Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7488,2,Mod(1,7488)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7488, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7488.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7488.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(59.7919810335\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1248) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 7488.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.00000 | −0.755929 | −0.377964 | − | 0.925820i | \(-0.623376\pi\) | ||||
−0.377964 | + | 0.925820i | \(0.623376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −4.00000 | −1.20605 | −0.603023 | − | 0.797724i | \(-0.706037\pi\) | ||||
−0.603023 | + | 0.797724i | \(0.706037\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 6.00000 | 1.37649 | 0.688247 | − | 0.725476i | \(-0.258380\pi\) | ||||
0.688247 | + | 0.725476i | \(0.258380\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 6.00000 | 1.07763 | 0.538816 | − | 0.842424i | \(-0.318872\pi\) | ||||
0.538816 | + | 0.842424i | \(0.318872\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −10.0000 | −1.64399 | −0.821995 | − | 0.569495i | \(-0.807139\pi\) | ||||
−0.821995 | + | 0.569495i | \(0.807139\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −8.00000 | −1.24939 | −0.624695 | − | 0.780869i | \(-0.714777\pi\) | ||||
−0.624695 | + | 0.780869i | \(0.714777\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 12.0000 | 1.82998 | 0.914991 | − | 0.403473i | \(-0.132197\pi\) | ||||
0.914991 | + | 0.403473i | \(0.132197\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000 | 1.75038 | 0.875190 | − | 0.483779i | \(-0.160736\pi\) | ||||
0.875190 | + | 0.483779i | \(0.160736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 2.00000 | 0.244339 | 0.122169 | − | 0.992509i | \(-0.461015\pi\) | ||||
0.122169 | + | 0.992509i | \(0.461015\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −8.00000 | −0.949425 | −0.474713 | − | 0.880141i | \(-0.657448\pi\) | ||||
−0.474713 | + | 0.880141i | \(0.657448\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 14.0000 | 1.63858 | 0.819288 | − | 0.573382i | \(-0.194369\pi\) | ||||
0.819288 | + | 0.573382i | \(0.194369\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 8.00000 | 0.911685 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −8.00000 | −0.878114 | −0.439057 | − | 0.898459i | \(-0.644687\pi\) | ||||
−0.439057 | + | 0.898459i | \(0.644687\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −4.00000 | −0.423999 | −0.212000 | − | 0.977270i | \(-0.567998\pi\) | ||||
−0.212000 | + | 0.977270i | \(0.567998\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 2.00000 | 0.209657 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.0000 | 1.42148 | 0.710742 | − | 0.703452i | \(-0.248359\pi\) | ||||
0.710742 | + | 0.703452i | \(0.248359\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −18.0000 | −1.79107 | −0.895533 | − | 0.444994i | \(-0.853206\pi\) | ||||
−0.895533 | + | 0.444994i | \(0.853206\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 4.00000 | 0.386695 | 0.193347 | − | 0.981130i | \(-0.438066\pi\) | ||||
0.193347 | + | 0.981130i | \(0.438066\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 10.0000 | 0.940721 | 0.470360 | − | 0.882474i | \(-0.344124\pi\) | ||||
0.470360 | + | 0.882474i | \(0.344124\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −12.0000 | −1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −20.0000 | −1.74741 | −0.873704 | − | 0.486458i | \(-0.838289\pi\) | ||||
−0.873704 | + | 0.486458i | \(0.838289\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −12.0000 | −1.04053 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −8.00000 | −0.683486 | −0.341743 | − | 0.939793i | \(-0.611017\pi\) | ||||
−0.341743 | + | 0.939793i | \(0.611017\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 4.00000 | 0.334497 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −12.0000 | −0.983078 | −0.491539 | − | 0.870855i | \(-0.663566\pi\) | ||||
−0.491539 | + | 0.870855i | \(0.663566\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 10.0000 | 0.813788 | 0.406894 | − | 0.913475i | \(-0.366612\pi\) | ||||
0.406894 | + | 0.913475i | \(0.366612\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −18.0000 | −1.43656 | −0.718278 | − | 0.695756i | \(-0.755069\pi\) | ||||
−0.718278 | + | 0.695756i | \(0.755069\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 10.0000 | 0.783260 | 0.391630 | − | 0.920123i | \(-0.371911\pi\) | ||||
0.391630 | + | 0.920123i | \(0.371911\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −18.0000 | −1.36851 | −0.684257 | − | 0.729241i | \(-0.739873\pi\) | ||||
−0.684257 | + | 0.729241i | \(0.739873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 10.0000 | 0.755929 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −24.0000 | −1.75505 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −6.00000 | −0.431889 | −0.215945 | − | 0.976406i | \(-0.569283\pi\) | ||||
−0.215945 | + | 0.976406i | \(0.569283\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 4.00000 | 0.280745 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −24.0000 | −1.66011 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −28.0000 | −1.92760 | −0.963800 | − | 0.266627i | \(-0.914091\pi\) | ||||
−0.963800 | + | 0.266627i | \(0.914091\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −12.0000 | −0.814613 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −6.00000 | −0.403604 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −26.0000 | −1.74109 | −0.870544 | − | 0.492090i | \(-0.836233\pi\) | ||||
−0.870544 | + | 0.492090i | \(0.836233\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −4.00000 | −0.265489 | −0.132745 | − | 0.991150i | \(-0.542379\pi\) | ||||
−0.132745 | + | 0.991150i | \(0.542379\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 10.0000 | 0.660819 | 0.330409 | − | 0.943838i | \(-0.392813\pi\) | ||||
0.330409 | + | 0.943838i | \(0.392813\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 18.0000 | 1.17922 | 0.589610 | − | 0.807688i | \(-0.299282\pi\) | ||||
0.589610 | + | 0.807688i | \(0.299282\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −16.0000 | −1.03495 | −0.517477 | − | 0.855697i | \(-0.673129\pi\) | ||||
−0.517477 | + | 0.855697i | \(0.673129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −6.00000 | −0.381771 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −14.0000 | −0.873296 | −0.436648 | − | 0.899632i | \(-0.643834\pi\) | ||||
−0.436648 | + | 0.899632i | \(0.643834\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 20.0000 | 1.24274 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −32.0000 | −1.97320 | −0.986602 | − | 0.163144i | \(-0.947836\pi\) | ||||
−0.986602 | + | 0.163144i | \(0.947836\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −10.0000 | −0.609711 | −0.304855 | − | 0.952399i | \(-0.598608\pi\) | ||||
−0.304855 | + | 0.952399i | \(0.598608\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −2.00000 | −0.121491 | −0.0607457 | − | 0.998153i | \(-0.519348\pi\) | ||||
−0.0607457 | + | 0.998153i | \(0.519348\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 20.0000 | 1.20605 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −22.0000 | −1.32185 | −0.660926 | − | 0.750451i | \(-0.729836\pi\) | ||||
−0.660926 | + | 0.750451i | \(0.729836\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 16.0000 | 0.944450 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −12.0000 | −0.701047 | −0.350524 | − | 0.936554i | \(-0.613996\pi\) | ||||
−0.350524 | + | 0.936554i | \(0.613996\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −24.0000 | −1.38334 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 22.0000 | 1.25561 | 0.627803 | − | 0.778372i | \(-0.283954\pi\) | ||||
0.627803 | + | 0.778372i | \(0.283954\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −16.0000 | −0.907277 | −0.453638 | − | 0.891186i | \(-0.649874\pi\) | ||||
−0.453638 | + | 0.891186i | \(0.649874\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −6.00000 | −0.339140 | −0.169570 | − | 0.985518i | \(-0.554238\pi\) | ||||
−0.169570 | + | 0.985518i | \(0.554238\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 8.00000 | 0.447914 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 36.0000 | 2.00309 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 5.00000 | 0.277350 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −24.0000 | −1.32316 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −14.0000 | −0.769510 | −0.384755 | − | 0.923019i | \(-0.625714\pi\) | ||||
−0.384755 | + | 0.923019i | \(0.625714\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 18.0000 | 0.980522 | 0.490261 | − | 0.871576i | \(-0.336901\pi\) | ||||
0.490261 | + | 0.871576i | \(0.336901\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −24.0000 | −1.29967 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000 | 1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −4.00000 | −0.214731 | −0.107366 | − | 0.994220i | \(-0.534242\pi\) | ||||
−0.107366 | + | 0.994220i | \(0.534242\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −18.0000 | −0.963518 | −0.481759 | − | 0.876304i | \(-0.660002\pi\) | ||||
−0.481759 | + | 0.876304i | \(0.660002\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 8.00000 | 0.425797 | 0.212899 | − | 0.977074i | \(-0.431710\pi\) | ||||
0.212899 | + | 0.977074i | \(0.431710\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 36.0000 | 1.90001 | 0.950004 | − | 0.312239i | \(-0.101079\pi\) | ||||
0.950004 | + | 0.312239i | \(0.101079\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 17.0000 | 0.894737 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.00000 | 0.417597 | 0.208798 | − | 0.977959i | \(-0.433045\pi\) | ||||
0.208798 | + | 0.977959i | \(0.433045\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 12.0000 | 0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 26.0000 | 1.34623 | 0.673114 | − | 0.739538i | \(-0.264956\pi\) | ||||
0.673114 | + | 0.739538i | \(0.264956\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 2.00000 | 0.103005 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −18.0000 | −0.924598 | −0.462299 | − | 0.886724i | \(-0.652975\pi\) | ||||
−0.462299 | + | 0.886724i | \(0.652975\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −36.0000 | −1.83951 | −0.919757 | − | 0.392488i | \(-0.871614\pi\) | ||||
−0.919757 | + | 0.392488i | \(0.871614\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 2.00000 | 0.101404 | 0.0507020 | − | 0.998714i | \(-0.483854\pi\) | ||||
0.0507020 | + | 0.998714i | \(0.483854\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 22.0000 | 1.10415 | 0.552074 | − | 0.833795i | \(-0.313837\pi\) | ||||
0.552074 | + | 0.833795i | \(0.313837\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 12.0000 | 0.599251 | 0.299626 | − | 0.954057i | \(-0.403138\pi\) | ||||
0.299626 | + | 0.954057i | \(0.403138\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −6.00000 | −0.298881 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 40.0000 | 1.98273 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −2.00000 | −0.0988936 | −0.0494468 | − | 0.998777i | \(-0.515746\pi\) | ||||
−0.0494468 | + | 0.998777i | \(0.515746\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 12.0000 | 0.586238 | 0.293119 | − | 0.956076i | \(-0.405307\pi\) | ||||
0.293119 | + | 0.956076i | \(0.405307\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 2.00000 | 0.0974740 | 0.0487370 | − | 0.998812i | \(-0.484480\pi\) | ||||
0.0487370 | + | 0.998812i | \(0.484480\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −30.0000 | −1.45521 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 4.00000 | 0.193574 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 28.0000 | 1.34871 | 0.674356 | − | 0.738406i | \(-0.264421\pi\) | ||||
0.674356 | + | 0.738406i | \(0.264421\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −34.0000 | −1.63394 | −0.816968 | − | 0.576683i | \(-0.804347\pi\) | ||||
−0.816968 | + | 0.576683i | \(0.804347\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 4.00000 | 0.190910 | 0.0954548 | − | 0.995434i | \(-0.469569\pi\) | ||||
0.0954548 | + | 0.995434i | \(0.469569\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −4.00000 | −0.190046 | −0.0950229 | − | 0.995475i | \(-0.530292\pi\) | ||||
−0.0950229 | + | 0.995475i | \(0.530292\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 20.0000 | 0.943858 | 0.471929 | − | 0.881636i | \(-0.343558\pi\) | ||||
0.471929 | + | 0.881636i | \(0.343558\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 32.0000 | 1.50682 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −34.0000 | −1.59045 | −0.795226 | − | 0.606313i | \(-0.792648\pi\) | ||||
−0.795226 | + | 0.606313i | \(0.792648\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 32.0000 | 1.49039 | 0.745194 | − | 0.666847i | \(-0.232357\pi\) | ||||
0.745194 | + | 0.666847i | \(0.232357\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −34.0000 | −1.58011 | −0.790057 | − | 0.613033i | \(-0.789949\pi\) | ||||
−0.790057 | + | 0.613033i | \(0.789949\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −28.0000 | −1.29569 | −0.647843 | − | 0.761774i | \(-0.724329\pi\) | ||||
−0.647843 | + | 0.761774i | \(0.724329\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −48.0000 | −2.20704 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −30.0000 | −1.37649 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 40.0000 | 1.82765 | 0.913823 | − | 0.406112i | \(-0.133116\pi\) | ||||
0.913823 | + | 0.406112i | \(0.133116\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 10.0000 | 0.455961 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 6.00000 | 0.271886 | 0.135943 | − | 0.990717i | \(-0.456594\pi\) | ||||
0.135943 | + | 0.990717i | \(0.456594\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 20.0000 | 0.902587 | 0.451294 | − | 0.892375i | \(-0.350963\pi\) | ||||
0.451294 | + | 0.892375i | \(0.350963\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −12.0000 | −0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 16.0000 | 0.717698 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −22.0000 | −0.984855 | −0.492428 | − | 0.870353i | \(-0.663890\pi\) | ||||
−0.492428 | + | 0.870353i | \(0.663890\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −24.0000 | −1.07011 | −0.535054 | − | 0.844818i | \(-0.679709\pi\) | ||||
−0.535054 | + | 0.844818i | \(0.679709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 24.0000 | 1.06378 | 0.531891 | − | 0.846813i | \(-0.321482\pi\) | ||||
0.531891 | + | 0.846813i | \(0.321482\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −28.0000 | −1.23865 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −48.0000 | −2.11104 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 10.0000 | 0.438108 | 0.219054 | − | 0.975713i | \(-0.429703\pi\) | ||||
0.219054 | + | 0.975713i | \(0.429703\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −40.0000 | −1.74908 | −0.874539 | − | 0.484955i | \(-0.838836\pi\) | ||||
−0.874539 | + | 0.484955i | \(0.838836\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 36.0000 | 1.56818 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 8.00000 | 0.346518 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 12.0000 | 0.516877 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000 | 0.342055 | 0.171028 | − | 0.985266i | \(-0.445291\pi\) | ||||
0.171028 | + | 0.985266i | \(0.445291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −12.0000 | −0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000 | 0.340195 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −36.0000 | −1.52537 | −0.762684 | − | 0.646771i | \(-0.776119\pi\) | ||||
−0.762684 | + | 0.646771i | \(0.776119\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −12.0000 | −0.507546 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −36.0000 | −1.51722 | −0.758610 | − | 0.651546i | \(-0.774121\pi\) | ||||
−0.758610 | + | 0.651546i | \(0.774121\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 18.0000 | 0.754599 | 0.377300 | − | 0.926091i | \(-0.376853\pi\) | ||||
0.377300 | + | 0.926091i | \(0.376853\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 8.00000 | 0.334790 | 0.167395 | − | 0.985890i | \(-0.446465\pi\) | ||||
0.167395 | + | 0.985890i | \(0.446465\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −22.0000 | −0.915872 | −0.457936 | − | 0.888985i | \(-0.651411\pi\) | ||||
−0.457936 | + | 0.888985i | \(0.651411\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 16.0000 | 0.663792 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 24.0000 | 0.993978 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 36.0000 | 1.48335 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −20.0000 | −0.821302 | −0.410651 | − | 0.911793i | \(-0.634698\pi\) | ||||
−0.410651 | + | 0.911793i | \(0.634698\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 32.0000 | 1.30748 | 0.653742 | − | 0.756717i | \(-0.273198\pi\) | ||||
0.653742 | + | 0.756717i | \(0.273198\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −22.0000 | −0.897399 | −0.448699 | − | 0.893683i | \(-0.648113\pi\) | ||||
−0.448699 | + | 0.893683i | \(0.648113\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −40.0000 | −1.62355 | −0.811775 | − | 0.583970i | \(-0.801498\pi\) | ||||
−0.811775 | + | 0.583970i | \(0.801498\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −12.0000 | −0.485468 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 46.0000 | 1.85792 | 0.928961 | − | 0.370177i | \(-0.120703\pi\) | ||||
0.928961 | + | 0.370177i | \(0.120703\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −24.0000 | −0.966204 | −0.483102 | − | 0.875564i | \(-0.660490\pi\) | ||||
−0.483102 | + | 0.875564i | \(0.660490\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 30.0000 | 1.20580 | 0.602901 | − | 0.797816i | \(-0.294011\pi\) | ||||
0.602901 | + | 0.797816i | \(0.294011\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 8.00000 | 0.320513 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −60.0000 | −2.39236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −6.00000 | −0.238856 | −0.119428 | − | 0.992843i | \(-0.538106\pi\) | ||||
−0.119428 | + | 0.992843i | \(0.538106\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 3.00000 | 0.118864 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 34.0000 | 1.34083 | 0.670415 | − | 0.741987i | \(-0.266116\pi\) | ||||
0.670415 | + | 0.741987i | \(0.266116\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −16.0000 | −0.629025 | −0.314512 | − | 0.949253i | \(-0.601841\pi\) | ||||
−0.314512 | + | 0.949253i | \(0.601841\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 30.0000 | 1.17399 | 0.586995 | − | 0.809590i | \(-0.300311\pi\) | ||||
0.586995 | + | 0.809590i | \(0.300311\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −20.0000 | −0.779089 | −0.389545 | − | 0.921008i | \(-0.627368\pi\) | ||||
−0.389545 | + | 0.921008i | \(0.627368\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 6.00000 | 0.233373 | 0.116686 | − | 0.993169i | \(-0.462773\pi\) | ||||
0.116686 | + | 0.993169i | \(0.462773\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 8.00000 | 0.308837 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −26.0000 | −1.00223 | −0.501113 | − | 0.865382i | \(-0.667076\pi\) | ||||
−0.501113 | + | 0.865382i | \(0.667076\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −30.0000 | −1.15299 | −0.576497 | − | 0.817099i | \(-0.695581\pi\) | ||||
−0.576497 | + | 0.817099i | \(0.695581\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −28.0000 | −1.07454 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 4.00000 | 0.153056 | 0.0765279 | − | 0.997067i | \(-0.475617\pi\) | ||||
0.0765279 | + | 0.997067i | \(0.475617\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 6.00000 | 0.228582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −30.0000 | −1.14125 | −0.570627 | − | 0.821209i | \(-0.693300\pi\) | ||||
−0.570627 | + | 0.821209i | \(0.693300\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −48.0000 | −1.81813 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.0000 | −1.13308 | −0.566542 | − | 0.824033i | \(-0.691719\pi\) | ||||
−0.566542 | + | 0.824033i | \(0.691719\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −60.0000 | −2.26294 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 36.0000 | 1.35392 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −22.0000 | −0.826227 | −0.413114 | − | 0.910679i | \(-0.635559\pi\) | ||||
−0.413114 | + | 0.910679i | \(0.635559\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 8.00000 | 0.297936 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 10.0000 | 0.371391 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −16.0000 | −0.593407 | −0.296704 | − | 0.954970i | \(-0.595887\pi\) | ||||
−0.296704 | + | 0.954970i | \(0.595887\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 72.0000 | 2.66302 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 42.0000 | 1.55131 | 0.775653 | − | 0.631160i | \(-0.217421\pi\) | ||||
0.775653 | + | 0.631160i | \(0.217421\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −8.00000 | −0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −10.0000 | −0.367856 | −0.183928 | − | 0.982940i | \(-0.558881\pi\) | ||||
−0.183928 | + | 0.982940i | \(0.558881\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 40.0000 | 1.46746 | 0.733729 | − | 0.679442i | \(-0.237778\pi\) | ||||
0.733729 | + | 0.679442i | \(0.237778\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −8.00000 | −0.292314 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 4.00000 | 0.145962 | 0.0729810 | − | 0.997333i | \(-0.476749\pi\) | ||||
0.0729810 | + | 0.997333i | \(0.476749\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −10.0000 | −0.363456 | −0.181728 | − | 0.983349i | \(-0.558169\pi\) | ||||
−0.181728 | + | 0.983349i | \(0.558169\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −24.0000 | −0.869999 | −0.435000 | − | 0.900431i | \(-0.643252\pi\) | ||||
−0.435000 | + | 0.900431i | \(0.643252\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −4.00000 | −0.144810 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −30.0000 | −1.08183 | −0.540914 | − | 0.841078i | \(-0.681921\pi\) | ||||
−0.540914 | + | 0.841078i | \(0.681921\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 12.0000 | 0.431610 | 0.215805 | − | 0.976436i | \(-0.430762\pi\) | ||||
0.215805 | + | 0.976436i | \(0.430762\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −30.0000 | −1.07763 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −48.0000 | −1.71978 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 32.0000 | 1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 22.0000 | 0.784215 | 0.392108 | − | 0.919919i | \(-0.371746\pi\) | ||||
0.392108 | + | 0.919919i | \(0.371746\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −20.0000 | −0.711118 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 2.00000 | 0.0710221 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 18.0000 | 0.637593 | 0.318796 | − | 0.947823i | \(-0.396721\pi\) | ||||
0.318796 | + | 0.947823i | \(0.396721\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 72.0000 | 2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −56.0000 | −1.97620 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −14.0000 | −0.492214 | −0.246107 | − | 0.969243i | \(-0.579151\pi\) | ||||
−0.246107 | + | 0.969243i | \(0.579151\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −34.0000 | −1.19390 | −0.596951 | − | 0.802278i | \(-0.703621\pi\) | ||||
−0.596951 | + | 0.802278i | \(0.703621\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 72.0000 | 2.51896 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 20.0000 | 0.698005 | 0.349002 | − | 0.937122i | \(-0.386521\pi\) | ||||
0.349002 | + | 0.937122i | \(0.386521\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 12.0000 | 0.418294 | 0.209147 | − | 0.977884i | \(-0.432931\pi\) | ||||
0.209147 | + | 0.977884i | \(0.432931\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.0000 | 0.417281 | 0.208640 | − | 0.977992i | \(-0.433096\pi\) | ||||
0.208640 | + | 0.977992i | \(0.433096\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 38.0000 | 1.31979 | 0.659897 | − | 0.751356i | \(-0.270600\pi\) | ||||
0.659897 | + | 0.751356i | \(0.270600\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −18.0000 | −0.623663 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −56.0000 | −1.93333 | −0.966667 | − | 0.256036i | \(-0.917584\pi\) | ||||
−0.966667 | + | 0.256036i | \(0.917584\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −10.0000 | −0.343604 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −18.0000 | −0.616308 | −0.308154 | − | 0.951336i | \(-0.599711\pi\) | ||||
−0.308154 | + | 0.951336i | \(0.599711\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −22.0000 | −0.751506 | −0.375753 | − | 0.926720i | \(-0.622616\pi\) | ||||
−0.375753 | + | 0.926720i | \(0.622616\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 44.0000 | 1.50126 | 0.750630 | − | 0.660722i | \(-0.229750\pi\) | ||||
0.750630 | + | 0.660722i | \(0.229750\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −12.0000 | −0.408485 | −0.204242 | − | 0.978920i | \(-0.565473\pi\) | ||||
−0.204242 | + | 0.978920i | \(0.565473\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 16.0000 | 0.542763 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −2.00000 | −0.0677674 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 14.0000 | 0.472746 | 0.236373 | − | 0.971662i | \(-0.424041\pi\) | ||||
0.236373 | + | 0.971662i | \(0.424041\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 2.00000 | 0.0673817 | 0.0336909 | − | 0.999432i | \(-0.489274\pi\) | ||||
0.0336909 | + | 0.999432i | \(0.489274\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 8.00000 | 0.269221 | 0.134611 | − | 0.990899i | \(-0.457022\pi\) | ||||
0.134611 | + | 0.990899i | \(0.457022\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 40.0000 | 1.34307 | 0.671534 | − | 0.740973i | \(-0.265636\pi\) | ||||
0.671534 | + | 0.740973i | \(0.265636\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −16.0000 | −0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 72.0000 | 2.40939 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −12.0000 | −0.400222 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 48.0000 | 1.59381 | 0.796907 | − | 0.604102i | \(-0.206468\pi\) | ||||
0.796907 | + | 0.604102i | \(0.206468\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −32.0000 | −1.06021 | −0.530104 | − | 0.847933i | \(-0.677847\pi\) | ||||
−0.530104 | + | 0.847933i | \(0.677847\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 32.0000 | 1.05905 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 40.0000 | 1.32092 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 36.0000 | 1.18753 | 0.593765 | − | 0.804638i | \(-0.297641\pi\) | ||||
0.593765 | + | 0.804638i | \(0.297641\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 8.00000 | 0.263323 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 50.0000 | 1.64399 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 32.0000 | 1.04989 | 0.524943 | − | 0.851137i | \(-0.324087\pi\) | ||||
0.524943 | + | 0.851137i | \(0.324087\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −18.0000 | −0.589926 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −2.00000 | −0.0653372 | −0.0326686 | − | 0.999466i | \(-0.510401\pi\) | ||||
−0.0326686 | + | 0.999466i | \(0.510401\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 28.0000 | 0.912774 | 0.456387 | − | 0.889781i | \(-0.349143\pi\) | ||||
0.456387 | + | 0.889781i | \(0.349143\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 32.0000 | 1.03986 | 0.519930 | − | 0.854209i | \(-0.325958\pi\) | ||||
0.519930 | + | 0.854209i | \(0.325958\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −14.0000 | −0.454459 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 34.0000 | 1.10137 | 0.550684 | − | 0.834714i | \(-0.314367\pi\) | ||||
0.550684 | + | 0.834714i | \(0.314367\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 16.0000 | 0.516667 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 5.00000 | 0.161290 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −2.00000 | −0.0643157 | −0.0321578 | − | 0.999483i | \(-0.510238\pi\) | ||||
−0.0321578 | + | 0.999483i | \(0.510238\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −12.0000 | −0.385098 | −0.192549 | − | 0.981287i | \(-0.561675\pi\) | ||||
−0.192549 | + | 0.981287i | \(0.561675\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 12.0000 | 0.383914 | 0.191957 | − | 0.981403i | \(-0.438517\pi\) | ||||
0.191957 | + | 0.981403i | \(0.438517\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 16.0000 | 0.511362 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 32.0000 | 1.02064 | 0.510321 | − | 0.859984i | \(-0.329527\pi\) | ||||
0.510321 | + | 0.859984i | \(0.329527\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 32.0000 | 1.01651 | 0.508257 | − | 0.861206i | \(-0.330290\pi\) | ||||
0.508257 | + | 0.861206i | \(0.330290\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 50.0000 | 1.58352 | 0.791758 | − | 0.610835i | \(-0.209166\pi\) | ||||
0.791758 | + | 0.610835i | \(0.209166\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7488.2.a.z.1.1 | 1 | ||
3.2 | odd | 2 | 2496.2.a.f.1.1 | 1 | |||
4.3 | odd | 2 | 7488.2.a.bg.1.1 | 1 | |||
8.3 | odd | 2 | 3744.2.a.i.1.1 | 1 | |||
8.5 | even | 2 | 3744.2.a.h.1.1 | 1 | |||
12.11 | even | 2 | 2496.2.a.y.1.1 | 1 | |||
24.5 | odd | 2 | 1248.2.a.h.1.1 | yes | 1 | ||
24.11 | even | 2 | 1248.2.a.d.1.1 | ✓ | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1248.2.a.d.1.1 | ✓ | 1 | 24.11 | even | 2 | ||
1248.2.a.h.1.1 | yes | 1 | 24.5 | odd | 2 | ||
2496.2.a.f.1.1 | 1 | 3.2 | odd | 2 | |||
2496.2.a.y.1.1 | 1 | 12.11 | even | 2 | |||
3744.2.a.h.1.1 | 1 | 8.5 | even | 2 | |||
3744.2.a.i.1.1 | 1 | 8.3 | odd | 2 | |||
7488.2.a.z.1.1 | 1 | 1.1 | even | 1 | trivial | ||
7488.2.a.bg.1.1 | 1 | 4.3 | odd | 2 |