Properties

Label 7488.2.a.cz
Level $7488$
Weight $2$
Character orbit 7488.a
Self dual yes
Analytic conductor $59.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7488,2,Mod(1,7488)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7488, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7488.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7488.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.7919810335\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 3744)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{5} - \beta_{2} q^{7} + (\beta_{2} + \beta_1) q^{11} - q^{13} + (2 \beta_{3} + 2) q^{17} + ( - \beta_{2} + 2 \beta_1) q^{19} + ( - 2 \beta_{3} + 1) q^{25} - 4 q^{29} - \beta_{2} q^{31}+ \cdots + (4 \beta_{3} + 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{13} + 8 q^{17} + 4 q^{25} - 16 q^{29} + 8 q^{37} + 12 q^{41} + 12 q^{49} - 16 q^{53} + 4 q^{65} + 24 q^{73} - 40 q^{77} + 32 q^{85} + 36 q^{89} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 3\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.17557
1.17557
1.90211
−1.90211
0 0 0 −3.23607 0 −3.80423 0 0 0
1.2 0 0 0 −3.23607 0 3.80423 0 0 0
1.3 0 0 0 1.23607 0 −2.35114 0 0 0
1.4 0 0 0 1.23607 0 2.35114 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7488.2.a.cz 4
3.b odd 2 1 7488.2.a.dd 4
4.b odd 2 1 inner 7488.2.a.cz 4
8.b even 2 1 3744.2.a.bf yes 4
8.d odd 2 1 3744.2.a.bf yes 4
12.b even 2 1 7488.2.a.dd 4
24.f even 2 1 3744.2.a.bb 4
24.h odd 2 1 3744.2.a.bb 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3744.2.a.bb 4 24.f even 2 1
3744.2.a.bb 4 24.h odd 2 1
3744.2.a.bf yes 4 8.b even 2 1
3744.2.a.bf yes 4 8.d odd 2 1
7488.2.a.cz 4 1.a even 1 1 trivial
7488.2.a.cz 4 4.b odd 2 1 inner
7488.2.a.dd 4 3.b odd 2 1
7488.2.a.dd 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7488))\):

\( T_{5}^{2} + 2T_{5} - 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 20T_{7}^{2} + 80 \) Copy content Toggle raw display
\( T_{11}^{4} - 40T_{11}^{2} + 80 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 16 \) Copy content Toggle raw display
\( T_{19}^{4} - 100T_{19}^{2} + 2000 \) Copy content Toggle raw display
\( T_{29} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 2 T - 4)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 20T^{2} + 80 \) Copy content Toggle raw display
$11$ \( T^{4} - 40T^{2} + 80 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 16)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 100T^{2} + 2000 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T + 4)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 20T^{2} + 80 \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T - 76)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 6 T + 4)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 80T^{2} + 1280 \) Copy content Toggle raw display
$47$ \( T^{4} - 200T^{2} + 9680 \) Copy content Toggle raw display
$53$ \( (T^{2} + 8 T - 64)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 200T^{2} + 9680 \) Copy content Toggle raw display
$61$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 260T^{2} + 9680 \) Copy content Toggle raw display
$71$ \( T^{4} - 40T^{2} + 80 \) Copy content Toggle raw display
$73$ \( (T - 6)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - 320 T^{2} + 20480 \) Copy content Toggle raw display
$83$ \( T^{4} - 200T^{2} + 2000 \) Copy content Toggle raw display
$89$ \( (T^{2} - 18 T + 36)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 4 T - 76)^{2} \) Copy content Toggle raw display
show more
show less