Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [740,2,Mod(97,740)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(740, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 3, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("740.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.bf (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.90892974957\) |
Analytic rank: | \(0\) |
Dimension: | \(76\) |
Relative dimension: | \(19\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | 0 | −0.804236 | + | 3.00145i | 0 | 0.433448 | − | 2.19366i | 0 | −0.0415533 | + | 0.155079i | 0 | −5.76383 | − | 3.32775i | 0 | ||||||||||
97.2 | 0 | −0.701381 | + | 2.61759i | 0 | 1.90653 | + | 1.16840i | 0 | 0.951054 | − | 3.54938i | 0 | −3.76176 | − | 2.17185i | 0 | ||||||||||
97.3 | 0 | −0.699874 | + | 2.61196i | 0 | −2.23588 | + | 0.0286679i | 0 | −1.17325 | + | 4.37863i | 0 | −3.73445 | − | 2.15609i | 0 | ||||||||||
97.4 | 0 | −0.603899 | + | 2.25378i | 0 | −1.48644 | + | 1.67048i | 0 | 1.03426 | − | 3.85990i | 0 | −2.11677 | − | 1.22212i | 0 | ||||||||||
97.5 | 0 | −0.564174 | + | 2.10553i | 0 | 1.58691 | − | 1.57535i | 0 | −0.320323 | + | 1.19546i | 0 | −1.51687 | − | 0.875765i | 0 | ||||||||||
97.6 | 0 | −0.364166 | + | 1.35909i | 0 | −1.96429 | − | 1.06845i | 0 | 0.331427 | − | 1.23690i | 0 | 0.883578 | + | 0.510134i | 0 | ||||||||||
97.7 | 0 | −0.216951 | + | 0.809671i | 0 | −0.720974 | + | 2.11665i | 0 | −0.208444 | + | 0.777924i | 0 | 1.98958 | + | 1.14868i | 0 | ||||||||||
97.8 | 0 | −0.157156 | + | 0.586512i | 0 | 1.83034 | + | 1.28447i | 0 | −0.887088 | + | 3.31066i | 0 | 2.27878 | + | 1.31565i | 0 | ||||||||||
97.9 | 0 | −0.0867145 | + | 0.323623i | 0 | 1.97109 | − | 1.05584i | 0 | 0.189910 | − | 0.708753i | 0 | 2.50086 | + | 1.44387i | 0 | ||||||||||
97.10 | 0 | 0.0835144 | − | 0.311680i | 0 | 0.0788587 | − | 2.23468i | 0 | −0.686223 | + | 2.56102i | 0 | 2.50791 | + | 1.44794i | 0 | ||||||||||
97.11 | 0 | 0.266873 | − | 0.995984i | 0 | 0.861533 | + | 2.06343i | 0 | 0.954075 | − | 3.56066i | 0 | 1.67731 | + | 0.968397i | 0 | ||||||||||
97.12 | 0 | 0.358039 | − | 1.33622i | 0 | −2.23587 | + | 0.0296847i | 0 | −0.151686 | + | 0.566098i | 0 | 0.940782 | + | 0.543161i | 0 | ||||||||||
97.13 | 0 | 0.368630 | − | 1.37574i | 0 | 0.199835 | − | 2.22712i | 0 | 1.19522 | − | 4.46063i | 0 | 0.841290 | + | 0.485719i | 0 | ||||||||||
97.14 | 0 | 0.377301 | − | 1.40811i | 0 | −0.531239 | − | 2.17205i | 0 | −1.28827 | + | 4.80788i | 0 | 0.757669 | + | 0.437440i | 0 | ||||||||||
97.15 | 0 | 0.405966 | − | 1.51509i | 0 | −1.67270 | + | 1.48394i | 0 | 0.553968 | − | 2.06744i | 0 | 0.467396 | + | 0.269851i | 0 | ||||||||||
97.16 | 0 | 0.439069 | − | 1.63863i | 0 | 1.82834 | + | 1.28731i | 0 | 0.548032 | − | 2.04528i | 0 | 0.105753 | + | 0.0610568i | 0 | ||||||||||
97.17 | 0 | 0.670034 | − | 2.50060i | 0 | −0.737701 | + | 2.11088i | 0 | −1.21971 | + | 4.55201i | 0 | −3.20599 | − | 1.85098i | 0 | ||||||||||
97.18 | 0 | 0.751881 | − | 2.80606i | 0 | 2.02352 | − | 0.951503i | 0 | −0.118383 | + | 0.441812i | 0 | −4.71056 | − | 2.71964i | 0 | ||||||||||
97.19 | 0 | 0.843267 | − | 3.14712i | 0 | −2.00134 | − | 0.997312i | 0 | 0.336984 | − | 1.25764i | 0 | −6.59517 | − | 3.80772i | 0 | ||||||||||
273.1 | 0 | −2.89417 | − | 0.775491i | 0 | −0.787145 | − | 2.09294i | 0 | 1.23641 | + | 0.331294i | 0 | 5.17676 | + | 2.98880i | 0 | ||||||||||
See all 76 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.p | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 740.2.bf.a | ✓ | 76 |
5.c | odd | 4 | 1 | 740.2.bi.a | yes | 76 | |
37.g | odd | 12 | 1 | 740.2.bi.a | yes | 76 | |
185.p | even | 12 | 1 | inner | 740.2.bf.a | ✓ | 76 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
740.2.bf.a | ✓ | 76 | 1.a | even | 1 | 1 | trivial |
740.2.bf.a | ✓ | 76 | 185.p | even | 12 | 1 | inner |
740.2.bi.a | yes | 76 | 5.c | odd | 4 | 1 | |
740.2.bi.a | yes | 76 | 37.g | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(740, [\chi])\).