Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [740,2,Mod(51,740)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(740, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 0, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("740.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.be (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.90892974957\) |
Analytic rank: | \(0\) |
Dimension: | \(304\) |
Relative dimension: | \(76\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.41421 | 0.000708265i | −1.00731 | − | 1.74471i | 2.00000 | + | 0.00200328i | 0.965926 | + | 0.258819i | 1.42331 | + | 2.46810i | −2.33505 | + | 1.34814i | −2.82842 | − | 0.00424959i | −0.529335 | + | 0.916835i | −1.36584 | − | 0.366709i | |
51.2 | −1.41335 | + | 0.0493513i | 0.328872 | + | 0.569623i | 1.99513 | − | 0.139502i | 0.965926 | + | 0.258819i | −0.492923 | − | 0.788847i | −2.40655 | + | 1.38942i | −2.81294 | + | 0.295627i | 1.28369 | − | 2.22341i | −1.37797 | − | 0.318133i |
51.3 | −1.41162 | + | 0.0855720i | 0.839608 | + | 1.45424i | 1.98535 | − | 0.241591i | −0.965926 | − | 0.258819i | −1.30965 | − | 1.98100i | −0.586292 | + | 0.338496i | −2.78190 | + | 0.510926i | 0.0901155 | − | 0.156085i | 1.38567 | + | 0.282699i |
51.4 | −1.40586 | + | 0.153475i | −1.10372 | − | 1.91170i | 1.95289 | − | 0.431528i | −0.965926 | − | 0.258819i | 1.84508 | + | 2.51819i | −0.0394290 | + | 0.0227643i | −2.67927 | + | 0.906387i | −0.936403 | + | 1.62190i | 1.39768 | + | 0.215619i |
51.5 | −1.39498 | − | 0.232435i | −0.140643 | − | 0.243602i | 1.89195 | + | 0.648485i | −0.965926 | − | 0.258819i | 0.139574 | + | 0.372510i | 3.36739 | − | 1.94416i | −2.48850 | − | 1.34438i | 1.46044 | − | 2.52955i | 1.28729 | + | 0.585563i |
51.6 | −1.38367 | + | 0.292354i | −1.60937 | − | 2.78750i | 1.82906 | − | 0.809039i | 0.965926 | + | 0.258819i | 3.04176 | + | 3.38647i | 4.09048 | − | 2.36164i | −2.29428 | + | 1.65417i | −3.68012 | + | 6.37416i | −1.41218 | − | 0.0757269i |
51.7 | −1.34883 | − | 0.425031i | −1.46817 | − | 2.54294i | 1.63870 | + | 1.14659i | −0.965926 | − | 0.258819i | 0.899483 | + | 4.05402i | −2.48215 | + | 1.43307i | −1.72299 | − | 2.24306i | −2.81103 | + | 4.86885i | 1.19287 | + | 0.759652i |
51.8 | −1.34447 | + | 0.438647i | 1.60937 | + | 2.78750i | 1.61518 | − | 1.17949i | 0.965926 | + | 0.258819i | −3.38647 | − | 3.04176i | −4.09048 | + | 2.36164i | −1.65417 | + | 2.29428i | −3.68012 | + | 6.37416i | −1.41218 | + | 0.0757269i |
51.9 | −1.31917 | − | 0.509705i | 0.769115 | + | 1.33215i | 1.48040 | + | 1.34477i | 0.965926 | + | 0.258819i | −0.335590 | − | 2.14935i | 1.23671 | − | 0.714015i | −1.26746 | − | 2.52855i | 0.316923 | − | 0.548926i | −1.14230 | − | 0.833762i |
51.10 | −1.29425 | + | 0.570018i | 1.10372 | + | 1.91170i | 1.35016 | − | 1.47549i | −0.965926 | − | 0.258819i | −2.51819 | − | 1.84508i | 0.0394290 | − | 0.0227643i | −0.906387 | + | 2.67927i | −0.936403 | + | 1.62190i | 1.39768 | − | 0.215619i |
51.11 | −1.26529 | + | 0.631704i | −0.839608 | − | 1.45424i | 1.20190 | − | 1.59857i | −0.965926 | − | 0.258819i | 1.98100 | + | 1.30965i | 0.586292 | − | 0.338496i | −0.510926 | + | 2.78190i | 0.0901155 | − | 0.156085i | 1.38567 | − | 0.282699i |
51.12 | −1.24867 | + | 0.663937i | −0.328872 | − | 0.569623i | 1.11838 | − | 1.65808i | 0.965926 | + | 0.258819i | 0.788847 | + | 0.492923i | 2.40655 | − | 1.38942i | −0.295627 | + | 2.81294i | 1.28369 | − | 2.22341i | −1.37797 | + | 0.318133i |
51.13 | −1.22439 | + | 0.707720i | 1.00731 | + | 1.74471i | 0.998265 | − | 1.73305i | 0.965926 | + | 0.258819i | −2.46810 | − | 1.42331i | 2.33505 | − | 1.34814i | 0.00424959 | + | 2.82842i | −0.529335 | + | 0.916835i | −1.36584 | + | 0.366709i |
51.14 | −1.16908 | − | 0.795771i | −0.450967 | − | 0.781098i | 0.733498 | + | 1.86064i | 0.965926 | + | 0.258819i | −0.0943580 | + | 1.27203i | 2.84609 | − | 1.64319i | 0.623124 | − | 2.75893i | 1.09326 | − | 1.89358i | −0.923284 | − | 1.07124i |
51.15 | −1.16119 | − | 0.807234i | 1.22756 | + | 2.12620i | 0.696746 | + | 1.87471i | 0.965926 | + | 0.258819i | 0.290903 | − | 3.45986i | −1.51707 | + | 0.875879i | 0.704274 | − | 2.73934i | −1.51381 | + | 2.62200i | −0.912700 | − | 1.08027i |
51.16 | −1.13569 | − | 0.842742i | 0.902444 | + | 1.56308i | 0.579572 | + | 1.91418i | −0.965926 | − | 0.258819i | 0.292378 | − | 2.53570i | −0.124486 | + | 0.0718719i | 0.954949 | − | 2.66234i | −0.128811 | + | 0.223107i | 0.878872 | + | 1.10796i |
51.17 | −1.09187 | + | 0.898785i | 0.140643 | + | 0.243602i | 0.384370 | − | 1.96272i | −0.965926 | − | 0.258819i | −0.372510 | − | 0.139574i | −3.36739 | + | 1.94416i | 1.34438 | + | 2.48850i | 1.46044 | − | 2.52955i | 1.28729 | − | 0.585563i |
51.18 | −1.06502 | − | 0.930442i | −1.41047 | − | 2.44300i | 0.268554 | + | 1.98189i | −0.965926 | − | 0.258819i | −0.770890 | + | 3.91421i | 2.56631 | − | 1.48166i | 1.55802 | − | 2.36063i | −2.47883 | + | 4.29347i | 0.787918 | + | 1.17439i |
51.19 | −0.994365 | − | 1.00560i | −0.766676 | − | 1.32792i | −0.0224764 | + | 1.99987i | −0.965926 | − | 0.258819i | −0.573007 | + | 2.09141i | −3.13458 | + | 1.80975i | 2.03343 | − | 1.96600i | 0.324416 | − | 0.561906i | 0.700214 | + | 1.22870i |
51.20 | −0.955608 | + | 1.04250i | 1.46817 | + | 2.54294i | −0.173628 | − | 1.99245i | −0.965926 | − | 0.258819i | −4.05402 | − | 0.899483i | 2.48215 | − | 1.43307i | 2.24306 | + | 1.72299i | −2.81103 | + | 4.86885i | 1.19287 | − | 0.759652i |
See next 80 embeddings (of 304 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
37.g | odd | 12 | 1 | inner |
148.l | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 740.2.be.a | ✓ | 304 |
4.b | odd | 2 | 1 | inner | 740.2.be.a | ✓ | 304 |
37.g | odd | 12 | 1 | inner | 740.2.be.a | ✓ | 304 |
148.l | even | 12 | 1 | inner | 740.2.be.a | ✓ | 304 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
740.2.be.a | ✓ | 304 | 1.a | even | 1 | 1 | trivial |
740.2.be.a | ✓ | 304 | 4.b | odd | 2 | 1 | inner |
740.2.be.a | ✓ | 304 | 37.g | odd | 12 | 1 | inner |
740.2.be.a | ✓ | 304 | 148.l | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(740, [\chi])\).