Properties

Label 740.2.l.a.413.3
Level $740$
Weight $2$
Character 740.413
Analytic conductor $5.909$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,2,Mod(413,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.413");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.79423744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 10x^{3} + 36x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 413.3
Root \(2.23976 - 2.23976i\) of defining polynomial
Character \(\chi\) \(=\) 740.413
Dual form 740.2.l.a.697.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.23976 - 2.23976i) q^{3} +(-1.00000 + 2.00000i) q^{5} +(1.23976 - 1.23976i) q^{7} -7.03304i q^{9} +4.47952i q^{11} -2.92599i q^{13} +(2.23976 + 6.71928i) q^{15} +6.03304 q^{17} +(3.79328 - 3.79328i) q^{19} -5.55352i q^{21} -6.47952i q^{23} +(-3.00000 - 4.00000i) q^{25} +(-9.03304 - 9.03304i) q^{27} +(-3.00000 - 3.00000i) q^{29} +(-3.68624 + 3.68624i) q^{31} +(10.0330 + 10.0330i) q^{33} +(1.23976 + 3.71928i) q^{35} +(4.55352 - 4.03304i) q^{37} +(-6.55352 - 6.55352i) q^{39} +9.58657i q^{41} +1.37247i q^{43} +(14.0661 + 7.03304i) q^{45} +(-9.27280 + 9.27280i) q^{47} +3.92599i q^{49} +(13.5126 - 13.5126i) q^{51} +(5.92599 + 5.92599i) q^{53} +(-8.95904 - 4.47952i) q^{55} -16.9921i q^{57} +(-4.16575 + 4.16575i) q^{59} +(-6.10705 + 6.10705i) q^{61} +(-8.71928 - 8.71928i) q^{63} +(5.85199 + 2.92599i) q^{65} +(-1.31376 - 1.31376i) q^{67} +(-14.5126 - 14.5126i) q^{69} -5.10705 q^{71} +(1.92599 - 1.92599i) q^{73} +(-15.6783 - 2.23976i) q^{75} +(5.55352 + 5.55352i) q^{77} +(1.71928 - 1.71928i) q^{79} -19.3645 q^{81} +(8.90033 + 8.90033i) q^{83} +(-6.03304 + 12.0661i) q^{85} -13.4386 q^{87} +(3.03304 + 3.03304i) q^{89} +(-3.62753 - 3.62753i) q^{91} +16.5126i q^{93} +(3.79328 + 11.3798i) q^{95} +5.37247 q^{97} +31.5046 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 6 q^{5} - 4 q^{7} + 2 q^{15} + 4 q^{17} + 2 q^{19} - 18 q^{25} - 22 q^{27} - 18 q^{29} - 20 q^{31} + 28 q^{33} - 4 q^{35} + 18 q^{37} - 30 q^{39} + 20 q^{45} - 12 q^{47} + 26 q^{51} + 22 q^{53}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.23976 2.23976i 1.29313 1.29313i 0.360282 0.932843i \(-0.382680\pi\)
0.932843 0.360282i \(-0.117320\pi\)
\(4\) 0 0
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 0 0
\(7\) 1.23976 1.23976i 0.468585 0.468585i −0.432871 0.901456i \(-0.642499\pi\)
0.901456 + 0.432871i \(0.142499\pi\)
\(8\) 0 0
\(9\) 7.03304i 2.34435i
\(10\) 0 0
\(11\) 4.47952i 1.35063i 0.737531 + 0.675313i \(0.235991\pi\)
−0.737531 + 0.675313i \(0.764009\pi\)
\(12\) 0 0
\(13\) 2.92599i 0.811525i −0.913979 0.405762i \(-0.867006\pi\)
0.913979 0.405762i \(-0.132994\pi\)
\(14\) 0 0
\(15\) 2.23976 + 6.71928i 0.578303 + 1.73491i
\(16\) 0 0
\(17\) 6.03304 1.46323 0.731614 0.681719i \(-0.238767\pi\)
0.731614 + 0.681719i \(0.238767\pi\)
\(18\) 0 0
\(19\) 3.79328 3.79328i 0.870239 0.870239i −0.122259 0.992498i \(-0.539014\pi\)
0.992498 + 0.122259i \(0.0390140\pi\)
\(20\) 0 0
\(21\) 5.55352i 1.21188i
\(22\) 0 0
\(23\) 6.47952i 1.35107i −0.737327 0.675536i \(-0.763912\pi\)
0.737327 0.675536i \(-0.236088\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) −9.03304 9.03304i −1.73841 1.73841i
\(28\) 0 0
\(29\) −3.00000 3.00000i −0.557086 0.557086i 0.371391 0.928477i \(-0.378881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) −3.68624 + 3.68624i −0.662067 + 0.662067i −0.955867 0.293800i \(-0.905080\pi\)
0.293800 + 0.955867i \(0.405080\pi\)
\(32\) 0 0
\(33\) 10.0330 + 10.0330i 1.74653 + 1.74653i
\(34\) 0 0
\(35\) 1.23976 + 3.71928i 0.209558 + 0.628673i
\(36\) 0 0
\(37\) 4.55352 4.03304i 0.748595 0.663028i
\(38\) 0 0
\(39\) −6.55352 6.55352i −1.04940 1.04940i
\(40\) 0 0
\(41\) 9.58657i 1.49717i 0.663039 + 0.748585i \(0.269266\pi\)
−0.663039 + 0.748585i \(0.730734\pi\)
\(42\) 0 0
\(43\) 1.37247i 0.209300i 0.994509 + 0.104650i \(0.0333722\pi\)
−0.994509 + 0.104650i \(0.966628\pi\)
\(44\) 0 0
\(45\) 14.0661 + 7.03304i 2.09685 + 1.04842i
\(46\) 0 0
\(47\) −9.27280 + 9.27280i −1.35258 + 1.35258i −0.469809 + 0.882768i \(0.655677\pi\)
−0.882768 + 0.469809i \(0.844323\pi\)
\(48\) 0 0
\(49\) 3.92599i 0.560856i
\(50\) 0 0
\(51\) 13.5126 13.5126i 1.89214 1.89214i
\(52\) 0 0
\(53\) 5.92599 + 5.92599i 0.813998 + 0.813998i 0.985231 0.171233i \(-0.0547750\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(54\) 0 0
\(55\) −8.95904 4.47952i −1.20804 0.604018i
\(56\) 0 0
\(57\) 16.9921i 2.25066i
\(58\) 0 0
\(59\) −4.16575 + 4.16575i −0.542335 + 0.542335i −0.924213 0.381878i \(-0.875278\pi\)
0.381878 + 0.924213i \(0.375278\pi\)
\(60\) 0 0
\(61\) −6.10705 + 6.10705i −0.781927 + 0.781927i −0.980156 0.198229i \(-0.936481\pi\)
0.198229 + 0.980156i \(0.436481\pi\)
\(62\) 0 0
\(63\) −8.71928 8.71928i −1.09853 1.09853i
\(64\) 0 0
\(65\) 5.85199 + 2.92599i 0.725850 + 0.362925i
\(66\) 0 0
\(67\) −1.31376 1.31376i −0.160502 0.160502i 0.622287 0.782789i \(-0.286204\pi\)
−0.782789 + 0.622287i \(0.786204\pi\)
\(68\) 0 0
\(69\) −14.5126 14.5126i −1.74711 1.74711i
\(70\) 0 0
\(71\) −5.10705 −0.606095 −0.303047 0.952975i \(-0.598004\pi\)
−0.303047 + 0.952975i \(0.598004\pi\)
\(72\) 0 0
\(73\) 1.92599 1.92599i 0.225421 0.225421i −0.585356 0.810776i \(-0.699045\pi\)
0.810776 + 0.585356i \(0.199045\pi\)
\(74\) 0 0
\(75\) −15.6783 2.23976i −1.81038 0.258625i
\(76\) 0 0
\(77\) 5.55352 + 5.55352i 0.632883 + 0.632883i
\(78\) 0 0
\(79\) 1.71928 1.71928i 0.193434 0.193434i −0.603744 0.797178i \(-0.706325\pi\)
0.797178 + 0.603744i \(0.206325\pi\)
\(80\) 0 0
\(81\) −19.3645 −2.15162
\(82\) 0 0
\(83\) 8.90033 + 8.90033i 0.976938 + 0.976938i 0.999740 0.0228019i \(-0.00725871\pi\)
−0.0228019 + 0.999740i \(0.507259\pi\)
\(84\) 0 0
\(85\) −6.03304 + 12.0661i −0.654375 + 1.30875i
\(86\) 0 0
\(87\) −13.4386 −1.44076
\(88\) 0 0
\(89\) 3.03304 + 3.03304i 0.321502 + 0.321502i 0.849343 0.527841i \(-0.176998\pi\)
−0.527841 + 0.849343i \(0.676998\pi\)
\(90\) 0 0
\(91\) −3.62753 3.62753i −0.380268 0.380268i
\(92\) 0 0
\(93\) 16.5126i 1.71227i
\(94\) 0 0
\(95\) 3.79328 + 11.3798i 0.389183 + 1.16755i
\(96\) 0 0
\(97\) 5.37247 0.545492 0.272746 0.962086i \(-0.412068\pi\)
0.272746 + 0.962086i \(0.412068\pi\)
\(98\) 0 0
\(99\) 31.5046 3.16634
\(100\) 0 0
\(101\) 16.0991i 1.60192i −0.598716 0.800961i \(-0.704322\pi\)
0.598716 0.800961i \(-0.295678\pi\)
\(102\) 0 0
\(103\) −7.10705 −0.700278 −0.350139 0.936698i \(-0.613866\pi\)
−0.350139 + 0.936698i \(0.613866\pi\)
\(104\) 0 0
\(105\) 11.1070 + 5.55352i 1.08394 + 0.541968i
\(106\) 0 0
\(107\) 10.8263 10.8263i 1.04662 1.04662i 0.0477615 0.998859i \(-0.484791\pi\)
0.998859 0.0477615i \(-0.0152087\pi\)
\(108\) 0 0
\(109\) −4.40551 + 4.40551i −0.421972 + 0.421972i −0.885882 0.463910i \(-0.846446\pi\)
0.463910 + 0.885882i \(0.346446\pi\)
\(110\) 0 0
\(111\) 1.16575 19.2318i 0.110648 1.82541i
\(112\) 0 0
\(113\) −5.88503 −0.553617 −0.276809 0.960925i \(-0.589277\pi\)
−0.276809 + 0.960925i \(0.589277\pi\)
\(114\) 0 0
\(115\) 12.9590 + 6.47952i 1.20844 + 0.604218i
\(116\) 0 0
\(117\) −20.5786 −1.90250
\(118\) 0 0
\(119\) 7.47952 7.47952i 0.685646 0.685646i
\(120\) 0 0
\(121\) −9.06608 −0.824189
\(122\) 0 0
\(123\) 21.4716 + 21.4716i 1.93603 + 1.93603i
\(124\) 0 0
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) −4.42081 + 4.42081i −0.392284 + 0.392284i −0.875501 0.483217i \(-0.839468\pi\)
0.483217 + 0.875501i \(0.339468\pi\)
\(128\) 0 0
\(129\) 3.07401 + 3.07401i 0.270651 + 0.270651i
\(130\) 0 0
\(131\) 2.71928 2.71928i 0.237584 0.237584i −0.578265 0.815849i \(-0.696270\pi\)
0.815849 + 0.578265i \(0.196270\pi\)
\(132\) 0 0
\(133\) 9.40551i 0.815561i
\(134\) 0 0
\(135\) 27.0991 9.03304i 2.33232 0.777440i
\(136\) 0 0
\(137\) −8.55352 + 8.55352i −0.730777 + 0.730777i −0.970774 0.239997i \(-0.922854\pi\)
0.239997 + 0.970774i \(0.422854\pi\)
\(138\) 0 0
\(139\) 2.21409 0.187797 0.0938985 0.995582i \(-0.470067\pi\)
0.0938985 + 0.995582i \(0.470067\pi\)
\(140\) 0 0
\(141\) 41.5377i 3.49810i
\(142\) 0 0
\(143\) 13.1070 1.09607
\(144\) 0 0
\(145\) 9.00000 3.00000i 0.747409 0.249136i
\(146\) 0 0
\(147\) 8.79328 + 8.79328i 0.725258 + 0.725258i
\(148\) 0 0
\(149\) 5.14009i 0.421092i 0.977584 + 0.210546i \(0.0675242\pi\)
−0.977584 + 0.210546i \(0.932476\pi\)
\(150\) 0 0
\(151\) 15.5205i 1.26304i 0.775360 + 0.631519i \(0.217568\pi\)
−0.775360 + 0.631519i \(0.782432\pi\)
\(152\) 0 0
\(153\) 42.4306i 3.43031i
\(154\) 0 0
\(155\) −3.68624 11.0587i −0.296086 0.888257i
\(156\) 0 0
\(157\) −11.0330 + 11.0330i −0.880533 + 0.880533i −0.993589 0.113056i \(-0.963936\pi\)
0.113056 + 0.993589i \(0.463936\pi\)
\(158\) 0 0
\(159\) 26.5456 2.10520
\(160\) 0 0
\(161\) −8.03304 8.03304i −0.633092 0.633092i
\(162\) 0 0
\(163\) −9.04096 −0.708143 −0.354071 0.935218i \(-0.615203\pi\)
−0.354071 + 0.935218i \(0.615203\pi\)
\(164\) 0 0
\(165\) −30.0991 + 10.0330i −2.34321 + 0.781071i
\(166\) 0 0
\(167\) 3.93392 0.304416 0.152208 0.988349i \(-0.451362\pi\)
0.152208 + 0.988349i \(0.451362\pi\)
\(168\) 0 0
\(169\) 4.43855 0.341427
\(170\) 0 0
\(171\) −26.6783 26.6783i −2.04014 2.04014i
\(172\) 0 0
\(173\) −0.107047 + 0.107047i −0.00813862 + 0.00813862i −0.711164 0.703026i \(-0.751832\pi\)
0.703026 + 0.711164i \(0.251832\pi\)
\(174\) 0 0
\(175\) −8.67831 1.23976i −0.656019 0.0937170i
\(176\) 0 0
\(177\) 18.6606i 1.40261i
\(178\) 0 0
\(179\) −17.8594 17.8594i −1.33487 1.33487i −0.900951 0.433921i \(-0.857130\pi\)
−0.433921 0.900951i \(-0.642870\pi\)
\(180\) 0 0
\(181\) 9.81895 0.729837 0.364918 0.931040i \(-0.381097\pi\)
0.364918 + 0.931040i \(0.381097\pi\)
\(182\) 0 0
\(183\) 27.3566i 2.02226i
\(184\) 0 0
\(185\) 3.51256 + 13.1401i 0.258249 + 0.966079i
\(186\) 0 0
\(187\) 27.0251i 1.97627i
\(188\) 0 0
\(189\) −22.3976 −1.62919
\(190\) 0 0
\(191\) 14.1988 + 14.1988i 1.02739 + 1.02739i 0.999614 + 0.0277746i \(0.00884206\pi\)
0.0277746 + 0.999614i \(0.491158\pi\)
\(192\) 0 0
\(193\) 0.959036i 0.0690329i −0.999404 0.0345165i \(-0.989011\pi\)
0.999404 0.0345165i \(-0.0109891\pi\)
\(194\) 0 0
\(195\) 19.6606 6.55352i 1.40792 0.469308i
\(196\) 0 0
\(197\) 1.47952 1.47952i 0.105411 0.105411i −0.652434 0.757845i \(-0.726252\pi\)
0.757845 + 0.652434i \(0.226252\pi\)
\(198\) 0 0
\(199\) −7.34681 7.34681i −0.520801 0.520801i 0.397012 0.917813i \(-0.370047\pi\)
−0.917813 + 0.397012i \(0.870047\pi\)
\(200\) 0 0
\(201\) −5.88503 −0.415098
\(202\) 0 0
\(203\) −7.43855 −0.522084
\(204\) 0 0
\(205\) −19.1731 9.58657i −1.33911 0.669555i
\(206\) 0 0
\(207\) −45.5707 −3.16738
\(208\) 0 0
\(209\) 16.9921 + 16.9921i 1.17537 + 1.17537i
\(210\) 0 0
\(211\) 14.8110 1.01963 0.509817 0.860283i \(-0.329713\pi\)
0.509817 + 0.860283i \(0.329713\pi\)
\(212\) 0 0
\(213\) −11.4386 + 11.4386i −0.783757 + 0.783757i
\(214\) 0 0
\(215\) −2.74494 1.37247i −0.187204 0.0936018i
\(216\) 0 0
\(217\) 9.14009i 0.620470i
\(218\) 0 0
\(219\) 8.62753i 0.582994i
\(220\) 0 0
\(221\) 17.6526i 1.18745i
\(222\) 0 0
\(223\) −11.8594 11.8594i −0.794162 0.794162i 0.188006 0.982168i \(-0.439798\pi\)
−0.982168 + 0.188006i \(0.939798\pi\)
\(224\) 0 0
\(225\) −28.1322 + 21.0991i −1.87548 + 1.40661i
\(226\) 0 0
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) 8.62753i 0.570123i −0.958509 0.285062i \(-0.907986\pi\)
0.958509 0.285062i \(-0.0920140\pi\)
\(230\) 0 0
\(231\) 24.8771 1.63679
\(232\) 0 0
\(233\) −21.4306 + 21.4306i −1.40397 + 1.40397i −0.617020 + 0.786948i \(0.711660\pi\)
−0.786948 + 0.617020i \(0.788340\pi\)
\(234\) 0 0
\(235\) −9.27280 27.8184i −0.604891 1.81467i
\(236\) 0 0
\(237\) 7.70153i 0.500268i
\(238\) 0 0
\(239\) −6.71928 + 6.71928i −0.434634 + 0.434634i −0.890201 0.455567i \(-0.849436\pi\)
0.455567 + 0.890201i \(0.349436\pi\)
\(240\) 0 0
\(241\) −4.88503 4.88503i −0.314673 0.314673i 0.532044 0.846717i \(-0.321424\pi\)
−0.846717 + 0.532044i \(0.821424\pi\)
\(242\) 0 0
\(243\) −16.2728 + 16.2728i −1.04390 + 1.04390i
\(244\) 0 0
\(245\) −7.85199 3.92599i −0.501645 0.250823i
\(246\) 0 0
\(247\) −11.0991 11.0991i −0.706220 0.706220i
\(248\) 0 0
\(249\) 39.8692 2.52661
\(250\) 0 0
\(251\) 3.97433 3.97433i 0.250858 0.250858i −0.570464 0.821322i \(-0.693237\pi\)
0.821322 + 0.570464i \(0.193237\pi\)
\(252\) 0 0
\(253\) 29.0251 1.82479
\(254\) 0 0
\(255\) 13.5126 + 40.5377i 0.846189 + 2.53857i
\(256\) 0 0
\(257\) 15.7370 0.981648 0.490824 0.871259i \(-0.336696\pi\)
0.490824 + 0.871259i \(0.336696\pi\)
\(258\) 0 0
\(259\) 0.645272 10.6453i 0.0400953 0.661465i
\(260\) 0 0
\(261\) −21.0991 + 21.0991i −1.30600 + 1.30600i
\(262\) 0 0
\(263\) −5.19880 + 5.19880i −0.320571 + 0.320571i −0.848986 0.528415i \(-0.822787\pi\)
0.528415 + 0.848986i \(0.322787\pi\)
\(264\) 0 0
\(265\) −17.7780 + 5.92599i −1.09209 + 0.364031i
\(266\) 0 0
\(267\) 13.5866 0.831484
\(268\) 0 0
\(269\) 11.1401i 0.679223i −0.940566 0.339612i \(-0.889704\pi\)
0.940566 0.339612i \(-0.110296\pi\)
\(270\) 0 0
\(271\) −0.892953 −0.0542430 −0.0271215 0.999632i \(-0.508634\pi\)
−0.0271215 + 0.999632i \(0.508634\pi\)
\(272\) 0 0
\(273\) −16.2496 −0.983469
\(274\) 0 0
\(275\) 17.9181 13.4386i 1.08050 0.810375i
\(276\) 0 0
\(277\) 16.0330i 0.963332i 0.876355 + 0.481666i \(0.159968\pi\)
−0.876355 + 0.481666i \(0.840032\pi\)
\(278\) 0 0
\(279\) 25.9254 + 25.9254i 1.55212 + 1.55212i
\(280\) 0 0
\(281\) 6.40551 + 6.40551i 0.382121 + 0.382121i 0.871866 0.489745i \(-0.162910\pi\)
−0.489745 + 0.871866i \(0.662910\pi\)
\(282\) 0 0
\(283\) −23.3211 −1.38630 −0.693149 0.720794i \(-0.743777\pi\)
−0.693149 + 0.720794i \(0.743777\pi\)
\(284\) 0 0
\(285\) 33.9842 + 16.9921i 2.01305 + 1.00652i
\(286\) 0 0
\(287\) 11.8850 + 11.8850i 0.701551 + 0.701551i
\(288\) 0 0
\(289\) 19.3976 1.14103
\(290\) 0 0
\(291\) 12.0330 12.0330i 0.705389 0.705389i
\(292\) 0 0
\(293\) −3.41343 3.41343i −0.199415 0.199415i 0.600334 0.799749i \(-0.295034\pi\)
−0.799749 + 0.600334i \(0.795034\pi\)
\(294\) 0 0
\(295\) −4.16575 12.4973i −0.242540 0.727619i
\(296\) 0 0
\(297\) 40.4637 40.4637i 2.34794 2.34794i
\(298\) 0 0
\(299\) −18.9590 −1.09643
\(300\) 0 0
\(301\) 1.70153 + 1.70153i 0.0980748 + 0.0980748i
\(302\) 0 0
\(303\) −36.0582 36.0582i −2.07149 2.07149i
\(304\) 0 0
\(305\) −6.10705 18.3211i −0.349688 1.04907i
\(306\) 0 0
\(307\) −18.2318 18.2318i −1.04055 1.04055i −0.999143 0.0414034i \(-0.986817\pi\)
−0.0414034 0.999143i \(-0.513183\pi\)
\(308\) 0 0
\(309\) −15.9181 + 15.9181i −0.905548 + 0.905548i
\(310\) 0 0
\(311\) 14.6783 14.6783i 0.832331 0.832331i −0.155504 0.987835i \(-0.549700\pi\)
0.987835 + 0.155504i \(0.0497003\pi\)
\(312\) 0 0
\(313\) 6.41343i 0.362509i 0.983436 + 0.181254i \(0.0580157\pi\)
−0.983436 + 0.181254i \(0.941984\pi\)
\(314\) 0 0
\(315\) 26.1578 8.71928i 1.47383 0.491276i
\(316\) 0 0
\(317\) −2.00792 2.00792i −0.112776 0.112776i 0.648467 0.761243i \(-0.275411\pi\)
−0.761243 + 0.648467i \(0.775411\pi\)
\(318\) 0 0
\(319\) 13.4386 13.4386i 0.752415 0.752415i
\(320\) 0 0
\(321\) 48.4967i 2.70682i
\(322\) 0 0
\(323\) 22.8850 22.8850i 1.27336 1.27336i
\(324\) 0 0
\(325\) −11.7040 + 8.77798i −0.649220 + 0.486915i
\(326\) 0 0
\(327\) 19.7346i 1.09132i
\(328\) 0 0
\(329\) 22.9921i 1.26759i
\(330\) 0 0
\(331\) −4.65319 4.65319i −0.255763 0.255763i 0.567566 0.823328i \(-0.307885\pi\)
−0.823328 + 0.567566i \(0.807885\pi\)
\(332\) 0 0
\(333\) −28.3645 32.0251i −1.55437 1.75497i
\(334\) 0 0
\(335\) 3.94129 1.31376i 0.215336 0.0717786i
\(336\) 0 0
\(337\) 14.4055 + 14.4055i 0.784718 + 0.784718i 0.980623 0.195905i \(-0.0627643\pi\)
−0.195905 + 0.980623i \(0.562764\pi\)
\(338\) 0 0
\(339\) −13.1811 + 13.1811i −0.715896 + 0.715896i
\(340\) 0 0
\(341\) −16.5126 16.5126i −0.894205 0.894205i
\(342\) 0 0
\(343\) 13.5456 + 13.5456i 0.731394 + 0.731394i
\(344\) 0 0
\(345\) 43.5377 14.5126i 2.34399 0.781330i
\(346\) 0 0
\(347\) 15.5866i 0.836731i −0.908279 0.418365i \(-0.862603\pi\)
0.908279 0.418365i \(-0.137397\pi\)
\(348\) 0 0
\(349\) 1.28810i 0.0689504i −0.999406 0.0344752i \(-0.989024\pi\)
0.999406 0.0344752i \(-0.0109760\pi\)
\(350\) 0 0
\(351\) −26.4306 + 26.4306i −1.41076 + 1.41076i
\(352\) 0 0
\(353\) 12.2141 0.650091 0.325045 0.945698i \(-0.394620\pi\)
0.325045 + 0.945698i \(0.394620\pi\)
\(354\) 0 0
\(355\) 5.10705 10.2141i 0.271054 0.542108i
\(356\) 0 0
\(357\) 33.5046i 1.77325i
\(358\) 0 0
\(359\) 1.37247i 0.0724363i 0.999344 + 0.0362181i \(0.0115311\pi\)
−0.999344 + 0.0362181i \(0.988469\pi\)
\(360\) 0 0
\(361\) 9.77798i 0.514631i
\(362\) 0 0
\(363\) −20.3058 + 20.3058i −1.06578 + 1.06578i
\(364\) 0 0
\(365\) 1.92599 + 5.77798i 0.100811 + 0.302434i
\(366\) 0 0
\(367\) 1.76024 1.76024i 0.0918838 0.0918838i −0.659671 0.751555i \(-0.729304\pi\)
0.751555 + 0.659671i \(0.229304\pi\)
\(368\) 0 0
\(369\) 67.4227 3.50989
\(370\) 0 0
\(371\) 14.6936 0.762854
\(372\) 0 0
\(373\) 4.76762 4.76762i 0.246858 0.246858i −0.572822 0.819680i \(-0.694151\pi\)
0.819680 + 0.572822i \(0.194151\pi\)
\(374\) 0 0
\(375\) 20.1578 29.1169i 1.04095 1.50359i
\(376\) 0 0
\(377\) −8.77798 + 8.77798i −0.452089 + 0.452089i
\(378\) 0 0
\(379\) 14.6117i 0.750552i −0.926913 0.375276i \(-0.877548\pi\)
0.926913 0.375276i \(-0.122452\pi\)
\(380\) 0 0
\(381\) 19.8031i 1.01454i
\(382\) 0 0
\(383\) 7.66849i 0.391842i 0.980620 + 0.195921i \(0.0627696\pi\)
−0.980620 + 0.195921i \(0.937230\pi\)
\(384\) 0 0
\(385\) −16.6606 + 5.55352i −0.849101 + 0.283034i
\(386\) 0 0
\(387\) 9.65265 0.490672
\(388\) 0 0
\(389\) 1.51256 1.51256i 0.0766898 0.0766898i −0.667721 0.744411i \(-0.732730\pi\)
0.744411 + 0.667721i \(0.232730\pi\)
\(390\) 0 0
\(391\) 39.0912i 1.97693i
\(392\) 0 0
\(393\) 12.1811i 0.614453i
\(394\) 0 0
\(395\) 1.71928 + 5.15783i 0.0865062 + 0.259519i
\(396\) 0 0
\(397\) 24.6857 + 24.6857i 1.23894 + 1.23894i 0.960435 + 0.278504i \(0.0898386\pi\)
0.278504 + 0.960435i \(0.410161\pi\)
\(398\) 0 0
\(399\) −21.0661 21.0661i −1.05462 1.05462i
\(400\) 0 0
\(401\) 22.7701 22.7701i 1.13708 1.13708i 0.148112 0.988971i \(-0.452680\pi\)
0.988971 0.148112i \(-0.0473196\pi\)
\(402\) 0 0
\(403\) 10.7859 + 10.7859i 0.537284 + 0.537284i
\(404\) 0 0
\(405\) 19.3645 38.7291i 0.962232 1.92446i
\(406\) 0 0
\(407\) 18.0661 + 20.3976i 0.895502 + 1.01107i
\(408\) 0 0
\(409\) −22.8520 22.8520i −1.12996 1.12996i −0.990183 0.139775i \(-0.955362\pi\)
−0.139775 0.990183i \(-0.544638\pi\)
\(410\) 0 0
\(411\) 38.3157i 1.88997i
\(412\) 0 0
\(413\) 10.3291i 0.508260i
\(414\) 0 0
\(415\) −26.7010 + 8.90033i −1.31070 + 0.436900i
\(416\) 0 0
\(417\) 4.95904 4.95904i 0.242845 0.242845i
\(418\) 0 0
\(419\) 32.4795i 1.58673i 0.608747 + 0.793364i \(0.291672\pi\)
−0.608747 + 0.793364i \(0.708328\pi\)
\(420\) 0 0
\(421\) −25.4306 + 25.4306i −1.23941 + 1.23941i −0.279172 + 0.960241i \(0.590060\pi\)
−0.960241 + 0.279172i \(0.909940\pi\)
\(422\) 0 0
\(423\) 65.2160 + 65.2160i 3.17091 + 3.17091i
\(424\) 0 0
\(425\) −18.0991 24.1322i −0.877937 1.17058i
\(426\) 0 0
\(427\) 15.1425i 0.732799i
\(428\) 0 0
\(429\) 29.3566 29.3566i 1.41735 1.41735i
\(430\) 0 0
\(431\) 14.2318 14.2318i 0.685523 0.685523i −0.275716 0.961239i \(-0.588915\pi\)
0.961239 + 0.275716i \(0.0889148\pi\)
\(432\) 0 0
\(433\) 8.91807 + 8.91807i 0.428575 + 0.428575i 0.888143 0.459568i \(-0.151996\pi\)
−0.459568 + 0.888143i \(0.651996\pi\)
\(434\) 0 0
\(435\) 13.4386 26.8771i 0.644329 1.28866i
\(436\) 0 0
\(437\) −24.5786 24.5786i −1.17576 1.17576i
\(438\) 0 0
\(439\) −11.1658 11.1658i −0.532912 0.532912i 0.388526 0.921438i \(-0.372985\pi\)
−0.921438 + 0.388526i \(0.872985\pi\)
\(440\) 0 0
\(441\) 27.6117 1.31484
\(442\) 0 0
\(443\) 15.1248 15.1248i 0.718600 0.718600i −0.249718 0.968319i \(-0.580338\pi\)
0.968319 + 0.249718i \(0.0803380\pi\)
\(444\) 0 0
\(445\) −9.09912 + 3.03304i −0.431340 + 0.143780i
\(446\) 0 0
\(447\) 11.5126 + 11.5126i 0.544525 + 0.544525i
\(448\) 0 0
\(449\) −29.0661 + 29.0661i −1.37171 + 1.37171i −0.513808 + 0.857905i \(0.671766\pi\)
−0.857905 + 0.513808i \(0.828234\pi\)
\(450\) 0 0
\(451\) −42.9432 −2.02212
\(452\) 0 0
\(453\) 34.7621 + 34.7621i 1.63327 + 1.63327i
\(454\) 0 0
\(455\) 10.8826 3.62753i 0.510183 0.170061i
\(456\) 0 0
\(457\) 8.18350 0.382808 0.191404 0.981511i \(-0.438696\pi\)
0.191404 + 0.981511i \(0.438696\pi\)
\(458\) 0 0
\(459\) −54.4967 54.4967i −2.54369 2.54369i
\(460\) 0 0
\(461\) −0.818948 0.818948i −0.0381422 0.0381422i 0.687778 0.725921i \(-0.258586\pi\)
−0.725921 + 0.687778i \(0.758586\pi\)
\(462\) 0 0
\(463\) 37.3566i 1.73611i −0.496468 0.868055i \(-0.665370\pi\)
0.496468 0.868055i \(-0.334630\pi\)
\(464\) 0 0
\(465\) −33.0251 16.5126i −1.53150 0.765752i
\(466\) 0 0
\(467\) 17.3211 0.801527 0.400763 0.916182i \(-0.368745\pi\)
0.400763 + 0.916182i \(0.368745\pi\)
\(468\) 0 0
\(469\) −3.25750 −0.150417
\(470\) 0 0
\(471\) 49.4227i 2.27728i
\(472\) 0 0
\(473\) −6.14801 −0.282686
\(474\) 0 0
\(475\) −26.5530 3.79328i −1.21833 0.174048i
\(476\) 0 0
\(477\) 41.6778 41.6778i 1.90829 1.90829i
\(478\) 0 0
\(479\) 2.32169 2.32169i 0.106081 0.106081i −0.652074 0.758155i \(-0.726101\pi\)
0.758155 + 0.652074i \(0.226101\pi\)
\(480\) 0 0
\(481\) −11.8007 13.3236i −0.538064 0.607503i
\(482\) 0 0
\(483\) −35.9842 −1.63734
\(484\) 0 0
\(485\) −5.37247 + 10.7449i −0.243951 + 0.487903i
\(486\) 0 0
\(487\) −10.7449 −0.486900 −0.243450 0.969913i \(-0.578279\pi\)
−0.243450 + 0.969913i \(0.578279\pi\)
\(488\) 0 0
\(489\) −20.2496 + 20.2496i −0.915718 + 0.915718i
\(490\) 0 0
\(491\) −32.8771 −1.48372 −0.741862 0.670553i \(-0.766057\pi\)
−0.741862 + 0.670553i \(0.766057\pi\)
\(492\) 0 0
\(493\) −18.0991 18.0991i −0.815144 0.815144i
\(494\) 0 0
\(495\) −31.5046 + 63.0093i −1.41603 + 2.83206i
\(496\) 0 0
\(497\) −6.33151 + 6.33151i −0.284007 + 0.284007i
\(498\) 0 0
\(499\) −20.4129 20.4129i −0.913806 0.913806i 0.0827629 0.996569i \(-0.473626\pi\)
−0.996569 + 0.0827629i \(0.973626\pi\)
\(500\) 0 0
\(501\) 8.81103 8.81103i 0.393648 0.393648i
\(502\) 0 0
\(503\) 8.09668i 0.361013i 0.983574 + 0.180507i \(0.0577737\pi\)
−0.983574 + 0.180507i \(0.942226\pi\)
\(504\) 0 0
\(505\) 32.1982 + 16.0991i 1.43280 + 0.716402i
\(506\) 0 0
\(507\) 9.94129 9.94129i 0.441508 0.441508i
\(508\) 0 0
\(509\) 0.0158440 0.000702275 0.000351138 1.00000i \(-0.499888\pi\)
0.000351138 1.00000i \(0.499888\pi\)
\(510\) 0 0
\(511\) 4.77554i 0.211257i
\(512\) 0 0
\(513\) −68.5298 −3.02566
\(514\) 0 0
\(515\) 7.10705 14.2141i 0.313174 0.626348i
\(516\) 0 0
\(517\) −41.5377 41.5377i −1.82683 1.82683i
\(518\) 0 0
\(519\) 0.479518i 0.0210485i
\(520\) 0 0
\(521\) 20.2471i 0.887043i −0.896264 0.443522i \(-0.853729\pi\)
0.896264 0.443522i \(-0.146271\pi\)
\(522\) 0 0
\(523\) 12.6117i 0.551470i −0.961234 0.275735i \(-0.911079\pi\)
0.961234 0.275735i \(-0.0889213\pi\)
\(524\) 0 0
\(525\) −22.2141 + 16.6606i −0.969503 + 0.727127i
\(526\) 0 0
\(527\) −22.2392 + 22.2392i −0.968755 + 0.968755i
\(528\) 0 0
\(529\) −18.9842 −0.825398
\(530\) 0 0
\(531\) 29.2979 + 29.2979i 1.27142 + 1.27142i
\(532\) 0 0
\(533\) 28.0502 1.21499
\(534\) 0 0
\(535\) 10.8263 + 32.4790i 0.468063 + 1.40419i
\(536\) 0 0
\(537\) −80.0014 −3.45231
\(538\) 0 0
\(539\) −17.5866 −0.757507
\(540\) 0 0
\(541\) 13.3315 + 13.3315i 0.573166 + 0.573166i 0.933012 0.359846i \(-0.117171\pi\)
−0.359846 + 0.933012i \(0.617171\pi\)
\(542\) 0 0
\(543\) 21.9921 21.9921i 0.943770 0.943770i
\(544\) 0 0
\(545\) −4.40551 13.2165i −0.188711 0.566134i
\(546\) 0 0
\(547\) 34.2496i 1.46441i −0.681086 0.732203i \(-0.738492\pi\)
0.681086 0.732203i \(-0.261508\pi\)
\(548\) 0 0
\(549\) 42.9511 + 42.9511i 1.83311 + 1.83311i
\(550\) 0 0
\(551\) −22.7597 −0.969596
\(552\) 0 0
\(553\) 4.26298i 0.181280i
\(554\) 0 0
\(555\) 37.2979 + 21.5633i 1.58321 + 0.915313i
\(556\) 0 0
\(557\) 39.2062i 1.66122i −0.556855 0.830609i \(-0.687992\pi\)
0.556855 0.830609i \(-0.312008\pi\)
\(558\) 0 0
\(559\) 4.01584 0.169852
\(560\) 0 0
\(561\) 60.5298 + 60.5298i 2.55557 + 2.55557i
\(562\) 0 0
\(563\) 23.6526i 0.996840i −0.866936 0.498420i \(-0.833914\pi\)
0.866936 0.498420i \(-0.166086\pi\)
\(564\) 0 0
\(565\) 5.88503 11.7701i 0.247585 0.495170i
\(566\) 0 0
\(567\) −24.0074 + 24.0074i −1.00822 + 1.00822i
\(568\) 0 0
\(569\) −11.6300 11.6300i −0.487554 0.487554i 0.419980 0.907534i \(-0.362037\pi\)
−0.907534 + 0.419980i \(0.862037\pi\)
\(570\) 0 0
\(571\) 27.1731 1.13716 0.568580 0.822628i \(-0.307493\pi\)
0.568580 + 0.822628i \(0.307493\pi\)
\(572\) 0 0
\(573\) 63.6038 2.65709
\(574\) 0 0
\(575\) −25.9181 + 19.4386i −1.08086 + 0.810644i
\(576\) 0 0
\(577\) 28.1652 1.17253 0.586266 0.810118i \(-0.300597\pi\)
0.586266 + 0.810118i \(0.300597\pi\)
\(578\) 0 0
\(579\) −2.14801 2.14801i −0.0892683 0.0892683i
\(580\) 0 0
\(581\) 22.0685 0.915557
\(582\) 0 0
\(583\) −26.5456 + 26.5456i −1.09941 + 1.09941i
\(584\) 0 0
\(585\) 20.5786 41.1573i 0.850822 1.70164i
\(586\) 0 0
\(587\) 38.3817i 1.58418i 0.610402 + 0.792092i \(0.291008\pi\)
−0.610402 + 0.792092i \(0.708992\pi\)
\(588\) 0 0
\(589\) 27.9659i 1.15231i
\(590\) 0 0
\(591\) 6.62753i 0.272620i
\(592\) 0 0
\(593\) 6.05816 + 6.05816i 0.248779 + 0.248779i 0.820469 0.571690i \(-0.193712\pi\)
−0.571690 + 0.820469i \(0.693712\pi\)
\(594\) 0 0
\(595\) 7.47952 + 22.4386i 0.306630 + 0.919891i
\(596\) 0 0
\(597\) −32.9102 −1.34692
\(598\) 0 0
\(599\) 13.9487i 0.569927i 0.958538 + 0.284964i \(0.0919815\pi\)
−0.958538 + 0.284964i \(0.908018\pi\)
\(600\) 0 0
\(601\) 29.3542 1.19738 0.598691 0.800980i \(-0.295688\pi\)
0.598691 + 0.800980i \(0.295688\pi\)
\(602\) 0 0
\(603\) −9.23976 + 9.23976i −0.376272 + 0.376272i
\(604\) 0 0
\(605\) 9.06608 18.1322i 0.368589 0.737177i
\(606\) 0 0
\(607\) 4.84162i 0.196515i 0.995161 + 0.0982577i \(0.0313269\pi\)
−0.995161 + 0.0982577i \(0.968673\pi\)
\(608\) 0 0
\(609\) −16.6606 + 16.6606i −0.675120 + 0.675120i
\(610\) 0 0
\(611\) 27.1322 + 27.1322i 1.09765 + 1.09765i
\(612\) 0 0
\(613\) 15.8771 15.8771i 0.641270 0.641270i −0.309597 0.950868i \(-0.600194\pi\)
0.950868 + 0.309597i \(0.100194\pi\)
\(614\) 0 0
\(615\) −64.4148 + 21.4716i −2.59745 + 0.865818i
\(616\) 0 0
\(617\) 21.2141 + 21.2141i 0.854047 + 0.854047i 0.990629 0.136582i \(-0.0436116\pi\)
−0.136582 + 0.990629i \(0.543612\pi\)
\(618\) 0 0
\(619\) −11.5352 −0.463640 −0.231820 0.972759i \(-0.574468\pi\)
−0.231820 + 0.972759i \(0.574468\pi\)
\(620\) 0 0
\(621\) −58.5298 + 58.5298i −2.34872 + 2.34872i
\(622\) 0 0
\(623\) 7.52048 0.301302
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 76.1163 3.03979
\(628\) 0 0
\(629\) 27.4716 24.3315i 1.09536 0.970161i
\(630\) 0 0
\(631\) 25.4459 25.4459i 1.01299 1.01299i 0.0130719 0.999915i \(-0.495839\pi\)
0.999915 0.0130719i \(-0.00416105\pi\)
\(632\) 0 0
\(633\) 33.1731 33.1731i 1.31851 1.31851i
\(634\) 0 0
\(635\) −4.42081 13.2624i −0.175435 0.526304i
\(636\) 0 0
\(637\) 11.4874 0.455149
\(638\) 0 0
\(639\) 35.9181i 1.42090i
\(640\) 0 0
\(641\) −36.0833 −1.42520 −0.712602 0.701569i \(-0.752483\pi\)
−0.712602 + 0.701569i \(0.752483\pi\)
\(642\) 0 0
\(643\) −1.77006 −0.0698044 −0.0349022 0.999391i \(-0.511112\pi\)
−0.0349022 + 0.999391i \(0.511112\pi\)
\(644\) 0 0
\(645\) −9.22202 + 3.07401i −0.363117 + 0.121039i
\(646\) 0 0
\(647\) 11.3064i 0.444500i −0.974990 0.222250i \(-0.928660\pi\)
0.974990 0.222250i \(-0.0713401\pi\)
\(648\) 0 0
\(649\) −18.6606 18.6606i −0.732491 0.732491i
\(650\) 0 0
\(651\) 20.4716 + 20.4716i 0.802345 + 0.802345i
\(652\) 0 0
\(653\) 36.2141 1.41717 0.708583 0.705627i \(-0.249335\pi\)
0.708583 + 0.705627i \(0.249335\pi\)
\(654\) 0 0
\(655\) 2.71928 + 8.15783i 0.106251 + 0.318753i
\(656\) 0 0
\(657\) −13.5456 13.5456i −0.528464 0.528464i
\(658\) 0 0
\(659\) −20.9432 −0.815831 −0.407915 0.913020i \(-0.633744\pi\)
−0.407915 + 0.913020i \(0.633744\pi\)
\(660\) 0 0
\(661\) 23.8771 23.8771i 0.928712 0.928712i −0.0689109 0.997623i \(-0.521952\pi\)
0.997623 + 0.0689109i \(0.0219524\pi\)
\(662\) 0 0
\(663\) −39.5377 39.5377i −1.53552 1.53552i
\(664\) 0 0
\(665\) 18.8110 + 9.40551i 0.729460 + 0.364730i
\(666\) 0 0
\(667\) −19.4386 + 19.4386i −0.752664 + 0.752664i
\(668\) 0 0
\(669\) −53.1242 −2.05390
\(670\) 0 0
\(671\) −27.3566 27.3566i −1.05609 1.05609i
\(672\) 0 0
\(673\) −22.0251 22.0251i −0.849006 0.849006i 0.141003 0.990009i \(-0.454967\pi\)
−0.990009 + 0.141003i \(0.954967\pi\)
\(674\) 0 0
\(675\) −9.03304 + 63.2313i −0.347682 + 2.43377i
\(676\) 0 0
\(677\) 26.2575 + 26.2575i 1.00916 + 1.00916i 0.999958 + 0.00920012i \(0.00292853\pi\)
0.00920012 + 0.999958i \(0.497071\pi\)
\(678\) 0 0
\(679\) 6.66057 6.66057i 0.255609 0.255609i
\(680\) 0 0
\(681\) −40.3157 + 40.3157i −1.54490 + 1.54490i
\(682\) 0 0
\(683\) 11.7187i 0.448405i −0.974543 0.224202i \(-0.928022\pi\)
0.974543 0.224202i \(-0.0719777\pi\)
\(684\) 0 0
\(685\) −8.55352 25.6606i −0.326813 0.980440i
\(686\) 0 0
\(687\) −19.3236 19.3236i −0.737241 0.737241i
\(688\) 0 0
\(689\) 17.3394 17.3394i 0.660580 0.660580i
\(690\) 0 0
\(691\) 15.9694i 0.607505i −0.952751 0.303752i \(-0.901760\pi\)
0.952751 0.303752i \(-0.0982396\pi\)
\(692\) 0 0
\(693\) 39.0582 39.0582i 1.48370 1.48370i
\(694\) 0 0
\(695\) −2.21409 + 4.42819i −0.0839854 + 0.167971i
\(696\) 0 0
\(697\) 57.8361i 2.19070i
\(698\) 0 0
\(699\) 95.9989i 3.63101i
\(700\) 0 0
\(701\) −20.3236 20.3236i −0.767611 0.767611i 0.210074 0.977685i \(-0.432629\pi\)
−0.977685 + 0.210074i \(0.932629\pi\)
\(702\) 0 0
\(703\) 1.97433 32.5713i 0.0744634 1.22845i
\(704\) 0 0
\(705\) −83.0754 41.5377i −3.12880 1.56440i
\(706\) 0 0
\(707\) −19.9590 19.9590i −0.750637 0.750637i
\(708\) 0 0
\(709\) 24.6857 24.6857i 0.927091 0.927091i −0.0704264 0.997517i \(-0.522436\pi\)
0.997517 + 0.0704264i \(0.0224360\pi\)
\(710\) 0 0
\(711\) −12.0917 12.0917i −0.453476 0.453476i
\(712\) 0 0
\(713\) 23.8850 + 23.8850i 0.894501 + 0.894501i
\(714\) 0 0
\(715\) −13.1070 + 26.2141i −0.490176 + 0.980352i
\(716\) 0 0
\(717\) 30.0991i 1.12407i
\(718\) 0 0
\(719\) 11.1425i 0.415546i −0.978177 0.207773i \(-0.933378\pi\)
0.978177 0.207773i \(-0.0666216\pi\)
\(720\) 0 0
\(721\) −8.81103 + 8.81103i −0.328140 + 0.328140i
\(722\) 0 0
\(723\) −21.8826 −0.813822
\(724\) 0 0
\(725\) −3.00000 + 21.0000i −0.111417 + 0.779920i
\(726\) 0 0
\(727\) 36.6778i 1.36030i −0.733072 0.680152i \(-0.761914\pi\)
0.733072 0.680152i \(-0.238086\pi\)
\(728\) 0 0
\(729\) 14.8007i 0.548173i
\(730\) 0 0
\(731\) 8.28018i 0.306253i
\(732\) 0 0
\(733\) 25.8771 25.8771i 0.955793 0.955793i −0.0432706 0.999063i \(-0.513778\pi\)
0.999063 + 0.0432706i \(0.0137777\pi\)
\(734\) 0 0
\(735\) −26.3798 + 8.79328i −0.973035 + 0.324345i
\(736\) 0 0
\(737\) 5.88503 5.88503i 0.216778 0.216778i
\(738\) 0 0
\(739\) −13.7701 −0.506540 −0.253270 0.967396i \(-0.581506\pi\)
−0.253270 + 0.967396i \(0.581506\pi\)
\(740\) 0 0
\(741\) −49.7187 −1.82646
\(742\) 0 0
\(743\) −12.3798 + 12.3798i −0.454173 + 0.454173i −0.896737 0.442564i \(-0.854069\pi\)
0.442564 + 0.896737i \(0.354069\pi\)
\(744\) 0 0
\(745\) −10.2802 5.14009i −0.376637 0.188318i
\(746\) 0 0
\(747\) 62.5964 62.5964i 2.29028 2.29028i
\(748\) 0 0
\(749\) 26.8441i 0.980861i
\(750\) 0 0
\(751\) 15.4386i 0.563361i 0.959508 + 0.281680i \(0.0908918\pi\)
−0.959508 + 0.281680i \(0.909108\pi\)
\(752\) 0 0
\(753\) 17.8031i 0.648781i
\(754\) 0 0
\(755\) −31.0410 15.5205i −1.12970 0.564848i
\(756\) 0 0
\(757\) 18.0661 0.656623 0.328311 0.944570i \(-0.393520\pi\)
0.328311 + 0.944570i \(0.393520\pi\)
\(758\) 0 0
\(759\) 65.0093 65.0093i 2.35969 2.35969i
\(760\) 0 0
\(761\) 38.8110i 1.40690i 0.710745 + 0.703449i \(0.248358\pi\)
−0.710745 + 0.703449i \(0.751642\pi\)
\(762\) 0 0
\(763\) 10.9235i 0.395459i
\(764\) 0 0
\(765\) 84.8613 + 42.4306i 3.06817 + 1.53408i
\(766\) 0 0
\(767\) 12.1890 + 12.1890i 0.440118 + 0.440118i
\(768\) 0 0
\(769\) 35.3976 + 35.3976i 1.27647 + 1.27647i 0.942630 + 0.333840i \(0.108345\pi\)
0.333840 + 0.942630i \(0.391655\pi\)
\(770\) 0 0
\(771\) 35.2471 35.2471i 1.26939 1.26939i
\(772\) 0 0
\(773\) 24.5046 + 24.5046i 0.881371 + 0.881371i 0.993674 0.112303i \(-0.0358229\pi\)
−0.112303 + 0.993674i \(0.535823\pi\)
\(774\) 0 0
\(775\) 25.8036 + 3.68624i 0.926894 + 0.132413i
\(776\) 0 0
\(777\) −22.3976 25.2881i −0.803509 0.907205i
\(778\) 0 0
\(779\) 36.3645 + 36.3645i 1.30290 + 1.30290i
\(780\) 0 0
\(781\) 22.8771i 0.818607i
\(782\) 0 0
\(783\) 54.1982i 1.93689i
\(784\) 0 0
\(785\) −11.0330 33.0991i −0.393786 1.18136i
\(786\) 0 0
\(787\) 4.01774 4.01774i 0.143217 0.143217i −0.631863 0.775080i \(-0.717709\pi\)
0.775080 + 0.631863i \(0.217709\pi\)
\(788\) 0 0
\(789\) 23.2881i 0.829078i
\(790\) 0 0
\(791\) −7.29602 + 7.29602i −0.259417 + 0.259417i
\(792\) 0 0
\(793\) 17.8692 + 17.8692i 0.634553 + 0.634553i
\(794\) 0 0
\(795\) −26.5456 + 53.0912i −0.941475 + 1.88295i
\(796\) 0 0
\(797\) 13.6502i 0.483515i 0.970337 + 0.241757i \(0.0777238\pi\)
−0.970337 + 0.241757i \(0.922276\pi\)
\(798\) 0 0
\(799\) −55.9432 + 55.9432i −1.97913 + 1.97913i
\(800\) 0 0
\(801\) 21.3315 21.3315i 0.753712 0.753712i
\(802\) 0 0
\(803\) 8.62753 + 8.62753i 0.304459 + 0.304459i
\(804\) 0 0
\(805\) 24.0991 8.03304i 0.849383 0.283128i
\(806\) 0 0
\(807\) −24.9511 24.9511i −0.878321 0.878321i
\(808\) 0 0
\(809\) −3.00000 3.00000i −0.105474 0.105474i 0.652400 0.757875i \(-0.273762\pi\)
−0.757875 + 0.652400i \(0.773762\pi\)
\(810\) 0 0
\(811\) −2.95904 −0.103906 −0.0519529 0.998650i \(-0.516545\pi\)
−0.0519529 + 0.998650i \(0.516545\pi\)
\(812\) 0 0
\(813\) −2.00000 + 2.00000i −0.0701431 + 0.0701431i
\(814\) 0 0
\(815\) 9.04096 18.0819i 0.316691 0.633382i
\(816\) 0 0
\(817\) 5.20617 + 5.20617i 0.182141 + 0.182141i
\(818\) 0 0
\(819\) −25.5126 + 25.5126i −0.891481 + 0.891481i
\(820\) 0 0
\(821\) −31.9181 −1.11395 −0.556974 0.830530i \(-0.688038\pi\)
−0.556974 + 0.830530i \(0.688038\pi\)
\(822\) 0 0
\(823\) −20.9254 20.9254i −0.729415 0.729415i 0.241088 0.970503i \(-0.422496\pi\)
−0.970503 + 0.241088i \(0.922496\pi\)
\(824\) 0 0
\(825\) 10.0330 70.2313i 0.349306 2.44514i
\(826\) 0 0
\(827\) 21.3053 0.740858 0.370429 0.928861i \(-0.379211\pi\)
0.370429 + 0.928861i \(0.379211\pi\)
\(828\) 0 0
\(829\) −1.11741 1.11741i −0.0388094 0.0388094i 0.687436 0.726245i \(-0.258736\pi\)
−0.726245 + 0.687436i \(0.758736\pi\)
\(830\) 0 0
\(831\) 35.9102 + 35.9102i 1.24571 + 1.24571i
\(832\) 0 0
\(833\) 23.6857i 0.820661i
\(834\) 0 0
\(835\) −3.93392 + 7.86783i −0.136139 + 0.272278i
\(836\) 0 0
\(837\) 66.5958 2.30189
\(838\) 0 0
\(839\) −44.3304 −1.53046 −0.765228 0.643759i \(-0.777374\pi\)
−0.765228 + 0.643759i \(0.777374\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 0 0
\(843\) 28.6936 0.988260
\(844\) 0 0
\(845\) −4.43855 + 8.87711i −0.152691 + 0.305382i
\(846\) 0 0
\(847\) −11.2398 + 11.2398i −0.386203 + 0.386203i
\(848\) 0 0
\(849\) −52.2337 + 52.2337i −1.79266 + 1.79266i
\(850\) 0 0
\(851\) −26.1322 29.5046i −0.895799 1.01141i
\(852\) 0 0
\(853\) −8.05133 −0.275672 −0.137836 0.990455i \(-0.544015\pi\)
−0.137836 + 0.990455i \(0.544015\pi\)
\(854\) 0 0
\(855\) 80.0349 26.6783i 2.73714 0.912379i
\(856\) 0 0
\(857\) −32.8416 −1.12185 −0.560924 0.827867i \(-0.689554\pi\)
−0.560924 + 0.827867i \(0.689554\pi\)
\(858\) 0 0
\(859\) 27.0098 27.0098i 0.921563 0.921563i −0.0755768 0.997140i \(-0.524080\pi\)
0.997140 + 0.0755768i \(0.0240798\pi\)
\(860\) 0 0
\(861\) 53.2392 1.81439
\(862\) 0 0
\(863\) −1.97433 1.97433i −0.0672071 0.0672071i 0.672704 0.739911i \(-0.265133\pi\)
−0.739911 + 0.672704i \(0.765133\pi\)
\(864\) 0 0
\(865\) −0.107047 0.321140i −0.00363970 0.0109191i
\(866\) 0 0
\(867\) 43.4459 43.4459i 1.47550 1.47550i
\(868\) 0 0
\(869\) 7.70153 + 7.70153i 0.261257 + 0.261257i
\(870\) 0 0
\(871\) −3.84407 + 3.84407i −0.130251 + 0.130251i
\(872\) 0 0
\(873\) 37.7848i 1.27882i
\(874\) 0 0
\(875\) 11.1578 16.1169i 0.377204 0.544850i
\(876\) 0 0
\(877\) 10.2881 10.2881i 0.347404 0.347404i −0.511737 0.859142i \(-0.670998\pi\)
0.859142 + 0.511737i \(0.170998\pi\)
\(878\) 0 0
\(879\) −15.2905 −0.515737
\(880\) 0 0
\(881\) 32.6141i 1.09880i 0.835560 + 0.549399i \(0.185143\pi\)
−0.835560 + 0.549399i \(0.814857\pi\)
\(882\) 0 0
\(883\) 5.17313 0.174090 0.0870448 0.996204i \(-0.472258\pi\)
0.0870448 + 0.996204i \(0.472258\pi\)
\(884\) 0 0
\(885\) −37.3211 18.6606i −1.25454 0.627268i
\(886\) 0 0
\(887\) 33.6374 + 33.6374i 1.12943 + 1.12943i 0.990270 + 0.139162i \(0.0444409\pi\)
0.139162 + 0.990270i \(0.455559\pi\)
\(888\) 0 0
\(889\) 10.9615i 0.367636i
\(890\) 0 0
\(891\) 86.7439i 2.90603i
\(892\) 0 0
\(893\) 70.3487i 2.35413i
\(894\) 0 0
\(895\) 53.5781 17.8594i 1.79092 0.596973i
\(896\) 0 0
\(897\) −42.4637 + 42.4637i −1.41782 + 1.41782i
\(898\) 0 0
\(899\) 22.1174 0.737657
\(900\) 0 0
\(901\) 35.7518 + 35.7518i 1.19106 + 1.19106i
\(902\) 0 0
\(903\) 7.62205 0.253646
\(904\) 0 0
\(905\) −9.81895 + 19.6379i −0.326393 + 0.652786i
\(906\) 0 0
\(907\) −38.3463 −1.27327 −0.636633 0.771167i \(-0.719674\pi\)
−0.636633 + 0.771167i \(0.719674\pi\)
\(908\) 0 0
\(909\) −113.226 −3.75546
\(910\) 0 0
\(911\) −4.67587 4.67587i −0.154918 0.154918i 0.625392 0.780311i \(-0.284939\pi\)
−0.780311 + 0.625392i \(0.784939\pi\)
\(912\) 0 0
\(913\) −39.8692 + 39.8692i −1.31948 + 1.31948i
\(914\) 0 0
\(915\) −54.7133 27.3566i −1.80876 0.904382i
\(916\) 0 0
\(917\) 6.74250i 0.222657i
\(918\) 0 0
\(919\) 29.9003 + 29.9003i 0.986321 + 0.986321i 0.999908 0.0135868i \(-0.00432496\pi\)
−0.0135868 + 0.999908i \(0.504325\pi\)
\(920\) 0 0
\(921\) −81.6698 −2.69111
\(922\) 0 0
\(923\) 14.9432i 0.491861i
\(924\) 0 0
\(925\) −29.7927 6.11497i −0.979579 0.201059i
\(926\) 0 0
\(927\) 49.9842i 1.64170i
\(928\) 0 0
\(929\) −21.5046 −0.705544 −0.352772 0.935709i \(-0.614761\pi\)
−0.352772 + 0.935709i \(0.614761\pi\)
\(930\) 0 0
\(931\) 14.8924 + 14.8924i 0.488079 + 0.488079i
\(932\) 0 0
\(933\) 65.7518i 2.15262i
\(934\) 0 0
\(935\) −54.0502 27.0251i −1.76763 0.883816i
\(936\) 0 0
\(937\) 2.40307 2.40307i 0.0785048 0.0785048i −0.666764 0.745269i \(-0.732321\pi\)
0.745269 + 0.666764i \(0.232321\pi\)
\(938\) 0 0
\(939\) 14.3645 + 14.3645i 0.468769 + 0.468769i
\(940\) 0 0
\(941\) −43.5071 −1.41829 −0.709145 0.705062i \(-0.750919\pi\)
−0.709145 + 0.705062i \(0.750919\pi\)
\(942\) 0 0
\(943\) 62.1163 2.02279
\(944\) 0 0
\(945\) 22.3976 44.7952i 0.728594 1.45719i
\(946\) 0 0
\(947\) 9.17313 0.298087 0.149043 0.988831i \(-0.452381\pi\)
0.149043 + 0.988831i \(0.452381\pi\)
\(948\) 0 0
\(949\) −5.63545 5.63545i −0.182934 0.182934i
\(950\) 0 0
\(951\) −8.99452 −0.291667
\(952\) 0 0
\(953\) −34.6221 + 34.6221i −1.12152 + 1.12152i −0.130005 + 0.991513i \(0.541499\pi\)
−0.991513 + 0.130005i \(0.958501\pi\)
\(954\) 0 0
\(955\) −42.5964 + 14.1988i −1.37839 + 0.459462i
\(956\) 0 0
\(957\) 60.1982i 1.94593i
\(958\) 0 0
\(959\) 21.2086i 0.684862i
\(960\) 0 0
\(961\) 3.82333i 0.123333i
\(962\) 0 0
\(963\) −76.1420 76.1420i −2.45364 2.45364i
\(964\) 0 0
\(965\) 1.91807 + 0.959036i 0.0617449 + 0.0308725i
\(966\) 0 0
\(967\) 0.892953 0.0287154 0.0143577 0.999897i \(-0.495430\pi\)
0.0143577 + 0.999897i \(0.495430\pi\)
\(968\) 0 0
\(969\) 102.514i 3.29322i
\(970\) 0 0
\(971\) 47.1573 1.51335 0.756675 0.653792i \(-0.226823\pi\)
0.756675 + 0.653792i \(0.226823\pi\)
\(972\) 0 0
\(973\) 2.74494 2.74494i 0.0879988 0.0879988i
\(974\) 0 0
\(975\) −6.55352 + 45.8747i −0.209881 + 1.46917i
\(976\) 0 0
\(977\) 49.2905i 1.57694i −0.615071 0.788472i \(-0.710872\pi\)
0.615071 0.788472i \(-0.289128\pi\)
\(978\) 0 0
\(979\) −13.5866 + 13.5866i −0.434229 + 0.434229i
\(980\) 0 0
\(981\) 30.9842 + 30.9842i 0.989248 + 0.989248i
\(982\) 0 0
\(983\) 3.08138 3.08138i 0.0982808 0.0982808i −0.656257 0.754538i \(-0.727861\pi\)
0.754538 + 0.656257i \(0.227861\pi\)
\(984\) 0 0
\(985\) 1.47952 + 4.43855i 0.0471414 + 0.141424i
\(986\) 0 0
\(987\) 51.4967 + 51.4967i 1.63916 + 1.63916i
\(988\) 0 0
\(989\) 8.89295 0.282779
\(990\) 0 0
\(991\) 16.0917 16.0917i 0.511171 0.511171i −0.403714 0.914885i \(-0.632281\pi\)
0.914885 + 0.403714i \(0.132281\pi\)
\(992\) 0 0
\(993\) −20.8441 −0.661466
\(994\) 0 0
\(995\) 22.0404 7.34681i 0.698728 0.232909i
\(996\) 0 0
\(997\) −22.9590 −0.727120 −0.363560 0.931571i \(-0.618439\pi\)
−0.363560 + 0.931571i \(0.618439\pi\)
\(998\) 0 0
\(999\) −77.5628 4.70153i −2.45398 0.148750i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.l.a.413.3 6
5.2 odd 4 740.2.o.a.117.1 yes 6
37.31 odd 4 740.2.o.a.253.1 yes 6
185.142 even 4 inner 740.2.l.a.697.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.l.a.413.3 6 1.1 even 1 trivial
740.2.l.a.697.3 yes 6 185.142 even 4 inner
740.2.o.a.117.1 yes 6 5.2 odd 4
740.2.o.a.253.1 yes 6 37.31 odd 4