\) 0 0
\(139\) −18.9282 −1.60547 −0.802735 0.596336i \(-0.796622\pi\)
−0.802735 + 0.596336i \(0.796622\pi\)
\(140\) 0 0
\(141\) −3.46410 −0.291730
\(142\) 0 0
\(143\) −21.8564 −1.82772
\(144\) 0 0
\(145\) 7.46410 0.619860
\(146\) 0 0
\(147\) 14.7321 1.21508
\(148\) 0 0
\(149\) 9.46410 0.775329 0.387665 0.921800i \(-0.373282\pi\)
0.387665 + 0.921800i \(0.373282\pi\)
\(150\) 0 0
\(151\) −12.3923 −1.00847 −0.504236 0.863566i \(-0.668226\pi\)
−0.504236 + 0.863566i \(0.668226\pi\)
\(152\) 0 0
\(153\) −17.8564 −1.44360
\(154\) 0 0
\(155\) 10.1962 0.818975
\(156\) 0 0
\(157\) 7.46410 0.595700 0.297850 0.954613i \(-0.403730\pi\)
0.297850 + 0.954613i \(0.403730\pi\)
\(158\) 0 0
\(159\) −35.3205 −2.80110
\(160\) 0 0
\(161\) −11.3205 −0.892181
\(162\) 0 0
\(163\) 15.4641 1.21124 0.605621 0.795753i \(-0.292925\pi\)
0.605621 + 0.795753i \(0.292925\pi\)
\(164\) 0 0
\(165\) 14.9282 1.16216
\(166\) 0 0
\(167\) 6.39230 0.494651 0.247326 0.968932i \(-0.420448\pi\)
0.247326 + 0.968932i \(0.420448\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 27.6603 2.11523
\(172\) 0 0
\(173\) −4.53590 −0.344858 −0.172429 0.985022i \(-0.555162\pi\)
−0.172429 + 0.985022i \(0.555162\pi\)
\(174\) 0 0
\(175\) 1.26795 0.0958479
\(176\) 0 0
\(177\) −10.0000 −0.751646
\(178\) 0 0
\(179\) 4.73205 0.353690 0.176845 0.984239i \(-0.443411\pi\)
0.176845 + 0.984239i \(0.443411\pi\)
\(180\) 0 0
\(181\) −15.3205 −1.13876 −0.569382 0.822073i \(-0.692818\pi\)
−0.569382 + 0.822073i \(0.692818\pi\)
\(182\) 0 0
\(183\) −38.2487 −2.82743
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 21.8564 1.59830
\(188\) 0 0
\(189\) −5.07180 −0.368919
\(190\) 0 0
\(191\) 14.5885 1.05558 0.527792 0.849374i \(-0.323020\pi\)
0.527792 + 0.849374i \(0.323020\pi\)
\(192\) 0 0
\(193\) 8.92820 0.642666 0.321333 0.946966i \(-0.395869\pi\)
0.321333 + 0.946966i \(0.395869\pi\)
\(194\) 0 0
\(195\) −10.9282 −0.782585
\(196\) 0 0
\(197\) 9.32051 0.664059 0.332029 0.943269i \(-0.392267\pi\)
0.332029 + 0.943269i \(0.392267\pi\)
\(198\) 0 0
\(199\) 13.1244 0.930361 0.465180 0.885216i \(-0.345989\pi\)
0.465180 + 0.885216i \(0.345989\pi\)
\(200\) 0 0
\(201\) 14.3923 1.01515
\(202\) 0 0
\(203\) 9.46410 0.664250
\(204\) 0 0
\(205\) 4.92820 0.344201
\(206\) 0 0
\(207\) −39.8564 −2.77021
\(208\) 0 0
\(209\) −33.8564 −2.34190
\(210\) 0 0
\(211\) −10.9282 −0.752329 −0.376164 0.926553i \(-0.622757\pi\)
−0.376164 + 0.926553i \(0.622757\pi\)
\(212\) 0 0
\(213\) −21.8564 −1.49758
\(214\) 0 0
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) 12.9282 0.877624
\(218\) 0 0
\(219\) 28.3923 1.91857
\(220\) 0 0
\(221\) −16.0000 −1.07628
\(222\) 0 0
\(223\) 8.19615 0.548855 0.274427 0.961608i \(-0.411512\pi\)
0.274427 + 0.961608i \(0.411512\pi\)
\(224\) 0 0
\(225\) 4.46410 0.297607
\(226\) 0 0
\(227\) −0.535898 −0.0355688 −0.0177844 0.999842i \(-0.505661\pi\)
−0.0177844 + 0.999842i \(0.505661\pi\)
\(228\) 0 0
\(229\) 7.07180 0.467317 0.233659 0.972319i \(-0.424930\pi\)
0.233659 + 0.972319i \(0.424930\pi\)
\(230\) 0 0
\(231\) 18.9282 1.24538
\(232\) 0 0
\(233\) −4.53590 −0.297157 −0.148578 0.988901i \(-0.547470\pi\)
−0.148578 + 0.988901i \(0.547470\pi\)
\(234\) 0 0
\(235\) 1.26795 0.0827119
\(236\) 0 0
\(237\) −16.9282 −1.09960
\(238\) 0 0
\(239\) 28.4449 1.83995 0.919973 0.391983i \(-0.128211\pi\)
0.919973 + 0.391983i \(0.128211\pi\)
\(240\) 0 0
\(241\) −16.5359 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(242\) 0 0
\(243\) 18.7321 1.20166
\(244\) 0 0
\(245\) −5.39230 −0.344502
\(246\) 0 0
\(247\) 24.7846 1.57701
\(248\) 0 0
\(249\) −4.53590 −0.287451
\(250\) 0 0
\(251\) −16.7321 −1.05612 −0.528059 0.849208i \(-0.677080\pi\)
−0.528059 + 0.849208i \(0.677080\pi\)
\(252\) 0 0
\(253\) 48.7846 3.06706
\(254\) 0 0
\(255\) 10.9282 0.684351
\(256\) 0 0
\(257\) 1.07180 0.0668568 0.0334284 0.999441i \(-0.489357\pi\)
0.0334284 + 0.999441i \(0.489357\pi\)
\(258\) 0 0
\(259\) 1.26795 0.0787865
\(260\) 0 0
\(261\) 33.3205 2.06249
\(262\) 0 0
\(263\) −7.12436 −0.439307 −0.219653 0.975578i \(-0.570493\pi\)
−0.219653 + 0.975578i \(0.570493\pi\)
\(264\) 0 0
\(265\) 12.9282 0.794173
\(266\) 0 0
\(267\) 5.46410 0.334398
\(268\) 0 0
\(269\) −12.3923 −0.755572 −0.377786 0.925893i \(-0.623315\pi\)
−0.377786 + 0.925893i \(0.623315\pi\)
\(270\) 0 0
\(271\) −5.85641 −0.355751 −0.177876 0.984053i \(-0.556922\pi\)
−0.177876 + 0.984053i \(0.556922\pi\)
\(272\) 0 0
\(273\) −13.8564 −0.838628
\(274\) 0 0
\(275\) −5.46410 −0.329498
\(276\) 0 0
\(277\) −28.7846 −1.72950 −0.864750 0.502203i \(-0.832523\pi\)
−0.864750 + 0.502203i \(0.832523\pi\)
\(278\) 0 0
\(279\) 45.5167 2.72501
\(280\) 0 0
\(281\) −6.39230 −0.381333 −0.190666 0.981655i \(-0.561065\pi\)
−0.190666 + 0.981655i \(0.561065\pi\)
\(282\) 0 0
\(283\) 8.53590 0.507406 0.253703 0.967282i \(-0.418351\pi\)
0.253703 + 0.967282i \(0.418351\pi\)
\(284\) 0 0
\(285\) −16.9282 −1.00274
\(286\) 0 0
\(287\) 6.24871 0.368850
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 38.2487 2.24218
\(292\) 0 0
\(293\) 0.928203 0.0542262 0.0271131 0.999632i \(-0.491369\pi\)
0.0271131 + 0.999632i \(0.491369\pi\)
\(294\) 0 0
\(295\) 3.66025 0.213108
\(296\) 0 0
\(297\) 21.8564 1.26824
\(298\) 0 0
\(299\) −35.7128 −2.06533
\(300\) 0 0
\(301\) 7.60770 0.438500
\(302\) 0 0
\(303\) −6.92820 −0.398015
\(304\) 0 0
\(305\) 14.0000 0.801638
\(306\) 0 0
\(307\) 1.26795 0.0723657 0.0361828 0.999345i \(-0.488480\pi\)
0.0361828 + 0.999345i \(0.488480\pi\)
\(308\) 0 0
\(309\) −17.4641 −0.993498
\(310\) 0 0
\(311\) 26.1962 1.48545 0.742724 0.669598i \(-0.233534\pi\)
0.742724 + 0.669598i \(0.233534\pi\)
\(312\) 0 0
\(313\) −11.8564 −0.670164 −0.335082 0.942189i \(-0.608764\pi\)
−0.335082 + 0.942189i \(0.608764\pi\)
\(314\) 0 0
\(315\) 5.66025 0.318919
\(316\) 0 0
\(317\) 15.4641 0.868550 0.434275 0.900780i \(-0.357005\pi\)
0.434275 + 0.900780i \(0.357005\pi\)
\(318\) 0 0
\(319\) −40.7846 −2.28350
\(320\) 0 0
\(321\) 0.535898 0.0299109
\(322\) 0 0
\(323\) −24.7846 −1.37905
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) −5.46410 −0.302166
\(328\) 0 0
\(329\) 1.60770 0.0886351
\(330\) 0 0
\(331\) 11.6603 0.640906 0.320453 0.947264i \(-0.396165\pi\)
0.320453 + 0.947264i \(0.396165\pi\)
\(332\) 0 0
\(333\) 4.46410 0.244631
\(334\) 0 0
\(335\) −5.26795 −0.287819
\(336\) 0 0
\(337\) 11.4641 0.624489 0.312245 0.950002i \(-0.398919\pi\)
0.312245 + 0.950002i \(0.398919\pi\)
\(338\) 0 0
\(339\) −48.7846 −2.64962
\(340\) 0 0
\(341\) −55.7128 −3.01702
\(342\) 0 0
\(343\) −15.7128 −0.848412
\(344\) 0 0
\(345\) 24.3923 1.31324
\(346\) 0 0
\(347\) −26.7846 −1.43787 −0.718937 0.695076i \(-0.755371\pi\)
−0.718937 + 0.695076i \(0.755371\pi\)
\(348\) 0 0
\(349\) −22.2487 −1.19095 −0.595473 0.803375i \(-0.703035\pi\)
−0.595473 + 0.803375i \(0.703035\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) 13.8564 0.733359
\(358\) 0 0
\(359\) −5.46410 −0.288384 −0.144192 0.989550i \(-0.546058\pi\)
−0.144192 + 0.989550i \(0.546058\pi\)
\(360\) 0 0
\(361\) 19.3923 1.02065
\(362\) 0 0
\(363\) −51.5167 −2.70392
\(364\) 0 0
\(365\) −10.3923 −0.543958
\(366\) 0 0
\(367\) −14.0526 −0.733538 −0.366769 0.930312i \(-0.619536\pi\)
−0.366769 + 0.930312i \(0.619536\pi\)
\(368\) 0 0
\(369\) 22.0000 1.14527
\(370\) 0 0
\(371\) 16.3923 0.851046
\(372\) 0 0
\(373\) 16.2487 0.841326 0.420663 0.907217i \(-0.361797\pi\)
0.420663 + 0.907217i \(0.361797\pi\)
\(374\) 0 0
\(375\) −2.73205 −0.141082
\(376\) 0 0
\(377\) 29.8564 1.53768
\(378\) 0 0
\(379\) −0.392305 −0.0201513 −0.0100757 0.999949i \(-0.503207\pi\)
−0.0100757 + 0.999949i \(0.503207\pi\)
\(380\) 0 0
\(381\) 6.39230 0.327488
\(382\) 0 0
\(383\) 11.8564 0.605834 0.302917 0.953017i \(-0.402039\pi\)
0.302917 + 0.953017i \(0.402039\pi\)
\(384\) 0 0
\(385\) −6.92820 −0.353094
\(386\) 0 0
\(387\) 26.7846 1.36154
\(388\) 0 0
\(389\) 20.9282 1.06110 0.530551 0.847653i \(-0.321985\pi\)
0.530551 + 0.847653i \(0.321985\pi\)
\(390\) 0 0
\(391\) 35.7128 1.80607
\(392\) 0 0
\(393\) 45.7128 2.30591
\(394\) 0 0
\(395\) 6.19615 0.311762
\(396\) 0 0
\(397\) −25.7128 −1.29049 −0.645245 0.763976i \(-0.723245\pi\)
−0.645245 + 0.763976i \(0.723245\pi\)
\(398\) 0 0
\(399\) −21.4641 −1.07455
\(400\) 0 0
\(401\) −3.85641 −0.192580 −0.0962899 0.995353i \(-0.530698\pi\)
−0.0962899 + 0.995353i \(0.530698\pi\)
\(402\) 0 0
\(403\) 40.7846 2.03163
\(404\) 0 0
\(405\) −2.46410 −0.122442
\(406\) 0 0
\(407\) −5.46410 −0.270845
\(408\) 0 0
\(409\) 0.535898 0.0264985 0.0132492 0.999912i \(-0.495783\pi\)
0.0132492 + 0.999912i \(0.495783\pi\)
\(410\) 0 0
\(411\) 58.2487 2.87320
\(412\) 0 0
\(413\) 4.64102 0.228369
\(414\) 0 0
\(415\) 1.66025 0.0814987
\(416\) 0 0
\(417\) 51.7128 2.53239
\(418\) 0 0
\(419\) −6.53590 −0.319300 −0.159650 0.987174i \(-0.551036\pi\)
−0.159650 + 0.987174i \(0.551036\pi\)
\(420\) 0 0
\(421\) −22.7846 −1.11045 −0.555227 0.831699i \(-0.687369\pi\)
−0.555227 + 0.831699i \(0.687369\pi\)
\(422\) 0 0
\(423\) 5.66025 0.275211
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 17.7513 0.859045
\(428\) 0 0
\(429\) 59.7128 2.88296
\(430\) 0 0
\(431\) −25.5167 −1.22909 −0.614547 0.788880i \(-0.710661\pi\)
−0.614547 + 0.788880i \(0.710661\pi\)
\(432\) 0 0
\(433\) −9.32051 −0.447915 −0.223958 0.974599i \(-0.571898\pi\)
−0.223958 + 0.974599i \(0.571898\pi\)
\(434\) 0 0
\(435\) −20.3923 −0.977736
\(436\) 0 0
\(437\) −55.3205 −2.64634
\(438\) 0 0
\(439\) −2.87564 −0.137247 −0.0686235 0.997643i \(-0.521861\pi\)
−0.0686235 + 0.997643i \(0.521861\pi\)
\(440\) 0 0
\(441\) −24.0718 −1.14628
\(442\) 0 0
\(443\) 3.80385 0.180726 0.0903631 0.995909i \(-0.471197\pi\)
0.0903631 + 0.995909i \(0.471197\pi\)
\(444\) 0 0
\(445\) −2.00000 −0.0948091
\(446\) 0 0
\(447\) −25.8564 −1.22297
\(448\) 0 0
\(449\) 8.53590 0.402834 0.201417 0.979506i \(-0.435445\pi\)
0.201417 + 0.979506i \(0.435445\pi\)
\(450\) 0 0
\(451\) −26.9282 −1.26800
\(452\) 0 0
\(453\) 33.8564 1.59071
\(454\) 0 0
\(455\) 5.07180 0.237769
\(456\) 0 0
\(457\) −11.0718 −0.517917 −0.258958 0.965888i \(-0.583379\pi\)
−0.258958 + 0.965888i \(0.583379\pi\)
\(458\) 0 0
\(459\) 16.0000 0.746816
\(460\) 0 0
\(461\) 32.5359 1.51535 0.757674 0.652633i \(-0.226336\pi\)
0.757674 + 0.652633i \(0.226336\pi\)
\(462\) 0 0
\(463\) 24.9282 1.15851 0.579256 0.815146i \(-0.303343\pi\)
0.579256 + 0.815146i \(0.303343\pi\)
\(464\) 0 0
\(465\) −27.8564 −1.29181
\(466\) 0 0
\(467\) 34.3923 1.59149 0.795743 0.605634i \(-0.207081\pi\)
0.795743 + 0.605634i \(0.207081\pi\)
\(468\) 0 0
\(469\) −6.67949 −0.308430
\(470\) 0 0
\(471\) −20.3923 −0.939628
\(472\) 0 0
\(473\) −32.7846 −1.50744
\(474\) 0 0
\(475\) 6.19615 0.284299
\(476\) 0 0
\(477\) 57.7128 2.64249
\(478\) 0 0
\(479\) 2.87564 0.131392 0.0656958 0.997840i \(-0.479073\pi\)
0.0656958 + 0.997840i \(0.479073\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) 30.9282 1.40728
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 15.4641 0.700745 0.350373 0.936610i \(-0.386055\pi\)
0.350373 + 0.936610i \(0.386055\pi\)
\(488\) 0 0
\(489\) −42.2487 −1.91055
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −29.8564 −1.34466
\(494\) 0 0
\(495\) −24.3923 −1.09635
\(496\) 0 0
\(497\) 10.1436 0.455002
\(498\) 0 0
\(499\) −19.6603 −0.880114 −0.440057 0.897970i \(-0.645042\pi\)
−0.440057 + 0.897970i \(0.645042\pi\)
\(500\) 0 0
\(501\) −17.4641 −0.780239
\(502\) 0 0
\(503\) −4.14359 −0.184754 −0.0923769 0.995724i \(-0.529446\pi\)
−0.0923769 + 0.995724i \(0.529446\pi\)
\(504\) 0 0
\(505\) 2.53590 0.112846
\(506\) 0 0
\(507\) −8.19615 −0.364004
\(508\) 0 0
\(509\) 11.8564 0.525526 0.262763 0.964860i \(-0.415366\pi\)
0.262763 + 0.964860i \(0.415366\pi\)
\(510\) 0 0
\(511\) −13.1769 −0.582912
\(512\) 0 0
\(513\) −24.7846 −1.09427
\(514\) 0 0
\(515\) 6.39230 0.281679
\(516\) 0 0
\(517\) −6.92820 −0.304702
\(518\) 0 0
\(519\) 12.3923 0.543962
\(520\) 0 0
\(521\) −45.4641 −1.99182 −0.995909 0.0903593i \(-0.971198\pi\)
−0.995909 + 0.0903593i \(0.971198\pi\)
\(522\) 0 0
\(523\) 30.7846 1.34612 0.673058 0.739589i \(-0.264980\pi\)
0.673058 + 0.739589i \(0.264980\pi\)
\(524\) 0 0
\(525\) −3.46410 −0.151186
\(526\) 0 0
\(527\) −40.7846 −1.77661
\(528\) 0 0
\(529\) 56.7128 2.46577
\(530\) 0 0
\(531\) 16.3397 0.709085
\(532\) 0 0
\(533\) 19.7128 0.853857
\(534\) 0 0
\(535\) −0.196152 −0.00848041
\(536\) 0 0
\(537\) −12.9282 −0.557893
\(538\) 0 0
\(539\) 29.4641 1.26911
\(540\) 0 0
\(541\) 10.3923 0.446800 0.223400 0.974727i \(-0.428284\pi\)
0.223400 + 0.974727i \(0.428284\pi\)
\(542\) 0 0
\(543\) 41.8564 1.79623
\(544\) 0 0
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 8.92820 0.381742 0.190871 0.981615i \(-0.438869\pi\)
0.190871 + 0.981615i \(0.438869\pi\)
\(548\) 0 0
\(549\) 62.4974 2.66732
\(550\) 0 0
\(551\) 46.2487 1.97026
\(552\) 0 0
\(553\) 7.85641 0.334088
\(554\) 0 0
\(555\) −2.73205 −0.115969
\(556\) 0 0
\(557\) −1.85641 −0.0786585 −0.0393292 0.999226i \(-0.512522\pi\)
−0.0393292 + 0.999226i \(0.512522\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −59.7128 −2.52108
\(562\) 0 0
\(563\) 24.9282 1.05060 0.525299 0.850918i \(-0.323953\pi\)
0.525299 + 0.850918i \(0.323953\pi\)
\(564\) 0 0
\(565\) 17.8564 0.751225
\(566\) 0 0
\(567\) −3.12436 −0.131211
\(568\) 0 0
\(569\) 13.3205 0.558425 0.279212 0.960229i \(-0.409927\pi\)
0.279212 + 0.960229i \(0.409927\pi\)
\(570\) 0 0
\(571\) −15.7128 −0.657561 −0.328780 0.944406i \(-0.606638\pi\)
−0.328780 + 0.944406i \(0.606638\pi\)
\(572\) 0 0
\(573\) −39.8564 −1.66503
\(574\) 0 0
\(575\) −8.92820 −0.372332
\(576\) 0 0
\(577\) 26.6410 1.10908 0.554540 0.832157i \(-0.312894\pi\)
0.554540 + 0.832157i \(0.312894\pi\)
\(578\) 0 0
\(579\) −24.3923 −1.01371
\(580\) 0 0
\(581\) 2.10512 0.0873350
\(582\) 0 0
\(583\) −70.6410 −2.92565
\(584\) 0 0
\(585\) 17.8564 0.738272
\(586\) 0 0
\(587\) 0.928203 0.0383110 0.0191555 0.999817i \(-0.493902\pi\)
0.0191555 + 0.999817i \(0.493902\pi\)
\(588\) 0 0
\(589\) 63.1769 2.60316
\(590\) 0 0
\(591\) −25.4641 −1.04745
\(592\) 0 0
\(593\) −26.0000 −1.06769 −0.533846 0.845582i \(-0.679254\pi\)
−0.533846 + 0.845582i \(0.679254\pi\)
\(594\) 0 0
\(595\) −5.07180 −0.207923
\(596\) 0 0
\(597\) −35.8564 −1.46751
\(598\) 0 0
\(599\) 21.4641 0.876999 0.438500 0.898731i \(-0.355510\pi\)
0.438500 + 0.898731i \(0.355510\pi\)
\(600\) 0 0
\(601\) −3.32051 −0.135446 −0.0677232 0.997704i \(-0.521573\pi\)
−0.0677232 + 0.997704i \(0.521573\pi\)
\(602\) 0 0
\(603\) −23.5167 −0.957672
\(604\) 0 0
\(605\) 18.8564 0.766622
\(606\) 0 0
\(607\) −19.0718 −0.774100 −0.387050 0.922059i \(-0.626506\pi\)
−0.387050 + 0.922059i \(0.626506\pi\)
\(608\) 0 0
\(609\) −25.8564 −1.04775
\(610\) 0 0
\(611\) 5.07180 0.205183
\(612\) 0 0
\(613\) −24.6410 −0.995241 −0.497621 0.867395i \(-0.665793\pi\)
−0.497621 + 0.867395i \(0.665793\pi\)
\(614\) 0 0
\(615\) −13.4641 −0.542925
\(616\) 0 0
\(617\) 2.78461 0.112104 0.0560521 0.998428i \(-0.482149\pi\)
0.0560521 + 0.998428i \(0.482149\pi\)
\(618\) 0 0
\(619\) −22.9282 −0.921562 −0.460781 0.887514i \(-0.652431\pi\)
−0.460781 + 0.887514i \(0.652431\pi\)
\(620\) 0 0
\(621\) 35.7128 1.43311
\(622\) 0 0
\(623\) −2.53590 −0.101599
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 92.4974 3.69399
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −2.48334 −0.0988602 −0.0494301 0.998778i \(-0.515741\pi\)
−0.0494301 + 0.998778i \(0.515741\pi\)
\(632\) 0 0
\(633\) 29.8564 1.18669
\(634\) 0 0
\(635\) −2.33975 −0.0928500
\(636\) 0 0
\(637\) −21.5692 −0.854604
\(638\) 0 0
\(639\) 35.7128 1.41278
\(640\) 0 0
\(641\) 0.392305 0.0154951 0.00774755 0.999970i \(-0.497534\pi\)
0.00774755 + 0.999970i \(0.497534\pi\)
\(642\) 0 0
\(643\) −5.60770 −0.221146 −0.110573 0.993868i \(-0.535269\pi\)
−0.110573 + 0.993868i \(0.535269\pi\)
\(644\) 0 0
\(645\) −16.3923 −0.645446
\(646\) 0 0
\(647\) −2.00000 −0.0786281 −0.0393141 0.999227i \(-0.512517\pi\)
−0.0393141 + 0.999227i \(0.512517\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) −35.3205 −1.38432
\(652\) 0 0
\(653\) −12.9282 −0.505920 −0.252960 0.967477i \(-0.581404\pi\)
−0.252960 + 0.967477i \(0.581404\pi\)
\(654\) 0 0
\(655\) −16.7321 −0.653775
\(656\) 0 0
\(657\) −46.3923 −1.80994
\(658\) 0 0
\(659\) 42.9282 1.67225 0.836123 0.548542i \(-0.184817\pi\)
0.836123 + 0.548542i \(0.184817\pi\)
\(660\) 0 0
\(661\) 20.6410 0.802842 0.401421 0.915894i \(-0.368516\pi\)
0.401421 + 0.915894i \(0.368516\pi\)
\(662\) 0 0
\(663\) 43.7128 1.69766
\(664\) 0 0
\(665\) 7.85641 0.304658
\(666\) 0 0
\(667\) −66.6410 −2.58035
\(668\) 0 0
\(669\) −22.3923 −0.865737
\(670\) 0 0
\(671\) −76.4974 −2.95315
\(672\) 0 0
\(673\) −41.7128 −1.60791 −0.803955 0.594690i \(-0.797275\pi\)
−0.803955 + 0.594690i \(0.797275\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) −45.0333 −1.73077 −0.865386 0.501107i \(-0.832926\pi\)
−0.865386 + 0.501107i \(0.832926\pi\)
\(678\) 0 0
\(679\) −17.7513 −0.681232
\(680\) 0 0
\(681\) 1.46410 0.0561045
\(682\) 0 0
\(683\) 15.0718 0.576706 0.288353 0.957524i \(-0.406892\pi\)
0.288353 + 0.957524i \(0.406892\pi\)
\(684\) 0 0
\(685\) −21.3205 −0.814615
\(686\) 0 0
\(687\) −19.3205 −0.737123
\(688\) 0 0
\(689\) 51.7128 1.97010
\(690\) 0 0
\(691\) 32.3923 1.23226 0.616131 0.787644i \(-0.288699\pi\)
0.616131 + 0.787644i \(0.288699\pi\)
\(692\) 0 0
\(693\) −30.9282 −1.17487
\(694\) 0 0
\(695\) −18.9282 −0.717988
\(696\) 0 0
\(697\) −19.7128 −0.746676
\(698\) 0 0
\(699\) 12.3923 0.468720
\(700\) 0 0
\(701\) 15.8564 0.598888 0.299444 0.954114i \(-0.403199\pi\)
0.299444 + 0.954114i \(0.403199\pi\)
\(702\) 0 0
\(703\) 6.19615 0.233692
\(704\) 0 0
\(705\) −3.46410 −0.130466
\(706\) 0 0
\(707\) 3.21539 0.120927
\(708\) 0 0
\(709\) −24.2487 −0.910679 −0.455340 0.890318i \(-0.650482\pi\)
−0.455340 + 0.890318i \(0.650482\pi\)
\(710\) 0 0
\(711\) 27.6603 1.03734
\(712\) 0 0
\(713\) −91.0333 −3.40922
\(714\) 0 0
\(715\) −21.8564 −0.817383
\(716\) 0 0
\(717\) −77.7128 −2.90224
\(718\) 0 0
\(719\) −26.2487 −0.978912 −0.489456 0.872028i \(-0.662805\pi\)
−0.489456 + 0.872028i \(0.662805\pi\)
\(720\) 0 0
\(721\) 8.10512 0.301850
\(722\) 0 0
\(723\) 45.1769 1.68015
\(724\) 0 0
\(725\) 7.46410 0.277210
\(726\) 0 0
\(727\) 6.00000 0.222528 0.111264 0.993791i \(-0.464510\pi\)
0.111264 + 0.993791i \(0.464510\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 14.7321 0.543400
\(736\) 0 0
\(737\) 28.7846 1.06029
\(738\) 0 0
\(739\) 44.7846 1.64743 0.823714 0.567005i \(-0.191898\pi\)
0.823714 + 0.567005i \(0.191898\pi\)
\(740\) 0 0
\(741\) −67.7128 −2.48749
\(742\) 0 0
\(743\) 35.1244 1.28859 0.644294 0.764778i \(-0.277151\pi\)
0.644294 + 0.764778i \(0.277151\pi\)
\(744\) 0 0
\(745\) 9.46410 0.346738
\(746\) 0 0
\(747\) 7.41154 0.271174
\(748\) 0 0
\(749\) −0.248711 −0.00908771
\(750\) 0 0
\(751\) −51.3205 −1.87271 −0.936356 0.351052i \(-0.885824\pi\)
−0.936356 + 0.351052i \(0.885824\pi\)
\(752\) 0 0
\(753\) 45.7128 1.66587
\(754\) 0 0
\(755\) −12.3923 −0.451002
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) −133.282 −4.83783
\(760\) 0 0
\(761\) 13.7128 0.497089 0.248545 0.968620i \(-0.420048\pi\)
0.248545 + 0.968620i \(0.420048\pi\)
\(762\) 0 0
\(763\) 2.53590 0.0918057
\(764\) 0 0
\(765\) −17.8564 −0.645600
\(766\) 0 0
\(767\) 14.6410 0.528656
\(768\) 0 0
\(769\) 12.1436 0.437909 0.218955 0.975735i \(-0.429735\pi\)
0.218955 + 0.975735i \(0.429735\pi\)
\(770\) 0 0
\(771\) −2.92820 −0.105457
\(772\) 0 0
\(773\) −34.3923 −1.23701 −0.618503 0.785783i \(-0.712260\pi\)
−0.618503 + 0.785783i \(0.712260\pi\)
\(774\) 0 0
\(775\) 10.1962 0.366257
\(776\) 0 0
\(777\) −3.46410 −0.124274
\(778\) 0 0
\(779\) 30.5359 1.09406
\(780\) 0 0
\(781\) −43.7128 −1.56417
\(782\) 0 0
\(783\) −29.8564 −1.06698
\(784\) 0 0
\(785\) 7.46410 0.266405
\(786\) 0 0
\(787\) 23.8038 0.848516 0.424258 0.905541i \(-0.360535\pi\)
0.424258 + 0.905541i \(0.360535\pi\)
\(788\) 0 0
\(789\) 19.4641 0.692940
\(790\) 0 0
\(791\) 22.6410 0.805022
\(792\) 0 0
\(793\) 56.0000 1.98862
\(794\) 0 0
\(795\) −35.3205 −1.25269
\(796\) 0 0
\(797\) 6.14359 0.217617 0.108809 0.994063i \(-0.465296\pi\)
0.108809 + 0.994063i \(0.465296\pi\)
\(798\) 0 0
\(799\) −5.07180 −0.179427
\(800\) 0 0
\(801\) −8.92820 −0.315463
\(802\) 0 0
\(803\) 56.7846 2.00389
\(804\) 0 0
\(805\) −11.3205 −0.398995
\(806\) 0 0
\(807\) 33.8564 1.19180
\(808\) 0 0
\(809\) −16.9282 −0.595164 −0.297582 0.954696i \(-0.596180\pi\)
−0.297582 + 0.954696i \(0.596180\pi\)
\(810\) 0 0
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 15.4641 0.541684
\(816\) 0 0
\(817\) 37.1769 1.30066
\(818\) 0 0
\(819\) 22.6410 0.791141
\(820\) 0 0
\(821\) 4.14359 0.144612 0.0723062 0.997382i \(-0.476964\pi\)
0.0723062 + 0.997382i \(0.476964\pi\)
\(822\) 0 0
\(823\) 19.8038 0.690319 0.345159 0.938544i \(-0.387825\pi\)
0.345159 + 0.938544i \(0.387825\pi\)
\(824\) 0 0
\(825\) 14.9282 0.519733
\(826\) 0 0
\(827\) −13.6077 −0.473186 −0.236593 0.971609i \(-0.576031\pi\)
−0.236593 + 0.971609i \(0.576031\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 78.6410 2.72803
\(832\) 0 0
\(833\) 21.5692 0.747329
\(834\) 0 0
\(835\) 6.39230 0.221215
\(836\) 0 0
\(837\) −40.7846 −1.40972
\(838\) 0 0
\(839\) −18.9282 −0.653474 −0.326737 0.945115i \(-0.605949\pi\)
−0.326737 + 0.945115i \(0.605949\pi\)
\(840\) 0 0
\(841\) 26.7128 0.921131
\(842\) 0 0
\(843\) 17.4641 0.601496
\(844\) 0 0
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 23.9090 0.821522
\(848\) 0 0
\(849\) −23.3205 −0.800358
\(850\) 0 0
\(851\) −8.92820 −0.306055
\(852\) 0 0
\(853\) 45.7128 1.56518 0.782588 0.622539i \(-0.213899\pi\)
0.782588 + 0.622539i \(0.213899\pi\)
\(854\) 0 0
\(855\) 27.6603 0.945961
\(856\) 0 0
\(857\) 4.14359 0.141542 0.0707712 0.997493i \(-0.477454\pi\)
0.0707712 + 0.997493i \(0.477454\pi\)
\(858\) 0 0
\(859\) −17.4115 −0.594074 −0.297037 0.954866i \(-0.595999\pi\)
−0.297037 + 0.954866i \(0.595999\pi\)
\(860\) 0 0
\(861\) −17.0718 −0.581805
\(862\) 0 0
\(863\) −33.3731 −1.13603 −0.568016 0.823017i \(-0.692289\pi\)
−0.568016 + 0.823017i \(0.692289\pi\)
\(864\) 0 0
\(865\) −4.53590 −0.154225
\(866\) 0 0
\(867\) 2.73205 0.0927853
\(868\) 0 0
\(869\) −33.8564 −1.14850
\(870\) 0 0
\(871\) −21.0718 −0.713991
\(872\) 0 0
\(873\) −62.4974 −2.11522
\(874\) 0 0
\(875\) 1.26795 0.0428645
\(876\) 0 0
\(877\) 20.5359 0.693448 0.346724 0.937967i \(-0.387294\pi\)
0.346724 + 0.937967i \(0.387294\pi\)
\(878\) 0 0
\(879\) −2.53590 −0.0855337
\(880\) 0 0
\(881\) −47.3205 −1.59427 −0.797134 0.603802i \(-0.793652\pi\)
−0.797134 + 0.603802i \(0.793652\pi\)
\(882\) 0 0
\(883\) 39.1769 1.31841 0.659204 0.751964i \(-0.270893\pi\)
0.659204 + 0.751964i \(0.270893\pi\)
\(884\) 0 0
\(885\) −10.0000 −0.336146
\(886\) 0 0
\(887\) −11.9090 −0.399864 −0.199932 0.979810i \(-0.564072\pi\)
−0.199932 + 0.979810i \(0.564072\pi\)
\(888\) 0 0
\(889\) −2.96668 −0.0994992
\(890\) 0 0
\(891\) 13.4641 0.451064
\(892\) 0 0
\(893\) 7.85641 0.262905
\(894\) 0 0
\(895\) 4.73205 0.158175
\(896\) 0 0
\(897\) 97.5692 3.25774
\(898\) 0 0
\(899\) 76.1051 2.53825
\(900\) 0 0
\(901\) −51.7128 −1.72280
\(902\) 0 0
\(903\) −20.7846 −0.691669
\(904\) 0 0
\(905\) −15.3205 −0.509271
\(906\) 0 0
\(907\) 29.3205 0.973571 0.486786 0.873521i \(-0.338169\pi\)
0.486786 + 0.873521i \(0.338169\pi\)
\(908\) 0 0
\(909\) 11.3205 0.375478
\(910\) 0 0
\(911\) −13.1244 −0.434829 −0.217415 0.976079i \(-0.569762\pi\)
−0.217415 + 0.976079i \(0.569762\pi\)
\(912\) 0 0
\(913\) −9.07180 −0.300233
\(914\) 0 0
\(915\) −38.2487 −1.26446
\(916\) 0 0
\(917\) −21.2154 −0.700594
\(918\) 0 0
\(919\) −33.1244 −1.09267 −0.546336 0.837566i \(-0.683978\pi\)
−0.546336 + 0.837566i \(0.683978\pi\)
\(920\) 0 0
\(921\) −3.46410 −0.114146
\(922\) 0 0
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 0 0
\(927\) 28.5359 0.937242
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) −33.4115 −1.09502
\(932\) 0 0
\(933\) −71.5692 −2.34307
\(934\) 0 0
\(935\) 21.8564 0.714781
\(936\) 0 0
\(937\) 13.3205 0.435162 0.217581 0.976042i \(-0.430183\pi\)
0.217581 + 0.976042i \(0.430183\pi\)
\(938\) 0 0
\(939\) 32.3923 1.05708
\(940\) 0 0
\(941\) 52.3923 1.70794 0.853970 0.520322i \(-0.174188\pi\)
0.853970 + 0.520322i \(0.174188\pi\)
\(942\) 0 0
\(943\) −44.0000 −1.43284
\(944\) 0 0
\(945\) −5.07180 −0.164986
\(946\) 0 0
\(947\) −58.1051 −1.88816 −0.944081 0.329713i \(-0.893048\pi\)
−0.944081 + 0.329713i \(0.893048\pi\)
\(948\) 0 0
\(949\) −41.5692 −1.34939
\(950\) 0 0
\(951\) −42.2487 −1.37001
\(952\) 0 0
\(953\) −3.07180 −0.0995053 −0.0497526 0.998762i \(-0.515843\pi\)
−0.0497526 + 0.998762i \(0.515843\pi\)
\(954\) 0 0
\(955\) 14.5885 0.472071
\(956\) 0 0
\(957\) 111.426 3.60188
\(958\) 0 0
\(959\) −27.0333 −0.872951
\(960\) 0 0
\(961\) 72.9615 2.35360
\(962\) 0 0
\(963\) −0.875644 −0.0282172
\(964\) 0 0
\(965\) 8.92820 0.287409
\(966\) 0 0
\(967\) −38.3923 −1.23461 −0.617307 0.786723i \(-0.711776\pi\)
−0.617307 + 0.786723i \(0.711776\pi\)
\(968\) 0 0
\(969\) 67.7128 2.17525
\(970\) 0 0
\(971\) −16.0000 −0.513464 −0.256732 0.966483i \(-0.582646\pi\)
−0.256732 + 0.966483i \(0.582646\pi\)
\(972\) 0 0
\(973\) −24.0000 −0.769405
\(974\) 0 0
\(975\) −10.9282 −0.349983
\(976\) 0 0
\(977\) 34.7846 1.11286 0.556429 0.830895i \(-0.312171\pi\)
0.556429 + 0.830895i \(0.312171\pi\)
\(978\) 0 0
\(979\) 10.9282 0.349267
\(980\) 0 0
\(981\) 8.92820 0.285056
\(982\) 0 0
\(983\) 45.3731 1.44718 0.723588 0.690232i \(-0.242492\pi\)
0.723588 + 0.690232i \(0.242492\pi\)
\(984\) 0 0
\(985\) 9.32051 0.296976
\(986\) 0 0
\(987\) −4.39230 −0.139809
\(988\) 0 0
\(989\) −53.5692 −1.70340
\(990\) 0 0
\(991\) −25.9090 −0.823025 −0.411513 0.911404i \(-0.634999\pi\)
−0.411513 + 0.911404i \(0.634999\pi\)
\(992\) 0 0
\(993\) −31.8564 −1.01093
\(994\) 0 0
\(995\) 13.1244 0.416070
\(996\) 0 0
\(997\) −21.7128 −0.687652 −0.343826 0.939033i \(-0.611723\pi\)
−0.343826 + 0.939033i \(0.611723\pi\)
\(998\) 0 0
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.a.d.1.1 2
3.2 odd 2 6660.2.a.i.1.1 2
4.3 odd 2 2960.2.a.p.1.2 2
5.2 odd 4 3700.2.d.g.149.4 4
5.3 odd 4 3700.2.d.g.149.1 4
5.4 even 2 3700.2.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.a.d.1.1 2 1.1 even 1 trivial
2960.2.a.p.1.2 2 4.3 odd 2
3700.2.a.h.1.2 2 5.4 even 2
3700.2.d.g.149.1 4 5.3 odd 4
3700.2.d.g.149.4 4 5.2 odd 4
6660.2.a.i.1.1 2 3.2 odd 2