Properties

Label 7440.2.a.bf.1.2
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3720)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} -1.26795 q^{7} +1.00000 q^{9} -5.46410 q^{11} +4.73205 q^{13} -1.00000 q^{15} +1.46410 q^{19} +1.26795 q^{21} -3.46410 q^{23} +1.00000 q^{25} -1.00000 q^{27} +2.73205 q^{29} +1.00000 q^{31} +5.46410 q^{33} -1.26795 q^{35} -7.66025 q^{37} -4.73205 q^{39} +3.46410 q^{41} +1.00000 q^{45} +7.46410 q^{47} -5.39230 q^{49} -5.46410 q^{55} -1.46410 q^{57} +14.1962 q^{59} -0.535898 q^{61} -1.26795 q^{63} +4.73205 q^{65} -9.66025 q^{67} +3.46410 q^{69} +3.66025 q^{71} +4.73205 q^{73} -1.00000 q^{75} +6.92820 q^{77} -16.9282 q^{79} +1.00000 q^{81} -3.46410 q^{83} -2.73205 q^{87} -6.73205 q^{89} -6.00000 q^{91} -1.00000 q^{93} +1.46410 q^{95} -16.9282 q^{97} -5.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 2 q^{9} - 4 q^{11} + 6 q^{13} - 2 q^{15} - 4 q^{19} + 6 q^{21} + 2 q^{25} - 2 q^{27} + 2 q^{29} + 2 q^{31} + 4 q^{33} - 6 q^{35} + 2 q^{37} - 6 q^{39} + 2 q^{45} + 8 q^{47}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.26795 −0.479240 −0.239620 0.970867i \(-0.577023\pi\)
−0.239620 + 0.970867i \(0.577023\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.46410 −1.64749 −0.823744 0.566961i \(-0.808119\pi\)
−0.823744 + 0.566961i \(0.808119\pi\)
\(12\) 0 0
\(13\) 4.73205 1.31243 0.656217 0.754572i \(-0.272155\pi\)
0.656217 + 0.754572i \(0.272155\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 1.46410 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(20\) 0 0
\(21\) 1.26795 0.276689
\(22\) 0 0
\(23\) −3.46410 −0.722315 −0.361158 0.932505i \(-0.617618\pi\)
−0.361158 + 0.932505i \(0.617618\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.73205 0.507329 0.253665 0.967292i \(-0.418364\pi\)
0.253665 + 0.967292i \(0.418364\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 5.46410 0.951178
\(34\) 0 0
\(35\) −1.26795 −0.214323
\(36\) 0 0
\(37\) −7.66025 −1.25934 −0.629669 0.776864i \(-0.716809\pi\)
−0.629669 + 0.776864i \(0.716809\pi\)
\(38\) 0 0
\(39\) −4.73205 −0.757735
\(40\) 0 0
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 7.46410 1.08875 0.544376 0.838842i \(-0.316767\pi\)
0.544376 + 0.838842i \(0.316767\pi\)
\(48\) 0 0
\(49\) −5.39230 −0.770329
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −5.46410 −0.736779
\(56\) 0 0
\(57\) −1.46410 −0.193925
\(58\) 0 0
\(59\) 14.1962 1.84818 0.924091 0.382173i \(-0.124824\pi\)
0.924091 + 0.382173i \(0.124824\pi\)
\(60\) 0 0
\(61\) −0.535898 −0.0686148 −0.0343074 0.999411i \(-0.510923\pi\)
−0.0343074 + 0.999411i \(0.510923\pi\)
\(62\) 0 0
\(63\) −1.26795 −0.159747
\(64\) 0 0
\(65\) 4.73205 0.586939
\(66\) 0 0
\(67\) −9.66025 −1.18019 −0.590094 0.807335i \(-0.700909\pi\)
−0.590094 + 0.807335i \(0.700909\pi\)
\(68\) 0 0
\(69\) 3.46410 0.417029
\(70\) 0 0
\(71\) 3.66025 0.434392 0.217196 0.976128i \(-0.430309\pi\)
0.217196 + 0.976128i \(0.430309\pi\)
\(72\) 0 0
\(73\) 4.73205 0.553845 0.276922 0.960892i \(-0.410686\pi\)
0.276922 + 0.960892i \(0.410686\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 6.92820 0.789542
\(78\) 0 0
\(79\) −16.9282 −1.90457 −0.952286 0.305208i \(-0.901274\pi\)
−0.952286 + 0.305208i \(0.901274\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −3.46410 −0.380235 −0.190117 0.981761i \(-0.560887\pi\)
−0.190117 + 0.981761i \(0.560887\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.73205 −0.292907
\(88\) 0 0
\(89\) −6.73205 −0.713596 −0.356798 0.934182i \(-0.616132\pi\)
−0.356798 + 0.934182i \(0.616132\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 1.46410 0.150214
\(96\) 0 0
\(97\) −16.9282 −1.71880 −0.859399 0.511305i \(-0.829162\pi\)
−0.859399 + 0.511305i \(0.829162\pi\)
\(98\) 0 0
\(99\) −5.46410 −0.549163
\(100\) 0 0
\(101\) −15.4641 −1.53874 −0.769368 0.638806i \(-0.779429\pi\)
−0.769368 + 0.638806i \(0.779429\pi\)
\(102\) 0 0
\(103\) 17.6603 1.74012 0.870058 0.492949i \(-0.164081\pi\)
0.870058 + 0.492949i \(0.164081\pi\)
\(104\) 0 0
\(105\) 1.26795 0.123739
\(106\) 0 0
\(107\) 14.3923 1.39136 0.695678 0.718353i \(-0.255104\pi\)
0.695678 + 0.718353i \(0.255104\pi\)
\(108\) 0 0
\(109\) −4.39230 −0.420707 −0.210353 0.977625i \(-0.567461\pi\)
−0.210353 + 0.977625i \(0.567461\pi\)
\(110\) 0 0
\(111\) 7.66025 0.727079
\(112\) 0 0
\(113\) 12.9282 1.21618 0.608092 0.793867i \(-0.291935\pi\)
0.608092 + 0.793867i \(0.291935\pi\)
\(114\) 0 0
\(115\) −3.46410 −0.323029
\(116\) 0 0
\(117\) 4.73205 0.437478
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 18.8564 1.71422
\(122\) 0 0
\(123\) −3.46410 −0.312348
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.39230 −0.744697 −0.372348 0.928093i \(-0.621447\pi\)
−0.372348 + 0.928093i \(0.621447\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.26795 0.285522 0.142761 0.989757i \(-0.454402\pi\)
0.142761 + 0.989757i \(0.454402\pi\)
\(132\) 0 0
\(133\) −1.85641 −0.160971
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 5.46410 0.466830 0.233415 0.972377i \(-0.425010\pi\)
0.233415 + 0.972377i \(0.425010\pi\)
\(138\) 0 0
\(139\) −17.8564 −1.51456 −0.757280 0.653090i \(-0.773472\pi\)
−0.757280 + 0.653090i \(0.773472\pi\)
\(140\) 0 0
\(141\) −7.46410 −0.628591
\(142\) 0 0
\(143\) −25.8564 −2.16222
\(144\) 0 0
\(145\) 2.73205 0.226884
\(146\) 0 0
\(147\) 5.39230 0.444750
\(148\) 0 0
\(149\) 11.4641 0.939176 0.469588 0.882886i \(-0.344403\pi\)
0.469588 + 0.882886i \(0.344403\pi\)
\(150\) 0 0
\(151\) −3.07180 −0.249979 −0.124990 0.992158i \(-0.539890\pi\)
−0.124990 + 0.992158i \(0.539890\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) 0.928203 0.0740787 0.0370393 0.999314i \(-0.488207\pi\)
0.0370393 + 0.999314i \(0.488207\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.39230 0.346162
\(162\) 0 0
\(163\) −2.73205 −0.213991 −0.106995 0.994260i \(-0.534123\pi\)
−0.106995 + 0.994260i \(0.534123\pi\)
\(164\) 0 0
\(165\) 5.46410 0.425380
\(166\) 0 0
\(167\) −24.7846 −1.91789 −0.958945 0.283591i \(-0.908474\pi\)
−0.958945 + 0.283591i \(0.908474\pi\)
\(168\) 0 0
\(169\) 9.39230 0.722485
\(170\) 0 0
\(171\) 1.46410 0.111963
\(172\) 0 0
\(173\) −10.0000 −0.760286 −0.380143 0.924928i \(-0.624125\pi\)
−0.380143 + 0.924928i \(0.624125\pi\)
\(174\) 0 0
\(175\) −1.26795 −0.0958479
\(176\) 0 0
\(177\) −14.1962 −1.06705
\(178\) 0 0
\(179\) −5.07180 −0.379084 −0.189542 0.981873i \(-0.560700\pi\)
−0.189542 + 0.981873i \(0.560700\pi\)
\(180\) 0 0
\(181\) −14.3923 −1.06977 −0.534886 0.844924i \(-0.679645\pi\)
−0.534886 + 0.844924i \(0.679645\pi\)
\(182\) 0 0
\(183\) 0.535898 0.0396147
\(184\) 0 0
\(185\) −7.66025 −0.563193
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.26795 0.0922297
\(190\) 0 0
\(191\) −7.26795 −0.525890 −0.262945 0.964811i \(-0.584694\pi\)
−0.262945 + 0.964811i \(0.584694\pi\)
\(192\) 0 0
\(193\) 4.92820 0.354740 0.177370 0.984144i \(-0.443241\pi\)
0.177370 + 0.984144i \(0.443241\pi\)
\(194\) 0 0
\(195\) −4.73205 −0.338869
\(196\) 0 0
\(197\) −13.4641 −0.959278 −0.479639 0.877466i \(-0.659232\pi\)
−0.479639 + 0.877466i \(0.659232\pi\)
\(198\) 0 0
\(199\) 12.9282 0.916456 0.458228 0.888835i \(-0.348484\pi\)
0.458228 + 0.888835i \(0.348484\pi\)
\(200\) 0 0
\(201\) 9.66025 0.681382
\(202\) 0 0
\(203\) −3.46410 −0.243132
\(204\) 0 0
\(205\) 3.46410 0.241943
\(206\) 0 0
\(207\) −3.46410 −0.240772
\(208\) 0 0
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) −7.60770 −0.523735 −0.261868 0.965104i \(-0.584338\pi\)
−0.261868 + 0.965104i \(0.584338\pi\)
\(212\) 0 0
\(213\) −3.66025 −0.250796
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.26795 −0.0860740
\(218\) 0 0
\(219\) −4.73205 −0.319762
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −26.2487 −1.75774 −0.878872 0.477058i \(-0.841703\pi\)
−0.878872 + 0.477058i \(0.841703\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −7.07180 −0.469372 −0.234686 0.972071i \(-0.575406\pi\)
−0.234686 + 0.972071i \(0.575406\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) −6.92820 −0.455842
\(232\) 0 0
\(233\) 9.85641 0.645715 0.322857 0.946448i \(-0.395357\pi\)
0.322857 + 0.946448i \(0.395357\pi\)
\(234\) 0 0
\(235\) 7.46410 0.486904
\(236\) 0 0
\(237\) 16.9282 1.09960
\(238\) 0 0
\(239\) 6.92820 0.448148 0.224074 0.974572i \(-0.428064\pi\)
0.224074 + 0.974572i \(0.428064\pi\)
\(240\) 0 0
\(241\) 4.92820 0.317453 0.158727 0.987323i \(-0.449261\pi\)
0.158727 + 0.987323i \(0.449261\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −5.39230 −0.344502
\(246\) 0 0
\(247\) 6.92820 0.440831
\(248\) 0 0
\(249\) 3.46410 0.219529
\(250\) 0 0
\(251\) 14.9282 0.942260 0.471130 0.882064i \(-0.343846\pi\)
0.471130 + 0.882064i \(0.343846\pi\)
\(252\) 0 0
\(253\) 18.9282 1.19001
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.7846 −1.04700 −0.523498 0.852027i \(-0.675373\pi\)
−0.523498 + 0.852027i \(0.675373\pi\)
\(258\) 0 0
\(259\) 9.71281 0.603525
\(260\) 0 0
\(261\) 2.73205 0.169110
\(262\) 0 0
\(263\) 20.7846 1.28163 0.640817 0.767694i \(-0.278596\pi\)
0.640817 + 0.767694i \(0.278596\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6.73205 0.411995
\(268\) 0 0
\(269\) −28.9808 −1.76699 −0.883494 0.468442i \(-0.844815\pi\)
−0.883494 + 0.468442i \(0.844815\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 6.00000 0.363137
\(274\) 0 0
\(275\) −5.46410 −0.329498
\(276\) 0 0
\(277\) 10.5885 0.636199 0.318099 0.948057i \(-0.396955\pi\)
0.318099 + 0.948057i \(0.396955\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −12.5359 −0.747829 −0.373915 0.927463i \(-0.621985\pi\)
−0.373915 + 0.927463i \(0.621985\pi\)
\(282\) 0 0
\(283\) −14.3397 −0.852409 −0.426205 0.904627i \(-0.640150\pi\)
−0.426205 + 0.904627i \(0.640150\pi\)
\(284\) 0 0
\(285\) −1.46410 −0.0867259
\(286\) 0 0
\(287\) −4.39230 −0.259270
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 16.9282 0.992349
\(292\) 0 0
\(293\) −9.85641 −0.575817 −0.287909 0.957658i \(-0.592960\pi\)
−0.287909 + 0.957658i \(0.592960\pi\)
\(294\) 0 0
\(295\) 14.1962 0.826532
\(296\) 0 0
\(297\) 5.46410 0.317059
\(298\) 0 0
\(299\) −16.3923 −0.947991
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 15.4641 0.888389
\(304\) 0 0
\(305\) −0.535898 −0.0306855
\(306\) 0 0
\(307\) −18.7321 −1.06909 −0.534547 0.845139i \(-0.679518\pi\)
−0.534547 + 0.845139i \(0.679518\pi\)
\(308\) 0 0
\(309\) −17.6603 −1.00466
\(310\) 0 0
\(311\) −12.7321 −0.721968 −0.360984 0.932572i \(-0.617559\pi\)
−0.360984 + 0.932572i \(0.617559\pi\)
\(312\) 0 0
\(313\) −7.66025 −0.432983 −0.216492 0.976284i \(-0.569461\pi\)
−0.216492 + 0.976284i \(0.569461\pi\)
\(314\) 0 0
\(315\) −1.26795 −0.0714408
\(316\) 0 0
\(317\) 2.92820 0.164464 0.0822321 0.996613i \(-0.473795\pi\)
0.0822321 + 0.996613i \(0.473795\pi\)
\(318\) 0 0
\(319\) −14.9282 −0.835819
\(320\) 0 0
\(321\) −14.3923 −0.803300
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.73205 0.262487
\(326\) 0 0
\(327\) 4.39230 0.242895
\(328\) 0 0
\(329\) −9.46410 −0.521773
\(330\) 0 0
\(331\) −22.7846 −1.25236 −0.626178 0.779680i \(-0.715382\pi\)
−0.626178 + 0.779680i \(0.715382\pi\)
\(332\) 0 0
\(333\) −7.66025 −0.419779
\(334\) 0 0
\(335\) −9.66025 −0.527796
\(336\) 0 0
\(337\) 15.2679 0.831698 0.415849 0.909434i \(-0.363484\pi\)
0.415849 + 0.909434i \(0.363484\pi\)
\(338\) 0 0
\(339\) −12.9282 −0.702164
\(340\) 0 0
\(341\) −5.46410 −0.295898
\(342\) 0 0
\(343\) 15.7128 0.848412
\(344\) 0 0
\(345\) 3.46410 0.186501
\(346\) 0 0
\(347\) 17.0718 0.916462 0.458231 0.888833i \(-0.348483\pi\)
0.458231 + 0.888833i \(0.348483\pi\)
\(348\) 0 0
\(349\) 0.392305 0.0209996 0.0104998 0.999945i \(-0.496658\pi\)
0.0104998 + 0.999945i \(0.496658\pi\)
\(350\) 0 0
\(351\) −4.73205 −0.252578
\(352\) 0 0
\(353\) −5.85641 −0.311705 −0.155853 0.987780i \(-0.549812\pi\)
−0.155853 + 0.987780i \(0.549812\pi\)
\(354\) 0 0
\(355\) 3.66025 0.194266
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.5885 1.61440 0.807199 0.590280i \(-0.200983\pi\)
0.807199 + 0.590280i \(0.200983\pi\)
\(360\) 0 0
\(361\) −16.8564 −0.887179
\(362\) 0 0
\(363\) −18.8564 −0.989705
\(364\) 0 0
\(365\) 4.73205 0.247687
\(366\) 0 0
\(367\) 1.07180 0.0559473 0.0279737 0.999609i \(-0.491095\pi\)
0.0279737 + 0.999609i \(0.491095\pi\)
\(368\) 0 0
\(369\) 3.46410 0.180334
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.2487 −1.04844 −0.524219 0.851583i \(-0.675643\pi\)
−0.524219 + 0.851583i \(0.675643\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 12.9282 0.665836
\(378\) 0 0
\(379\) −11.6077 −0.596247 −0.298124 0.954527i \(-0.596361\pi\)
−0.298124 + 0.954527i \(0.596361\pi\)
\(380\) 0 0
\(381\) 8.39230 0.429951
\(382\) 0 0
\(383\) 3.46410 0.177007 0.0885037 0.996076i \(-0.471792\pi\)
0.0885037 + 0.996076i \(0.471792\pi\)
\(384\) 0 0
\(385\) 6.92820 0.353094
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.9808 0.860959 0.430479 0.902600i \(-0.358345\pi\)
0.430479 + 0.902600i \(0.358345\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −3.26795 −0.164846
\(394\) 0 0
\(395\) −16.9282 −0.851750
\(396\) 0 0
\(397\) −28.9282 −1.45186 −0.725932 0.687766i \(-0.758592\pi\)
−0.725932 + 0.687766i \(0.758592\pi\)
\(398\) 0 0
\(399\) 1.85641 0.0929366
\(400\) 0 0
\(401\) 4.58846 0.229137 0.114568 0.993415i \(-0.463452\pi\)
0.114568 + 0.993415i \(0.463452\pi\)
\(402\) 0 0
\(403\) 4.73205 0.235720
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 41.8564 2.07475
\(408\) 0 0
\(409\) 6.39230 0.316079 0.158040 0.987433i \(-0.449483\pi\)
0.158040 + 0.987433i \(0.449483\pi\)
\(410\) 0 0
\(411\) −5.46410 −0.269524
\(412\) 0 0
\(413\) −18.0000 −0.885722
\(414\) 0 0
\(415\) −3.46410 −0.170046
\(416\) 0 0
\(417\) 17.8564 0.874432
\(418\) 0 0
\(419\) −6.58846 −0.321867 −0.160934 0.986965i \(-0.551450\pi\)
−0.160934 + 0.986965i \(0.551450\pi\)
\(420\) 0 0
\(421\) 14.2487 0.694440 0.347220 0.937784i \(-0.387126\pi\)
0.347220 + 0.937784i \(0.387126\pi\)
\(422\) 0 0
\(423\) 7.46410 0.362917
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.679492 0.0328829
\(428\) 0 0
\(429\) 25.8564 1.24836
\(430\) 0 0
\(431\) −0.732051 −0.0352616 −0.0176308 0.999845i \(-0.505612\pi\)
−0.0176308 + 0.999845i \(0.505612\pi\)
\(432\) 0 0
\(433\) 35.6603 1.71372 0.856861 0.515547i \(-0.172411\pi\)
0.856861 + 0.515547i \(0.172411\pi\)
\(434\) 0 0
\(435\) −2.73205 −0.130992
\(436\) 0 0
\(437\) −5.07180 −0.242617
\(438\) 0 0
\(439\) −24.7846 −1.18290 −0.591452 0.806340i \(-0.701445\pi\)
−0.591452 + 0.806340i \(0.701445\pi\)
\(440\) 0 0
\(441\) −5.39230 −0.256776
\(442\) 0 0
\(443\) −38.0000 −1.80543 −0.902717 0.430234i \(-0.858431\pi\)
−0.902717 + 0.430234i \(0.858431\pi\)
\(444\) 0 0
\(445\) −6.73205 −0.319130
\(446\) 0 0
\(447\) −11.4641 −0.542233
\(448\) 0 0
\(449\) −6.33975 −0.299191 −0.149596 0.988747i \(-0.547797\pi\)
−0.149596 + 0.988747i \(0.547797\pi\)
\(450\) 0 0
\(451\) −18.9282 −0.891294
\(452\) 0 0
\(453\) 3.07180 0.144326
\(454\) 0 0
\(455\) −6.00000 −0.281284
\(456\) 0 0
\(457\) 21.5167 1.00651 0.503253 0.864139i \(-0.332136\pi\)
0.503253 + 0.864139i \(0.332136\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −35.5167 −1.65418 −0.827088 0.562073i \(-0.810004\pi\)
−0.827088 + 0.562073i \(0.810004\pi\)
\(462\) 0 0
\(463\) 12.7846 0.594151 0.297076 0.954854i \(-0.403989\pi\)
0.297076 + 0.954854i \(0.403989\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) 35.1769 1.62779 0.813897 0.581010i \(-0.197342\pi\)
0.813897 + 0.581010i \(0.197342\pi\)
\(468\) 0 0
\(469\) 12.2487 0.565593
\(470\) 0 0
\(471\) −0.928203 −0.0427693
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.46410 0.0671776
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.80385 0.265185 0.132592 0.991171i \(-0.457670\pi\)
0.132592 + 0.991171i \(0.457670\pi\)
\(480\) 0 0
\(481\) −36.2487 −1.65280
\(482\) 0 0
\(483\) −4.39230 −0.199857
\(484\) 0 0
\(485\) −16.9282 −0.768670
\(486\) 0 0
\(487\) 24.3923 1.10532 0.552660 0.833407i \(-0.313613\pi\)
0.552660 + 0.833407i \(0.313613\pi\)
\(488\) 0 0
\(489\) 2.73205 0.123548
\(490\) 0 0
\(491\) −30.2487 −1.36511 −0.682553 0.730836i \(-0.739130\pi\)
−0.682553 + 0.730836i \(0.739130\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −5.46410 −0.245593
\(496\) 0 0
\(497\) −4.64102 −0.208178
\(498\) 0 0
\(499\) −17.8564 −0.799363 −0.399681 0.916654i \(-0.630879\pi\)
−0.399681 + 0.916654i \(0.630879\pi\)
\(500\) 0 0
\(501\) 24.7846 1.10729
\(502\) 0 0
\(503\) −39.1769 −1.74681 −0.873406 0.486993i \(-0.838094\pi\)
−0.873406 + 0.486993i \(0.838094\pi\)
\(504\) 0 0
\(505\) −15.4641 −0.688143
\(506\) 0 0
\(507\) −9.39230 −0.417127
\(508\) 0 0
\(509\) 16.5885 0.735270 0.367635 0.929970i \(-0.380168\pi\)
0.367635 + 0.929970i \(0.380168\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) 0 0
\(513\) −1.46410 −0.0646417
\(514\) 0 0
\(515\) 17.6603 0.778204
\(516\) 0 0
\(517\) −40.7846 −1.79371
\(518\) 0 0
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) −8.53590 −0.373964 −0.186982 0.982363i \(-0.559871\pi\)
−0.186982 + 0.982363i \(0.559871\pi\)
\(522\) 0 0
\(523\) −38.2487 −1.67250 −0.836250 0.548349i \(-0.815257\pi\)
−0.836250 + 0.548349i \(0.815257\pi\)
\(524\) 0 0
\(525\) 1.26795 0.0553378
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) 14.1962 0.616061
\(532\) 0 0
\(533\) 16.3923 0.710030
\(534\) 0 0
\(535\) 14.3923 0.622234
\(536\) 0 0
\(537\) 5.07180 0.218864
\(538\) 0 0
\(539\) 29.4641 1.26911
\(540\) 0 0
\(541\) −16.3923 −0.704760 −0.352380 0.935857i \(-0.614628\pi\)
−0.352380 + 0.935857i \(0.614628\pi\)
\(542\) 0 0
\(543\) 14.3923 0.617633
\(544\) 0 0
\(545\) −4.39230 −0.188146
\(546\) 0 0
\(547\) −3.80385 −0.162641 −0.0813204 0.996688i \(-0.525914\pi\)
−0.0813204 + 0.996688i \(0.525914\pi\)
\(548\) 0 0
\(549\) −0.535898 −0.0228716
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) 21.4641 0.912746
\(554\) 0 0
\(555\) 7.66025 0.325160
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.24871 0.347642 0.173821 0.984777i \(-0.444389\pi\)
0.173821 + 0.984777i \(0.444389\pi\)
\(564\) 0 0
\(565\) 12.9282 0.543894
\(566\) 0 0
\(567\) −1.26795 −0.0532489
\(568\) 0 0
\(569\) −19.5167 −0.818181 −0.409090 0.912494i \(-0.634154\pi\)
−0.409090 + 0.912494i \(0.634154\pi\)
\(570\) 0 0
\(571\) −17.0718 −0.714432 −0.357216 0.934022i \(-0.616274\pi\)
−0.357216 + 0.934022i \(0.616274\pi\)
\(572\) 0 0
\(573\) 7.26795 0.303623
\(574\) 0 0
\(575\) −3.46410 −0.144463
\(576\) 0 0
\(577\) 18.3923 0.765682 0.382841 0.923814i \(-0.374946\pi\)
0.382841 + 0.923814i \(0.374946\pi\)
\(578\) 0 0
\(579\) −4.92820 −0.204809
\(580\) 0 0
\(581\) 4.39230 0.182224
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 4.73205 0.195646
\(586\) 0 0
\(587\) 2.14359 0.0884756 0.0442378 0.999021i \(-0.485914\pi\)
0.0442378 + 0.999021i \(0.485914\pi\)
\(588\) 0 0
\(589\) 1.46410 0.0603273
\(590\) 0 0
\(591\) 13.4641 0.553839
\(592\) 0 0
\(593\) −23.0718 −0.947445 −0.473723 0.880674i \(-0.657090\pi\)
−0.473723 + 0.880674i \(0.657090\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.9282 −0.529116
\(598\) 0 0
\(599\) 11.2679 0.460396 0.230198 0.973144i \(-0.426063\pi\)
0.230198 + 0.973144i \(0.426063\pi\)
\(600\) 0 0
\(601\) −38.3923 −1.56605 −0.783027 0.621987i \(-0.786326\pi\)
−0.783027 + 0.621987i \(0.786326\pi\)
\(602\) 0 0
\(603\) −9.66025 −0.393396
\(604\) 0 0
\(605\) 18.8564 0.766622
\(606\) 0 0
\(607\) 25.6603 1.04152 0.520759 0.853704i \(-0.325649\pi\)
0.520759 + 0.853704i \(0.325649\pi\)
\(608\) 0 0
\(609\) 3.46410 0.140372
\(610\) 0 0
\(611\) 35.3205 1.42891
\(612\) 0 0
\(613\) 30.1962 1.21961 0.609806 0.792551i \(-0.291248\pi\)
0.609806 + 0.792551i \(0.291248\pi\)
\(614\) 0 0
\(615\) −3.46410 −0.139686
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) 35.8564 1.44119 0.720595 0.693356i \(-0.243869\pi\)
0.720595 + 0.693356i \(0.243869\pi\)
\(620\) 0 0
\(621\) 3.46410 0.139010
\(622\) 0 0
\(623\) 8.53590 0.341984
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 8.00000 0.319489
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −49.5692 −1.97332 −0.986660 0.162796i \(-0.947949\pi\)
−0.986660 + 0.162796i \(0.947949\pi\)
\(632\) 0 0
\(633\) 7.60770 0.302379
\(634\) 0 0
\(635\) −8.39230 −0.333038
\(636\) 0 0
\(637\) −25.5167 −1.01101
\(638\) 0 0
\(639\) 3.66025 0.144797
\(640\) 0 0
\(641\) −41.6603 −1.64548 −0.822741 0.568417i \(-0.807556\pi\)
−0.822741 + 0.568417i \(0.807556\pi\)
\(642\) 0 0
\(643\) −44.3923 −1.75066 −0.875331 0.483525i \(-0.839356\pi\)
−0.875331 + 0.483525i \(0.839356\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.0718 0.671162 0.335581 0.942011i \(-0.391067\pi\)
0.335581 + 0.942011i \(0.391067\pi\)
\(648\) 0 0
\(649\) −77.5692 −3.04486
\(650\) 0 0
\(651\) 1.26795 0.0496948
\(652\) 0 0
\(653\) −16.0000 −0.626128 −0.313064 0.949732i \(-0.601356\pi\)
−0.313064 + 0.949732i \(0.601356\pi\)
\(654\) 0 0
\(655\) 3.26795 0.127689
\(656\) 0 0
\(657\) 4.73205 0.184615
\(658\) 0 0
\(659\) 22.1962 0.864639 0.432320 0.901720i \(-0.357695\pi\)
0.432320 + 0.901720i \(0.357695\pi\)
\(660\) 0 0
\(661\) −38.7846 −1.50855 −0.754273 0.656561i \(-0.772011\pi\)
−0.754273 + 0.656561i \(0.772011\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.85641 −0.0719884
\(666\) 0 0
\(667\) −9.46410 −0.366451
\(668\) 0 0
\(669\) 26.2487 1.01483
\(670\) 0 0
\(671\) 2.92820 0.113042
\(672\) 0 0
\(673\) −15.2679 −0.588536 −0.294268 0.955723i \(-0.595076\pi\)
−0.294268 + 0.955723i \(0.595076\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −2.14359 −0.0823850 −0.0411925 0.999151i \(-0.513116\pi\)
−0.0411925 + 0.999151i \(0.513116\pi\)
\(678\) 0 0
\(679\) 21.4641 0.823717
\(680\) 0 0
\(681\) 7.07180 0.270992
\(682\) 0 0
\(683\) −3.07180 −0.117539 −0.0587695 0.998272i \(-0.518718\pi\)
−0.0587695 + 0.998272i \(0.518718\pi\)
\(684\) 0 0
\(685\) 5.46410 0.208773
\(686\) 0 0
\(687\) −2.00000 −0.0763048
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) 0 0
\(693\) 6.92820 0.263181
\(694\) 0 0
\(695\) −17.8564 −0.677332
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −9.85641 −0.372804
\(700\) 0 0
\(701\) −50.7846 −1.91811 −0.959054 0.283223i \(-0.908596\pi\)
−0.959054 + 0.283223i \(0.908596\pi\)
\(702\) 0 0
\(703\) −11.2154 −0.422996
\(704\) 0 0
\(705\) −7.46410 −0.281114
\(706\) 0 0
\(707\) 19.6077 0.737423
\(708\) 0 0
\(709\) −23.8564 −0.895946 −0.447973 0.894047i \(-0.647854\pi\)
−0.447973 + 0.894047i \(0.647854\pi\)
\(710\) 0 0
\(711\) −16.9282 −0.634857
\(712\) 0 0
\(713\) −3.46410 −0.129732
\(714\) 0 0
\(715\) −25.8564 −0.966975
\(716\) 0 0
\(717\) −6.92820 −0.258738
\(718\) 0 0
\(719\) −13.1769 −0.491416 −0.245708 0.969344i \(-0.579020\pi\)
−0.245708 + 0.969344i \(0.579020\pi\)
\(720\) 0 0
\(721\) −22.3923 −0.833933
\(722\) 0 0
\(723\) −4.92820 −0.183282
\(724\) 0 0
\(725\) 2.73205 0.101466
\(726\) 0 0
\(727\) 30.0526 1.11459 0.557294 0.830315i \(-0.311840\pi\)
0.557294 + 0.830315i \(0.311840\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 47.8564 1.76762 0.883808 0.467849i \(-0.154971\pi\)
0.883808 + 0.467849i \(0.154971\pi\)
\(734\) 0 0
\(735\) 5.39230 0.198898
\(736\) 0 0
\(737\) 52.7846 1.94435
\(738\) 0 0
\(739\) −20.9282 −0.769856 −0.384928 0.922947i \(-0.625774\pi\)
−0.384928 + 0.922947i \(0.625774\pi\)
\(740\) 0 0
\(741\) −6.92820 −0.254514
\(742\) 0 0
\(743\) 22.9282 0.841154 0.420577 0.907257i \(-0.361828\pi\)
0.420577 + 0.907257i \(0.361828\pi\)
\(744\) 0 0
\(745\) 11.4641 0.420012
\(746\) 0 0
\(747\) −3.46410 −0.126745
\(748\) 0 0
\(749\) −18.2487 −0.666793
\(750\) 0 0
\(751\) 29.8564 1.08948 0.544738 0.838606i \(-0.316629\pi\)
0.544738 + 0.838606i \(0.316629\pi\)
\(752\) 0 0
\(753\) −14.9282 −0.544014
\(754\) 0 0
\(755\) −3.07180 −0.111794
\(756\) 0 0
\(757\) 24.4449 0.888464 0.444232 0.895912i \(-0.353477\pi\)
0.444232 + 0.895912i \(0.353477\pi\)
\(758\) 0 0
\(759\) −18.9282 −0.687050
\(760\) 0 0
\(761\) 35.1244 1.27326 0.636628 0.771171i \(-0.280329\pi\)
0.636628 + 0.771171i \(0.280329\pi\)
\(762\) 0 0
\(763\) 5.56922 0.201619
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 67.1769 2.42562
\(768\) 0 0
\(769\) −35.3205 −1.27369 −0.636845 0.770992i \(-0.719761\pi\)
−0.636845 + 0.770992i \(0.719761\pi\)
\(770\) 0 0
\(771\) 16.7846 0.604483
\(772\) 0 0
\(773\) −17.0718 −0.614030 −0.307015 0.951705i \(-0.599330\pi\)
−0.307015 + 0.951705i \(0.599330\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −9.71281 −0.348445
\(778\) 0 0
\(779\) 5.07180 0.181716
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) −2.73205 −0.0976355
\(784\) 0 0
\(785\) 0.928203 0.0331290
\(786\) 0 0
\(787\) 19.3205 0.688702 0.344351 0.938841i \(-0.388099\pi\)
0.344351 + 0.938841i \(0.388099\pi\)
\(788\) 0 0
\(789\) −20.7846 −0.739952
\(790\) 0 0
\(791\) −16.3923 −0.582843
\(792\) 0 0
\(793\) −2.53590 −0.0900524
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.3205 0.542680 0.271340 0.962484i \(-0.412533\pi\)
0.271340 + 0.962484i \(0.412533\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −6.73205 −0.237865
\(802\) 0 0
\(803\) −25.8564 −0.912453
\(804\) 0 0
\(805\) 4.39230 0.154808
\(806\) 0 0
\(807\) 28.9808 1.02017
\(808\) 0 0
\(809\) −16.9808 −0.597012 −0.298506 0.954408i \(-0.596488\pi\)
−0.298506 + 0.954408i \(0.596488\pi\)
\(810\) 0 0
\(811\) 29.1769 1.02454 0.512270 0.858824i \(-0.328805\pi\)
0.512270 + 0.858824i \(0.328805\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.73205 −0.0956996
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −6.00000 −0.209657
\(820\) 0 0
\(821\) −38.7321 −1.35176 −0.675879 0.737013i \(-0.736236\pi\)
−0.675879 + 0.737013i \(0.736236\pi\)
\(822\) 0 0
\(823\) −48.4974 −1.69051 −0.845257 0.534360i \(-0.820553\pi\)
−0.845257 + 0.534360i \(0.820553\pi\)
\(824\) 0 0
\(825\) 5.46410 0.190236
\(826\) 0 0
\(827\) −41.3205 −1.43685 −0.718427 0.695602i \(-0.755138\pi\)
−0.718427 + 0.695602i \(0.755138\pi\)
\(828\) 0 0
\(829\) −44.2487 −1.53682 −0.768411 0.639957i \(-0.778952\pi\)
−0.768411 + 0.639957i \(0.778952\pi\)
\(830\) 0 0
\(831\) −10.5885 −0.367310
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −24.7846 −0.857707
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) −32.0526 −1.10658 −0.553289 0.832990i \(-0.686627\pi\)
−0.553289 + 0.832990i \(0.686627\pi\)
\(840\) 0 0
\(841\) −21.5359 −0.742617
\(842\) 0 0
\(843\) 12.5359 0.431759
\(844\) 0 0
\(845\) 9.39230 0.323105
\(846\) 0 0
\(847\) −23.9090 −0.821522
\(848\) 0 0
\(849\) 14.3397 0.492139
\(850\) 0 0
\(851\) 26.5359 0.909639
\(852\) 0 0
\(853\) −9.32051 −0.319128 −0.159564 0.987188i \(-0.551009\pi\)
−0.159564 + 0.987188i \(0.551009\pi\)
\(854\) 0 0
\(855\) 1.46410 0.0500712
\(856\) 0 0
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) 42.6410 1.45489 0.727446 0.686165i \(-0.240707\pi\)
0.727446 + 0.686165i \(0.240707\pi\)
\(860\) 0 0
\(861\) 4.39230 0.149689
\(862\) 0 0
\(863\) 34.9282 1.18897 0.594485 0.804107i \(-0.297356\pi\)
0.594485 + 0.804107i \(0.297356\pi\)
\(864\) 0 0
\(865\) −10.0000 −0.340010
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 92.4974 3.13776
\(870\) 0 0
\(871\) −45.7128 −1.54892
\(872\) 0 0
\(873\) −16.9282 −0.572933
\(874\) 0 0
\(875\) −1.26795 −0.0428645
\(876\) 0 0
\(877\) 23.1769 0.782629 0.391314 0.920257i \(-0.372021\pi\)
0.391314 + 0.920257i \(0.372021\pi\)
\(878\) 0 0
\(879\) 9.85641 0.332448
\(880\) 0 0
\(881\) 9.26795 0.312245 0.156123 0.987738i \(-0.450101\pi\)
0.156123 + 0.987738i \(0.450101\pi\)
\(882\) 0 0
\(883\) −42.5359 −1.43145 −0.715723 0.698384i \(-0.753903\pi\)
−0.715723 + 0.698384i \(0.753903\pi\)
\(884\) 0 0
\(885\) −14.1962 −0.477198
\(886\) 0 0
\(887\) 50.7846 1.70518 0.852590 0.522580i \(-0.175030\pi\)
0.852590 + 0.522580i \(0.175030\pi\)
\(888\) 0 0
\(889\) 10.6410 0.356888
\(890\) 0 0
\(891\) −5.46410 −0.183054
\(892\) 0 0
\(893\) 10.9282 0.365698
\(894\) 0 0
\(895\) −5.07180 −0.169531
\(896\) 0 0
\(897\) 16.3923 0.547323
\(898\) 0 0
\(899\) 2.73205 0.0911190
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.3923 −0.478416
\(906\) 0 0
\(907\) 21.2679 0.706191 0.353095 0.935587i \(-0.385129\pi\)
0.353095 + 0.935587i \(0.385129\pi\)
\(908\) 0 0
\(909\) −15.4641 −0.512912
\(910\) 0 0
\(911\) 28.3923 0.940679 0.470340 0.882486i \(-0.344131\pi\)
0.470340 + 0.882486i \(0.344131\pi\)
\(912\) 0 0
\(913\) 18.9282 0.626432
\(914\) 0 0
\(915\) 0.535898 0.0177163
\(916\) 0 0
\(917\) −4.14359 −0.136834
\(918\) 0 0
\(919\) −17.4641 −0.576088 −0.288044 0.957617i \(-0.593005\pi\)
−0.288044 + 0.957617i \(0.593005\pi\)
\(920\) 0 0
\(921\) 18.7321 0.617242
\(922\) 0 0
\(923\) 17.3205 0.570111
\(924\) 0 0
\(925\) −7.66025 −0.251868
\(926\) 0 0
\(927\) 17.6603 0.580039
\(928\) 0 0
\(929\) −28.9808 −0.950828 −0.475414 0.879762i \(-0.657702\pi\)
−0.475414 + 0.879762i \(0.657702\pi\)
\(930\) 0 0
\(931\) −7.89488 −0.258744
\(932\) 0 0
\(933\) 12.7321 0.416829
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −23.0718 −0.753723 −0.376861 0.926270i \(-0.622997\pi\)
−0.376861 + 0.926270i \(0.622997\pi\)
\(938\) 0 0
\(939\) 7.66025 0.249983
\(940\) 0 0
\(941\) −51.5167 −1.67940 −0.839698 0.543054i \(-0.817268\pi\)
−0.839698 + 0.543054i \(0.817268\pi\)
\(942\) 0 0
\(943\) −12.0000 −0.390774
\(944\) 0 0
\(945\) 1.26795 0.0412464
\(946\) 0 0
\(947\) 27.4641 0.892463 0.446232 0.894917i \(-0.352766\pi\)
0.446232 + 0.894917i \(0.352766\pi\)
\(948\) 0 0
\(949\) 22.3923 0.726885
\(950\) 0 0
\(951\) −2.92820 −0.0949535
\(952\) 0 0
\(953\) 34.2487 1.10942 0.554712 0.832042i \(-0.312828\pi\)
0.554712 + 0.832042i \(0.312828\pi\)
\(954\) 0 0
\(955\) −7.26795 −0.235185
\(956\) 0 0
\(957\) 14.9282 0.482560
\(958\) 0 0
\(959\) −6.92820 −0.223723
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 14.3923 0.463786
\(964\) 0 0
\(965\) 4.92820 0.158644
\(966\) 0 0
\(967\) 23.3205 0.749937 0.374968 0.927038i \(-0.377654\pi\)
0.374968 + 0.927038i \(0.377654\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.41154 0.173665 0.0868323 0.996223i \(-0.472326\pi\)
0.0868323 + 0.996223i \(0.472326\pi\)
\(972\) 0 0
\(973\) 22.6410 0.725838
\(974\) 0 0
\(975\) −4.73205 −0.151547
\(976\) 0 0
\(977\) −17.7128 −0.566683 −0.283342 0.959019i \(-0.591443\pi\)
−0.283342 + 0.959019i \(0.591443\pi\)
\(978\) 0 0
\(979\) 36.7846 1.17564
\(980\) 0 0
\(981\) −4.39230 −0.140236
\(982\) 0 0
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) 0 0
\(985\) −13.4641 −0.429002
\(986\) 0 0
\(987\) 9.46410 0.301246
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 13.0718 0.415239 0.207620 0.978210i \(-0.433428\pi\)
0.207620 + 0.978210i \(0.433428\pi\)
\(992\) 0 0
\(993\) 22.7846 0.723048
\(994\) 0 0
\(995\) 12.9282 0.409852
\(996\) 0 0
\(997\) 29.3205 0.928590 0.464295 0.885681i \(-0.346308\pi\)
0.464295 + 0.885681i \(0.346308\pi\)
\(998\) 0 0
\(999\) 7.66025 0.242360
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bf.1.2 2
4.3 odd 2 3720.2.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.k.1.1 2 4.3 odd 2
7440.2.a.bf.1.2 2 1.1 even 1 trivial