Properties

Label 75.12.a.c.1.2
Level $75$
Weight $12$
Character 75.1
Self dual yes
Analytic conductor $57.626$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,12,Mod(1,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6257385420\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1801}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-20.7191\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+27.7191 q^{2} +243.000 q^{3} -1279.65 q^{4} +6735.74 q^{6} +72157.2 q^{7} -92239.5 q^{8} +59049.0 q^{9} -509499. q^{11} -310955. q^{12} -1.85516e6 q^{13} +2.00013e6 q^{14} +63931.4 q^{16} -5.94676e6 q^{17} +1.63678e6 q^{18} +6.02189e6 q^{19} +1.75342e7 q^{21} -1.41228e7 q^{22} +4.82627e7 q^{23} -2.24142e7 q^{24} -5.14234e7 q^{26} +1.43489e7 q^{27} -9.23361e7 q^{28} -1.13550e7 q^{29} -1.72184e8 q^{31} +1.90679e8 q^{32} -1.23808e8 q^{33} -1.64839e8 q^{34} -7.55622e7 q^{36} -6.25191e8 q^{37} +1.66921e8 q^{38} -4.50805e8 q^{39} -5.53971e8 q^{41} +4.86032e8 q^{42} -1.52106e9 q^{43} +6.51981e8 q^{44} +1.33780e9 q^{46} -1.19456e9 q^{47} +1.55353e7 q^{48} +3.22934e9 q^{49} -1.44506e9 q^{51} +2.37396e9 q^{52} -1.22320e9 q^{53} +3.97739e8 q^{54} -6.65575e9 q^{56} +1.46332e9 q^{57} -3.14750e8 q^{58} -5.83637e9 q^{59} -6.61097e9 q^{61} -4.77277e9 q^{62} +4.26081e9 q^{63} +5.15451e9 q^{64} -3.43185e9 q^{66} -1.66261e10 q^{67} +7.60978e9 q^{68} +1.17278e10 q^{69} +7.36200e9 q^{71} -5.44665e9 q^{72} +6.35726e9 q^{73} -1.73297e10 q^{74} -7.70593e9 q^{76} -3.67640e10 q^{77} -1.24959e10 q^{78} +2.47565e10 q^{79} +3.48678e9 q^{81} -1.53556e10 q^{82} -3.59416e10 q^{83} -2.24377e10 q^{84} -4.21625e10 q^{86} -2.75926e9 q^{87} +4.69959e10 q^{88} +7.47690e10 q^{89} -1.33863e11 q^{91} -6.17594e10 q^{92} -4.18406e10 q^{93} -3.31121e10 q^{94} +4.63349e10 q^{96} +1.66300e10 q^{97} +8.95144e10 q^{98} -3.00854e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 13 q^{2} + 486 q^{3} - 3111 q^{4} + 3159 q^{6} - 7784 q^{7} - 35139 q^{8} + 118098 q^{9} + 295568 q^{11} - 755973 q^{12} - 657492 q^{13} + 3176796 q^{14} + 2974065 q^{16} - 8579948 q^{17} + 767637 q^{18}+ \cdots + 17452994832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 27.7191 0.612511 0.306256 0.951949i \(-0.400924\pi\)
0.306256 + 0.951949i \(0.400924\pi\)
\(3\) 243.000 0.577350
\(4\) −1279.65 −0.624830
\(5\) 0 0
\(6\) 6735.74 0.353634
\(7\) 72157.2 1.62271 0.811355 0.584554i \(-0.198731\pi\)
0.811355 + 0.584554i \(0.198731\pi\)
\(8\) −92239.5 −0.995227
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) −509499. −0.953857 −0.476929 0.878942i \(-0.658250\pi\)
−0.476929 + 0.878942i \(0.658250\pi\)
\(12\) −310955. −0.360746
\(13\) −1.85516e6 −1.38578 −0.692889 0.721044i \(-0.743662\pi\)
−0.692889 + 0.721044i \(0.743662\pi\)
\(14\) 2.00013e6 0.993928
\(15\) 0 0
\(16\) 63931.4 0.0152424
\(17\) −5.94676e6 −1.01581 −0.507904 0.861414i \(-0.669579\pi\)
−0.507904 + 0.861414i \(0.669579\pi\)
\(18\) 1.63678e6 0.204170
\(19\) 6.02189e6 0.557941 0.278971 0.960300i \(-0.410007\pi\)
0.278971 + 0.960300i \(0.410007\pi\)
\(20\) 0 0
\(21\) 1.75342e7 0.936872
\(22\) −1.41228e7 −0.584248
\(23\) 4.82627e7 1.56354 0.781769 0.623568i \(-0.214318\pi\)
0.781769 + 0.623568i \(0.214318\pi\)
\(24\) −2.24142e7 −0.574594
\(25\) 0 0
\(26\) −5.14234e7 −0.848804
\(27\) 1.43489e7 0.192450
\(28\) −9.23361e7 −1.01392
\(29\) −1.13550e7 −0.102801 −0.0514005 0.998678i \(-0.516368\pi\)
−0.0514005 + 0.998678i \(0.516368\pi\)
\(30\) 0 0
\(31\) −1.72184e8 −1.08020 −0.540098 0.841602i \(-0.681613\pi\)
−0.540098 + 0.841602i \(0.681613\pi\)
\(32\) 1.90679e8 1.00456
\(33\) −1.23808e8 −0.550710
\(34\) −1.64839e8 −0.622194
\(35\) 0 0
\(36\) −7.55622e7 −0.208277
\(37\) −6.25191e8 −1.48219 −0.741094 0.671401i \(-0.765693\pi\)
−0.741094 + 0.671401i \(0.765693\pi\)
\(38\) 1.66921e8 0.341745
\(39\) −4.50805e8 −0.800079
\(40\) 0 0
\(41\) −5.53971e8 −0.746751 −0.373376 0.927680i \(-0.621800\pi\)
−0.373376 + 0.927680i \(0.621800\pi\)
\(42\) 4.86032e8 0.573844
\(43\) −1.52106e9 −1.57787 −0.788934 0.614478i \(-0.789367\pi\)
−0.788934 + 0.614478i \(0.789367\pi\)
\(44\) 6.51981e8 0.595998
\(45\) 0 0
\(46\) 1.33780e9 0.957685
\(47\) −1.19456e9 −0.759747 −0.379873 0.925038i \(-0.624032\pi\)
−0.379873 + 0.925038i \(0.624032\pi\)
\(48\) 1.55353e7 0.00880023
\(49\) 3.22934e9 1.63318
\(50\) 0 0
\(51\) −1.44506e9 −0.586477
\(52\) 2.37396e9 0.865875
\(53\) −1.22320e9 −0.401774 −0.200887 0.979614i \(-0.564382\pi\)
−0.200887 + 0.979614i \(0.564382\pi\)
\(54\) 3.97739e8 0.117878
\(55\) 0 0
\(56\) −6.65575e9 −1.61496
\(57\) 1.46332e9 0.322127
\(58\) −3.14750e8 −0.0629667
\(59\) −5.83637e9 −1.06281 −0.531407 0.847117i \(-0.678336\pi\)
−0.531407 + 0.847117i \(0.678336\pi\)
\(60\) 0 0
\(61\) −6.61097e9 −1.00219 −0.501096 0.865392i \(-0.667070\pi\)
−0.501096 + 0.865392i \(0.667070\pi\)
\(62\) −4.77277e9 −0.661632
\(63\) 4.26081e9 0.540903
\(64\) 5.15451e9 0.600064
\(65\) 0 0
\(66\) −3.43185e9 −0.337316
\(67\) −1.66261e10 −1.50445 −0.752226 0.658905i \(-0.771020\pi\)
−0.752226 + 0.658905i \(0.771020\pi\)
\(68\) 7.60978e9 0.634707
\(69\) 1.17278e10 0.902709
\(70\) 0 0
\(71\) 7.36200e9 0.484256 0.242128 0.970244i \(-0.422155\pi\)
0.242128 + 0.970244i \(0.422155\pi\)
\(72\) −5.44665e9 −0.331742
\(73\) 6.35726e9 0.358917 0.179458 0.983766i \(-0.442565\pi\)
0.179458 + 0.983766i \(0.442565\pi\)
\(74\) −1.73297e10 −0.907857
\(75\) 0 0
\(76\) −7.70593e9 −0.348618
\(77\) −3.67640e10 −1.54783
\(78\) −1.24959e10 −0.490058
\(79\) 2.47565e10 0.905191 0.452595 0.891716i \(-0.350498\pi\)
0.452595 + 0.891716i \(0.350498\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) −1.53556e10 −0.457393
\(83\) −3.59416e10 −1.00154 −0.500769 0.865581i \(-0.666950\pi\)
−0.500769 + 0.865581i \(0.666950\pi\)
\(84\) −2.24377e10 −0.585385
\(85\) 0 0
\(86\) −4.21625e10 −0.966462
\(87\) −2.75926e9 −0.0593522
\(88\) 4.69959e10 0.949304
\(89\) 7.47690e10 1.41931 0.709653 0.704551i \(-0.248852\pi\)
0.709653 + 0.704551i \(0.248852\pi\)
\(90\) 0 0
\(91\) −1.33863e11 −2.24871
\(92\) −6.17594e10 −0.976945
\(93\) −4.18406e10 −0.623651
\(94\) −3.31121e10 −0.465354
\(95\) 0 0
\(96\) 4.63349e10 0.579985
\(97\) 1.66300e10 0.196629 0.0983144 0.995155i \(-0.468655\pi\)
0.0983144 + 0.995155i \(0.468655\pi\)
\(98\) 8.95144e10 1.00034
\(99\) −3.00854e10 −0.317952
\(100\) 0 0
\(101\) −5.30247e10 −0.502008 −0.251004 0.967986i \(-0.580761\pi\)
−0.251004 + 0.967986i \(0.580761\pi\)
\(102\) −4.00558e10 −0.359224
\(103\) −1.00437e9 −0.00853666 −0.00426833 0.999991i \(-0.501359\pi\)
−0.00426833 + 0.999991i \(0.501359\pi\)
\(104\) 1.71119e11 1.37916
\(105\) 0 0
\(106\) −3.39061e10 −0.246091
\(107\) 1.65238e11 1.13893 0.569466 0.822015i \(-0.307150\pi\)
0.569466 + 0.822015i \(0.307150\pi\)
\(108\) −1.83616e10 −0.120249
\(109\) 7.04515e10 0.438576 0.219288 0.975660i \(-0.429627\pi\)
0.219288 + 0.975660i \(0.429627\pi\)
\(110\) 0 0
\(111\) −1.51921e11 −0.855741
\(112\) 4.61312e9 0.0247341
\(113\) −2.07466e11 −1.05929 −0.529646 0.848219i \(-0.677675\pi\)
−0.529646 + 0.848219i \(0.677675\pi\)
\(114\) 4.05619e10 0.197307
\(115\) 0 0
\(116\) 1.45304e10 0.0642331
\(117\) −1.09546e11 −0.461926
\(118\) −1.61779e11 −0.650985
\(119\) −4.29102e11 −1.64836
\(120\) 0 0
\(121\) −2.57228e10 −0.0901567
\(122\) −1.83250e11 −0.613854
\(123\) −1.34615e11 −0.431137
\(124\) 2.20335e11 0.674938
\(125\) 0 0
\(126\) 1.18106e11 0.331309
\(127\) −1.17811e11 −0.316422 −0.158211 0.987405i \(-0.550573\pi\)
−0.158211 + 0.987405i \(0.550573\pi\)
\(128\) −2.47632e11 −0.637017
\(129\) −3.69618e11 −0.910983
\(130\) 0 0
\(131\) 4.60288e11 1.04241 0.521204 0.853432i \(-0.325483\pi\)
0.521204 + 0.853432i \(0.325483\pi\)
\(132\) 1.58431e11 0.344100
\(133\) 4.34523e11 0.905376
\(134\) −4.60860e11 −0.921494
\(135\) 0 0
\(136\) 5.48526e11 1.01096
\(137\) 5.80435e11 1.02752 0.513760 0.857934i \(-0.328252\pi\)
0.513760 + 0.857934i \(0.328252\pi\)
\(138\) 3.25085e11 0.552920
\(139\) 6.94847e11 1.13582 0.567908 0.823092i \(-0.307753\pi\)
0.567908 + 0.823092i \(0.307753\pi\)
\(140\) 0 0
\(141\) −2.90278e11 −0.438640
\(142\) 2.04068e11 0.296612
\(143\) 9.45203e11 1.32183
\(144\) 3.77509e9 0.00508081
\(145\) 0 0
\(146\) 1.76217e11 0.219841
\(147\) 7.84730e11 0.942920
\(148\) 8.00027e11 0.926115
\(149\) −1.12749e11 −0.125774 −0.0628869 0.998021i \(-0.520031\pi\)
−0.0628869 + 0.998021i \(0.520031\pi\)
\(150\) 0 0
\(151\) 2.45742e11 0.254746 0.127373 0.991855i \(-0.459346\pi\)
0.127373 + 0.991855i \(0.459346\pi\)
\(152\) −5.55457e11 −0.555278
\(153\) −3.51150e11 −0.338602
\(154\) −1.01907e12 −0.948065
\(155\) 0 0
\(156\) 5.76873e11 0.499913
\(157\) 5.83317e11 0.488042 0.244021 0.969770i \(-0.421533\pi\)
0.244021 + 0.969770i \(0.421533\pi\)
\(158\) 6.86227e11 0.554439
\(159\) −2.97239e11 −0.231964
\(160\) 0 0
\(161\) 3.48250e12 2.53717
\(162\) 9.66505e10 0.0680568
\(163\) −2.65801e12 −1.80936 −0.904681 0.426089i \(-0.859891\pi\)
−0.904681 + 0.426089i \(0.859891\pi\)
\(164\) 7.08890e11 0.466592
\(165\) 0 0
\(166\) −9.96269e11 −0.613454
\(167\) 1.68070e12 1.00126 0.500632 0.865660i \(-0.333101\pi\)
0.500632 + 0.865660i \(0.333101\pi\)
\(168\) −1.61735e12 −0.932400
\(169\) 1.64947e12 0.920380
\(170\) 0 0
\(171\) 3.55587e11 0.185980
\(172\) 1.94643e12 0.985900
\(173\) 2.11009e12 1.03525 0.517627 0.855606i \(-0.326815\pi\)
0.517627 + 0.855606i \(0.326815\pi\)
\(174\) −7.64841e10 −0.0363539
\(175\) 0 0
\(176\) −3.25730e10 −0.0145391
\(177\) −1.41824e12 −0.613616
\(178\) 2.07253e12 0.869341
\(179\) 8.73323e10 0.0355208 0.0177604 0.999842i \(-0.494346\pi\)
0.0177604 + 0.999842i \(0.494346\pi\)
\(180\) 0 0
\(181\) 2.60066e12 0.995066 0.497533 0.867445i \(-0.334239\pi\)
0.497533 + 0.867445i \(0.334239\pi\)
\(182\) −3.71057e12 −1.37736
\(183\) −1.60646e12 −0.578616
\(184\) −4.45173e12 −1.55607
\(185\) 0 0
\(186\) −1.15978e12 −0.381993
\(187\) 3.02987e12 0.968935
\(188\) 1.52862e12 0.474713
\(189\) 1.03538e12 0.312291
\(190\) 0 0
\(191\) −2.28556e12 −0.650593 −0.325296 0.945612i \(-0.605464\pi\)
−0.325296 + 0.945612i \(0.605464\pi\)
\(192\) 1.25255e12 0.346447
\(193\) −3.11630e12 −0.837671 −0.418836 0.908062i \(-0.637562\pi\)
−0.418836 + 0.908062i \(0.637562\pi\)
\(194\) 4.60968e11 0.120437
\(195\) 0 0
\(196\) −4.13243e12 −1.02046
\(197\) −3.68099e12 −0.883894 −0.441947 0.897041i \(-0.645712\pi\)
−0.441947 + 0.897041i \(0.645712\pi\)
\(198\) −8.33940e11 −0.194749
\(199\) −2.20305e12 −0.500417 −0.250208 0.968192i \(-0.580499\pi\)
−0.250208 + 0.968192i \(0.580499\pi\)
\(200\) 0 0
\(201\) −4.04014e12 −0.868596
\(202\) −1.46980e12 −0.307485
\(203\) −8.19343e11 −0.166816
\(204\) 1.84918e12 0.366448
\(205\) 0 0
\(206\) −2.78402e10 −0.00522880
\(207\) 2.84986e12 0.521179
\(208\) −1.18603e11 −0.0211226
\(209\) −3.06815e12 −0.532196
\(210\) 0 0
\(211\) −1.08697e13 −1.78921 −0.894607 0.446853i \(-0.852545\pi\)
−0.894607 + 0.446853i \(0.852545\pi\)
\(212\) 1.56528e12 0.251040
\(213\) 1.78897e12 0.279585
\(214\) 4.58024e12 0.697609
\(215\) 0 0
\(216\) −1.32354e12 −0.191531
\(217\) −1.24243e13 −1.75284
\(218\) 1.95285e12 0.268633
\(219\) 1.54481e12 0.207221
\(220\) 0 0
\(221\) 1.10322e13 1.40768
\(222\) −4.21112e12 −0.524151
\(223\) −9.89456e12 −1.20149 −0.600744 0.799441i \(-0.705129\pi\)
−0.600744 + 0.799441i \(0.705129\pi\)
\(224\) 1.37588e13 1.63011
\(225\) 0 0
\(226\) −5.75078e12 −0.648829
\(227\) −5.42930e12 −0.597862 −0.298931 0.954275i \(-0.596630\pi\)
−0.298931 + 0.954275i \(0.596630\pi\)
\(228\) −1.87254e12 −0.201275
\(229\) 2.17366e12 0.228085 0.114042 0.993476i \(-0.463620\pi\)
0.114042 + 0.993476i \(0.463620\pi\)
\(230\) 0 0
\(231\) −8.93366e12 −0.893642
\(232\) 1.04738e12 0.102310
\(233\) 1.98130e13 1.89013 0.945067 0.326876i \(-0.105996\pi\)
0.945067 + 0.326876i \(0.105996\pi\)
\(234\) −3.03650e12 −0.282935
\(235\) 0 0
\(236\) 7.46853e12 0.664078
\(237\) 6.01583e12 0.522612
\(238\) −1.18943e13 −1.00964
\(239\) 1.03457e12 0.0858169 0.0429085 0.999079i \(-0.486338\pi\)
0.0429085 + 0.999079i \(0.486338\pi\)
\(240\) 0 0
\(241\) 1.36081e13 1.07821 0.539106 0.842238i \(-0.318762\pi\)
0.539106 + 0.842238i \(0.318762\pi\)
\(242\) −7.13011e11 −0.0552220
\(243\) 8.47289e11 0.0641500
\(244\) 8.45973e12 0.626199
\(245\) 0 0
\(246\) −3.73140e12 −0.264076
\(247\) −1.11716e13 −0.773182
\(248\) 1.58821e13 1.07504
\(249\) −8.73381e12 −0.578239
\(250\) 0 0
\(251\) −2.28023e13 −1.44469 −0.722344 0.691534i \(-0.756935\pi\)
−0.722344 + 0.691534i \(0.756935\pi\)
\(252\) −5.45236e12 −0.337972
\(253\) −2.45898e13 −1.49139
\(254\) −3.26562e12 −0.193812
\(255\) 0 0
\(256\) −1.74206e13 −0.990244
\(257\) −6.13077e12 −0.341101 −0.170550 0.985349i \(-0.554555\pi\)
−0.170550 + 0.985349i \(0.554555\pi\)
\(258\) −1.02455e13 −0.557987
\(259\) −4.51121e13 −2.40516
\(260\) 0 0
\(261\) −6.70500e11 −0.0342670
\(262\) 1.27588e13 0.638486
\(263\) 3.25384e13 1.59456 0.797278 0.603613i \(-0.206273\pi\)
0.797278 + 0.603613i \(0.206273\pi\)
\(264\) 1.14200e13 0.548081
\(265\) 0 0
\(266\) 1.20446e13 0.554553
\(267\) 1.81689e13 0.819437
\(268\) 2.12756e13 0.940027
\(269\) 3.66970e13 1.58852 0.794261 0.607577i \(-0.207858\pi\)
0.794261 + 0.607577i \(0.207858\pi\)
\(270\) 0 0
\(271\) 1.87361e13 0.778659 0.389329 0.921099i \(-0.372707\pi\)
0.389329 + 0.921099i \(0.372707\pi\)
\(272\) −3.80185e11 −0.0154834
\(273\) −3.25288e13 −1.29830
\(274\) 1.60891e13 0.629368
\(275\) 0 0
\(276\) −1.50075e13 −0.564040
\(277\) 3.03044e13 1.11652 0.558260 0.829666i \(-0.311469\pi\)
0.558260 + 0.829666i \(0.311469\pi\)
\(278\) 1.92605e13 0.695700
\(279\) −1.01673e13 −0.360065
\(280\) 0 0
\(281\) 4.93501e13 1.68037 0.840183 0.542304i \(-0.182448\pi\)
0.840183 + 0.542304i \(0.182448\pi\)
\(282\) −8.04623e12 −0.268672
\(283\) 5.45122e12 0.178512 0.0892562 0.996009i \(-0.471551\pi\)
0.0892562 + 0.996009i \(0.471551\pi\)
\(284\) −9.42079e12 −0.302578
\(285\) 0 0
\(286\) 2.62002e13 0.809638
\(287\) −3.99730e13 −1.21176
\(288\) 1.12594e13 0.334854
\(289\) 1.09207e12 0.0318649
\(290\) 0 0
\(291\) 4.04108e12 0.113524
\(292\) −8.13507e12 −0.224262
\(293\) −4.85807e13 −1.31429 −0.657146 0.753763i \(-0.728237\pi\)
−0.657146 + 0.753763i \(0.728237\pi\)
\(294\) 2.17520e13 0.577549
\(295\) 0 0
\(296\) 5.76673e13 1.47511
\(297\) −7.31075e12 −0.183570
\(298\) −3.12531e12 −0.0770378
\(299\) −8.95352e13 −2.16672
\(300\) 0 0
\(301\) −1.09756e14 −2.56042
\(302\) 6.81176e12 0.156035
\(303\) −1.28850e13 −0.289834
\(304\) 3.84988e11 0.00850439
\(305\) 0 0
\(306\) −9.73357e12 −0.207398
\(307\) 6.68455e13 1.39898 0.699489 0.714643i \(-0.253411\pi\)
0.699489 + 0.714643i \(0.253411\pi\)
\(308\) 4.70451e13 0.967132
\(309\) −2.44061e11 −0.00492864
\(310\) 0 0
\(311\) 7.26443e13 1.41586 0.707928 0.706284i \(-0.249630\pi\)
0.707928 + 0.706284i \(0.249630\pi\)
\(312\) 4.15820e13 0.796260
\(313\) −6.27938e13 −1.18147 −0.590735 0.806866i \(-0.701162\pi\)
−0.590735 + 0.806866i \(0.701162\pi\)
\(314\) 1.61690e13 0.298931
\(315\) 0 0
\(316\) −3.16797e13 −0.565590
\(317\) 4.20135e13 0.737161 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(318\) −8.23919e12 −0.142081
\(319\) 5.78534e12 0.0980574
\(320\) 0 0
\(321\) 4.01527e13 0.657563
\(322\) 9.65318e13 1.55404
\(323\) −3.58108e13 −0.566761
\(324\) −4.46187e12 −0.0694256
\(325\) 0 0
\(326\) −7.36778e13 −1.10825
\(327\) 1.71197e13 0.253212
\(328\) 5.10980e13 0.743187
\(329\) −8.61960e13 −1.23285
\(330\) 0 0
\(331\) 1.36334e14 1.88604 0.943019 0.332740i \(-0.107973\pi\)
0.943019 + 0.332740i \(0.107973\pi\)
\(332\) 4.59927e13 0.625792
\(333\) −3.69169e13 −0.494063
\(334\) 4.65874e13 0.613286
\(335\) 0 0
\(336\) 1.12099e12 0.0142802
\(337\) −9.94099e13 −1.24585 −0.622924 0.782282i \(-0.714056\pi\)
−0.622924 + 0.782282i \(0.714056\pi\)
\(338\) 4.57218e13 0.563743
\(339\) −5.04143e13 −0.611583
\(340\) 0 0
\(341\) 8.77273e13 1.03035
\(342\) 9.85655e12 0.113915
\(343\) 9.03418e13 1.02747
\(344\) 1.40302e14 1.57034
\(345\) 0 0
\(346\) 5.84897e13 0.634105
\(347\) −7.96482e13 −0.849892 −0.424946 0.905219i \(-0.639707\pi\)
−0.424946 + 0.905219i \(0.639707\pi\)
\(348\) 3.53089e12 0.0370850
\(349\) −2.33239e13 −0.241135 −0.120568 0.992705i \(-0.538471\pi\)
−0.120568 + 0.992705i \(0.538471\pi\)
\(350\) 0 0
\(351\) −2.66196e13 −0.266693
\(352\) −9.71505e13 −0.958209
\(353\) 7.20065e13 0.699215 0.349608 0.936896i \(-0.386315\pi\)
0.349608 + 0.936896i \(0.386315\pi\)
\(354\) −3.93123e13 −0.375846
\(355\) 0 0
\(356\) −9.56782e13 −0.886825
\(357\) −1.04272e14 −0.951681
\(358\) 2.42077e12 0.0217569
\(359\) 1.02696e13 0.0908941 0.0454470 0.998967i \(-0.485529\pi\)
0.0454470 + 0.998967i \(0.485529\pi\)
\(360\) 0 0
\(361\) −8.02270e13 −0.688702
\(362\) 7.20880e13 0.609489
\(363\) −6.25063e12 −0.0520520
\(364\) 1.71299e14 1.40506
\(365\) 0 0
\(366\) −4.45298e13 −0.354409
\(367\) −1.03116e14 −0.808470 −0.404235 0.914655i \(-0.632462\pi\)
−0.404235 + 0.914655i \(0.632462\pi\)
\(368\) 3.08550e12 0.0238321
\(369\) −3.27114e13 −0.248917
\(370\) 0 0
\(371\) −8.82631e13 −0.651962
\(372\) 5.35414e13 0.389676
\(373\) −1.30172e14 −0.933509 −0.466755 0.884387i \(-0.654577\pi\)
−0.466755 + 0.884387i \(0.654577\pi\)
\(374\) 8.39852e13 0.593484
\(375\) 0 0
\(376\) 1.10185e14 0.756120
\(377\) 2.10653e13 0.142459
\(378\) 2.86997e13 0.191281
\(379\) −6.26815e13 −0.411740 −0.205870 0.978579i \(-0.566002\pi\)
−0.205870 + 0.978579i \(0.566002\pi\)
\(380\) 0 0
\(381\) −2.86282e13 −0.182686
\(382\) −6.33537e13 −0.398495
\(383\) −1.06310e14 −0.659145 −0.329572 0.944130i \(-0.606905\pi\)
−0.329572 + 0.944130i \(0.606905\pi\)
\(384\) −6.01745e13 −0.367782
\(385\) 0 0
\(386\) −8.63809e13 −0.513083
\(387\) −8.98173e13 −0.525956
\(388\) −2.12806e13 −0.122860
\(389\) −7.42336e13 −0.422549 −0.211275 0.977427i \(-0.567761\pi\)
−0.211275 + 0.977427i \(0.567761\pi\)
\(390\) 0 0
\(391\) −2.87007e14 −1.58825
\(392\) −2.97873e14 −1.62539
\(393\) 1.11850e14 0.601834
\(394\) −1.02034e14 −0.541395
\(395\) 0 0
\(396\) 3.84988e13 0.198666
\(397\) 1.48552e14 0.756018 0.378009 0.925802i \(-0.376609\pi\)
0.378009 + 0.925802i \(0.376609\pi\)
\(398\) −6.10665e13 −0.306511
\(399\) 1.05589e14 0.522719
\(400\) 0 0
\(401\) −9.20974e13 −0.443561 −0.221781 0.975097i \(-0.571187\pi\)
−0.221781 + 0.975097i \(0.571187\pi\)
\(402\) −1.11989e14 −0.532025
\(403\) 3.19429e14 1.49691
\(404\) 6.78531e13 0.313669
\(405\) 0 0
\(406\) −2.27115e13 −0.102177
\(407\) 3.18534e14 1.41380
\(408\) 1.33292e14 0.583677
\(409\) −3.23531e13 −0.139778 −0.0698889 0.997555i \(-0.522264\pi\)
−0.0698889 + 0.997555i \(0.522264\pi\)
\(410\) 0 0
\(411\) 1.41046e14 0.593239
\(412\) 1.28524e12 0.00533396
\(413\) −4.21137e14 −1.72464
\(414\) 7.89956e13 0.319228
\(415\) 0 0
\(416\) −3.53740e14 −1.39210
\(417\) 1.68848e14 0.655764
\(418\) −8.50463e13 −0.325976
\(419\) −1.61755e14 −0.611900 −0.305950 0.952048i \(-0.598974\pi\)
−0.305950 + 0.952048i \(0.598974\pi\)
\(420\) 0 0
\(421\) −1.14462e14 −0.421803 −0.210902 0.977507i \(-0.567640\pi\)
−0.210902 + 0.977507i \(0.567640\pi\)
\(422\) −3.01297e14 −1.09591
\(423\) −7.05374e13 −0.253249
\(424\) 1.12828e14 0.399856
\(425\) 0 0
\(426\) 4.95885e13 0.171249
\(427\) −4.77029e14 −1.62627
\(428\) −2.11447e14 −0.711639
\(429\) 2.29684e14 0.763161
\(430\) 0 0
\(431\) 1.01052e14 0.327279 0.163639 0.986520i \(-0.447677\pi\)
0.163639 + 0.986520i \(0.447677\pi\)
\(432\) 9.17346e11 0.00293341
\(433\) −1.21838e14 −0.384680 −0.192340 0.981328i \(-0.561608\pi\)
−0.192340 + 0.981328i \(0.561608\pi\)
\(434\) −3.44390e14 −1.07364
\(435\) 0 0
\(436\) −9.01534e13 −0.274035
\(437\) 2.90633e14 0.872362
\(438\) 4.28208e13 0.126925
\(439\) 2.85736e14 0.836393 0.418197 0.908357i \(-0.362662\pi\)
0.418197 + 0.908357i \(0.362662\pi\)
\(440\) 0 0
\(441\) 1.90689e14 0.544395
\(442\) 3.05803e14 0.862222
\(443\) −4.82498e14 −1.34362 −0.671808 0.740725i \(-0.734482\pi\)
−0.671808 + 0.740725i \(0.734482\pi\)
\(444\) 1.94406e14 0.534693
\(445\) 0 0
\(446\) −2.74268e14 −0.735925
\(447\) −2.73981e13 −0.0726155
\(448\) 3.71935e14 0.973729
\(449\) 6.86974e14 1.77658 0.888291 0.459281i \(-0.151893\pi\)
0.888291 + 0.459281i \(0.151893\pi\)
\(450\) 0 0
\(451\) 2.82248e14 0.712294
\(452\) 2.65485e14 0.661878
\(453\) 5.97154e13 0.147078
\(454\) −1.50495e14 −0.366197
\(455\) 0 0
\(456\) −1.34976e14 −0.320590
\(457\) 2.14744e14 0.503944 0.251972 0.967734i \(-0.418921\pi\)
0.251972 + 0.967734i \(0.418921\pi\)
\(458\) 6.02519e13 0.139705
\(459\) −8.53295e13 −0.195492
\(460\) 0 0
\(461\) −3.22127e14 −0.720563 −0.360281 0.932844i \(-0.617319\pi\)
−0.360281 + 0.932844i \(0.617319\pi\)
\(462\) −2.47633e14 −0.547366
\(463\) −8.81227e13 −0.192483 −0.0962415 0.995358i \(-0.530682\pi\)
−0.0962415 + 0.995358i \(0.530682\pi\)
\(464\) −7.25940e11 −0.00156694
\(465\) 0 0
\(466\) 5.49199e14 1.15773
\(467\) −3.86746e14 −0.805718 −0.402859 0.915262i \(-0.631984\pi\)
−0.402859 + 0.915262i \(0.631984\pi\)
\(468\) 1.40180e14 0.288625
\(469\) −1.19969e15 −2.44129
\(470\) 0 0
\(471\) 1.41746e14 0.281771
\(472\) 5.38344e14 1.05774
\(473\) 7.74980e14 1.50506
\(474\) 1.66753e14 0.320106
\(475\) 0 0
\(476\) 5.49101e14 1.02994
\(477\) −7.22290e13 −0.133925
\(478\) 2.86774e13 0.0525638
\(479\) −5.88123e14 −1.06567 −0.532835 0.846219i \(-0.678873\pi\)
−0.532835 + 0.846219i \(0.678873\pi\)
\(480\) 0 0
\(481\) 1.15983e15 2.05398
\(482\) 3.77205e14 0.660417
\(483\) 8.46248e14 1.46483
\(484\) 3.29162e13 0.0563326
\(485\) 0 0
\(486\) 2.34861e13 0.0392926
\(487\) −3.77139e14 −0.623867 −0.311933 0.950104i \(-0.600977\pi\)
−0.311933 + 0.950104i \(0.600977\pi\)
\(488\) 6.09792e14 0.997408
\(489\) −6.45898e14 −1.04464
\(490\) 0 0
\(491\) −3.71374e13 −0.0587305 −0.0293652 0.999569i \(-0.509349\pi\)
−0.0293652 + 0.999569i \(0.509349\pi\)
\(492\) 1.72260e14 0.269387
\(493\) 6.75253e13 0.104426
\(494\) −3.09667e14 −0.473583
\(495\) 0 0
\(496\) −1.10079e13 −0.0164648
\(497\) 5.31222e14 0.785806
\(498\) −2.42093e14 −0.354178
\(499\) 2.72085e14 0.393688 0.196844 0.980435i \(-0.436931\pi\)
0.196844 + 0.980435i \(0.436931\pi\)
\(500\) 0 0
\(501\) 4.08410e14 0.578081
\(502\) −6.32060e14 −0.884888
\(503\) −1.30904e15 −1.81272 −0.906358 0.422511i \(-0.861149\pi\)
−0.906358 + 0.422511i \(0.861149\pi\)
\(504\) −3.93015e14 −0.538321
\(505\) 0 0
\(506\) −6.81606e14 −0.913494
\(507\) 4.00821e14 0.531382
\(508\) 1.50757e14 0.197710
\(509\) 1.41934e15 1.84135 0.920677 0.390326i \(-0.127638\pi\)
0.920677 + 0.390326i \(0.127638\pi\)
\(510\) 0 0
\(511\) 4.58722e14 0.582418
\(512\) 2.42674e13 0.0304817
\(513\) 8.64076e13 0.107376
\(514\) −1.69939e14 −0.208928
\(515\) 0 0
\(516\) 4.72983e14 0.569209
\(517\) 6.08626e14 0.724690
\(518\) −1.25047e15 −1.47319
\(519\) 5.12751e14 0.597704
\(520\) 0 0
\(521\) −5.15525e14 −0.588359 −0.294180 0.955750i \(-0.595046\pi\)
−0.294180 + 0.955750i \(0.595046\pi\)
\(522\) −1.85856e13 −0.0209889
\(523\) −1.15496e15 −1.29064 −0.645322 0.763911i \(-0.723277\pi\)
−0.645322 + 0.763911i \(0.723277\pi\)
\(524\) −5.89008e14 −0.651328
\(525\) 0 0
\(526\) 9.01935e14 0.976683
\(527\) 1.02393e15 1.09727
\(528\) −7.91524e12 −0.00839416
\(529\) 1.37648e15 1.44465
\(530\) 0 0
\(531\) −3.44632e14 −0.354271
\(532\) −5.56038e14 −0.565706
\(533\) 1.02771e15 1.03483
\(534\) 5.03624e14 0.501914
\(535\) 0 0
\(536\) 1.53358e15 1.49727
\(537\) 2.12217e13 0.0205080
\(538\) 1.01721e15 0.972988
\(539\) −1.64534e15 −1.55782
\(540\) 0 0
\(541\) −1.08911e15 −1.01038 −0.505190 0.863008i \(-0.668578\pi\)
−0.505190 + 0.863008i \(0.668578\pi\)
\(542\) 5.19347e14 0.476937
\(543\) 6.31961e14 0.574502
\(544\) −1.13392e15 −1.02044
\(545\) 0 0
\(546\) −9.01669e14 −0.795221
\(547\) −9.36391e14 −0.817574 −0.408787 0.912630i \(-0.634048\pi\)
−0.408787 + 0.912630i \(0.634048\pi\)
\(548\) −7.42754e14 −0.642025
\(549\) −3.90371e14 −0.334064
\(550\) 0 0
\(551\) −6.83784e13 −0.0573569
\(552\) −1.08177e15 −0.898400
\(553\) 1.78636e15 1.46886
\(554\) 8.40010e14 0.683881
\(555\) 0 0
\(556\) −8.89163e14 −0.709692
\(557\) 3.48191e14 0.275178 0.137589 0.990489i \(-0.456065\pi\)
0.137589 + 0.990489i \(0.456065\pi\)
\(558\) −2.81827e14 −0.220544
\(559\) 2.82182e15 2.18658
\(560\) 0 0
\(561\) 7.36258e14 0.559415
\(562\) 1.36794e15 1.02924
\(563\) −8.78985e14 −0.654916 −0.327458 0.944866i \(-0.606192\pi\)
−0.327458 + 0.944866i \(0.606192\pi\)
\(564\) 3.71454e14 0.274075
\(565\) 0 0
\(566\) 1.51103e14 0.109341
\(567\) 2.51597e14 0.180301
\(568\) −6.79067e14 −0.481944
\(569\) −1.45202e14 −0.102060 −0.0510299 0.998697i \(-0.516250\pi\)
−0.0510299 + 0.998697i \(0.516250\pi\)
\(570\) 0 0
\(571\) −1.99915e15 −1.37831 −0.689156 0.724613i \(-0.742019\pi\)
−0.689156 + 0.724613i \(0.742019\pi\)
\(572\) −1.20953e15 −0.825921
\(573\) −5.55391e14 −0.375620
\(574\) −1.10802e15 −0.742216
\(575\) 0 0
\(576\) 3.04368e14 0.200021
\(577\) 7.69862e13 0.0501125 0.0250562 0.999686i \(-0.492024\pi\)
0.0250562 + 0.999686i \(0.492024\pi\)
\(578\) 3.02712e13 0.0195176
\(579\) −7.57260e14 −0.483630
\(580\) 0 0
\(581\) −2.59345e15 −1.62521
\(582\) 1.12015e14 0.0695345
\(583\) 6.23221e14 0.383235
\(584\) −5.86390e14 −0.357204
\(585\) 0 0
\(586\) −1.34661e15 −0.805019
\(587\) −8.86073e14 −0.524759 −0.262379 0.964965i \(-0.584507\pi\)
−0.262379 + 0.964965i \(0.584507\pi\)
\(588\) −1.00418e15 −0.589164
\(589\) −1.03687e15 −0.602685
\(590\) 0 0
\(591\) −8.94480e14 −0.510316
\(592\) −3.99694e13 −0.0225922
\(593\) −9.32426e14 −0.522172 −0.261086 0.965316i \(-0.584081\pi\)
−0.261086 + 0.965316i \(0.584081\pi\)
\(594\) −2.02647e14 −0.112439
\(595\) 0 0
\(596\) 1.44280e14 0.0785872
\(597\) −5.35341e14 −0.288916
\(598\) −2.48183e15 −1.32714
\(599\) 1.16299e15 0.616208 0.308104 0.951353i \(-0.400305\pi\)
0.308104 + 0.951353i \(0.400305\pi\)
\(600\) 0 0
\(601\) −2.63081e15 −1.36861 −0.684306 0.729195i \(-0.739895\pi\)
−0.684306 + 0.729195i \(0.739895\pi\)
\(602\) −3.04233e15 −1.56829
\(603\) −9.81753e14 −0.501484
\(604\) −3.14465e14 −0.159173
\(605\) 0 0
\(606\) −3.57160e14 −0.177527
\(607\) −1.56499e14 −0.0770857 −0.0385429 0.999257i \(-0.512272\pi\)
−0.0385429 + 0.999257i \(0.512272\pi\)
\(608\) 1.14825e15 0.560487
\(609\) −1.99100e14 −0.0963113
\(610\) 0 0
\(611\) 2.21610e15 1.05284
\(612\) 4.49350e14 0.211569
\(613\) 1.63056e15 0.760859 0.380429 0.924810i \(-0.375776\pi\)
0.380429 + 0.924810i \(0.375776\pi\)
\(614\) 1.85290e15 0.856890
\(615\) 0 0
\(616\) 3.39109e15 1.54044
\(617\) −3.55060e15 −1.59858 −0.799289 0.600947i \(-0.794790\pi\)
−0.799289 + 0.600947i \(0.794790\pi\)
\(618\) −6.76516e12 −0.00301885
\(619\) −7.99938e14 −0.353800 −0.176900 0.984229i \(-0.556607\pi\)
−0.176900 + 0.984229i \(0.556607\pi\)
\(620\) 0 0
\(621\) 6.92517e14 0.300903
\(622\) 2.01363e15 0.867228
\(623\) 5.39512e15 2.30312
\(624\) −2.88206e13 −0.0121952
\(625\) 0 0
\(626\) −1.74059e15 −0.723664
\(627\) −7.45560e14 −0.307264
\(628\) −7.46443e14 −0.304943
\(629\) 3.71786e15 1.50562
\(630\) 0 0
\(631\) 3.38323e14 0.134639 0.0673194 0.997731i \(-0.478555\pi\)
0.0673194 + 0.997731i \(0.478555\pi\)
\(632\) −2.28353e15 −0.900870
\(633\) −2.64133e15 −1.03300
\(634\) 1.16457e15 0.451520
\(635\) 0 0
\(636\) 3.80362e14 0.144938
\(637\) −5.99095e15 −2.26323
\(638\) 1.60364e14 0.0600613
\(639\) 4.34719e14 0.161419
\(640\) 0 0
\(641\) 2.78171e15 1.01529 0.507647 0.861565i \(-0.330515\pi\)
0.507647 + 0.861565i \(0.330515\pi\)
\(642\) 1.11300e15 0.402765
\(643\) 1.37901e15 0.494774 0.247387 0.968917i \(-0.420428\pi\)
0.247387 + 0.968917i \(0.420428\pi\)
\(644\) −4.45639e15 −1.58530
\(645\) 0 0
\(646\) −9.92642e14 −0.347147
\(647\) 4.51705e15 1.56632 0.783162 0.621818i \(-0.213606\pi\)
0.783162 + 0.621818i \(0.213606\pi\)
\(648\) −3.21619e14 −0.110581
\(649\) 2.97362e15 1.01377
\(650\) 0 0
\(651\) −3.01910e15 −1.01200
\(652\) 3.40133e15 1.13054
\(653\) 4.67633e15 1.54128 0.770642 0.637268i \(-0.219936\pi\)
0.770642 + 0.637268i \(0.219936\pi\)
\(654\) 4.74543e14 0.155095
\(655\) 0 0
\(656\) −3.54162e13 −0.0113823
\(657\) 3.75390e14 0.119639
\(658\) −2.38927e15 −0.755133
\(659\) −2.44697e15 −0.766935 −0.383468 0.923554i \(-0.625270\pi\)
−0.383468 + 0.923554i \(0.625270\pi\)
\(660\) 0 0
\(661\) −1.00863e15 −0.310902 −0.155451 0.987844i \(-0.549683\pi\)
−0.155451 + 0.987844i \(0.549683\pi\)
\(662\) 3.77906e15 1.15522
\(663\) 2.68083e15 0.812726
\(664\) 3.31523e15 0.996758
\(665\) 0 0
\(666\) −1.02330e15 −0.302619
\(667\) −5.48022e14 −0.160733
\(668\) −2.15071e15 −0.625620
\(669\) −2.40438e15 −0.693680
\(670\) 0 0
\(671\) 3.36828e15 0.955948
\(672\) 3.34340e15 0.941146
\(673\) −3.14110e15 −0.877000 −0.438500 0.898731i \(-0.644490\pi\)
−0.438500 + 0.898731i \(0.644490\pi\)
\(674\) −2.75555e15 −0.763096
\(675\) 0 0
\(676\) −2.11075e15 −0.575081
\(677\) 1.77722e15 0.480291 0.240145 0.970737i \(-0.422805\pi\)
0.240145 + 0.970737i \(0.422805\pi\)
\(678\) −1.39744e15 −0.374601
\(679\) 1.19997e15 0.319071
\(680\) 0 0
\(681\) −1.31932e15 −0.345176
\(682\) 2.43172e15 0.631102
\(683\) 4.74129e15 1.22063 0.610313 0.792160i \(-0.291044\pi\)
0.610313 + 0.792160i \(0.291044\pi\)
\(684\) −4.55027e14 −0.116206
\(685\) 0 0
\(686\) 2.50419e15 0.629340
\(687\) 5.28200e14 0.131685
\(688\) −9.72438e13 −0.0240506
\(689\) 2.26924e15 0.556770
\(690\) 0 0
\(691\) 2.44203e15 0.589688 0.294844 0.955545i \(-0.404732\pi\)
0.294844 + 0.955545i \(0.404732\pi\)
\(692\) −2.70018e15 −0.646858
\(693\) −2.17088e15 −0.515944
\(694\) −2.20777e15 −0.520568
\(695\) 0 0
\(696\) 2.54513e14 0.0590688
\(697\) 3.29433e15 0.758555
\(698\) −6.46517e14 −0.147698
\(699\) 4.81456e15 1.09127
\(700\) 0 0
\(701\) 3.91146e15 0.872749 0.436375 0.899765i \(-0.356262\pi\)
0.436375 + 0.899765i \(0.356262\pi\)
\(702\) −7.37870e14 −0.163353
\(703\) −3.76483e15 −0.826973
\(704\) −2.62621e15 −0.572375
\(705\) 0 0
\(706\) 1.99596e15 0.428277
\(707\) −3.82611e15 −0.814613
\(708\) 1.81485e15 0.383405
\(709\) −7.52555e15 −1.57755 −0.788776 0.614681i \(-0.789285\pi\)
−0.788776 + 0.614681i \(0.789285\pi\)
\(710\) 0 0
\(711\) 1.46185e15 0.301730
\(712\) −6.89665e15 −1.41253
\(713\) −8.31004e15 −1.68893
\(714\) −2.89032e15 −0.582915
\(715\) 0 0
\(716\) −1.11755e14 −0.0221945
\(717\) 2.51401e14 0.0495464
\(718\) 2.84665e14 0.0556737
\(719\) 3.82053e15 0.741507 0.370753 0.928731i \(-0.379099\pi\)
0.370753 + 0.928731i \(0.379099\pi\)
\(720\) 0 0
\(721\) −7.24724e13 −0.0138525
\(722\) −2.22382e15 −0.421838
\(723\) 3.30677e15 0.622506
\(724\) −3.32794e15 −0.621747
\(725\) 0 0
\(726\) −1.73262e14 −0.0318824
\(727\) 7.15305e15 1.30633 0.653163 0.757217i \(-0.273442\pi\)
0.653163 + 0.757217i \(0.273442\pi\)
\(728\) 1.23475e16 2.23798
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) 9.04540e15 1.60281
\(732\) 2.05572e15 0.361536
\(733\) −3.23209e15 −0.564172 −0.282086 0.959389i \(-0.591026\pi\)
−0.282086 + 0.959389i \(0.591026\pi\)
\(734\) −2.85829e15 −0.495197
\(735\) 0 0
\(736\) 9.20266e15 1.57067
\(737\) 8.47096e15 1.43503
\(738\) −9.06731e14 −0.152464
\(739\) −7.04037e15 −1.17504 −0.587518 0.809211i \(-0.699895\pi\)
−0.587518 + 0.809211i \(0.699895\pi\)
\(740\) 0 0
\(741\) −2.71470e15 −0.446397
\(742\) −2.44657e15 −0.399334
\(743\) −1.76769e15 −0.286396 −0.143198 0.989694i \(-0.545739\pi\)
−0.143198 + 0.989694i \(0.545739\pi\)
\(744\) 3.85936e15 0.620674
\(745\) 0 0
\(746\) −3.60825e15 −0.571785
\(747\) −2.12232e15 −0.333846
\(748\) −3.87717e15 −0.605420
\(749\) 1.19231e16 1.84816
\(750\) 0 0
\(751\) −6.97015e15 −1.06469 −0.532344 0.846528i \(-0.678689\pi\)
−0.532344 + 0.846528i \(0.678689\pi\)
\(752\) −7.63698e13 −0.0115804
\(753\) −5.54097e15 −0.834091
\(754\) 5.83912e14 0.0872579
\(755\) 0 0
\(756\) −1.32492e15 −0.195128
\(757\) 1.10779e16 1.61968 0.809841 0.586650i \(-0.199553\pi\)
0.809841 + 0.586650i \(0.199553\pi\)
\(758\) −1.73747e15 −0.252196
\(759\) −5.97532e15 −0.861055
\(760\) 0 0
\(761\) 1.03991e15 0.147700 0.0738500 0.997269i \(-0.476471\pi\)
0.0738500 + 0.997269i \(0.476471\pi\)
\(762\) −7.93546e14 −0.111897
\(763\) 5.08359e15 0.711681
\(764\) 2.92472e15 0.406510
\(765\) 0 0
\(766\) −2.94682e15 −0.403734
\(767\) 1.08274e16 1.47282
\(768\) −4.23319e15 −0.571717
\(769\) −5.06484e15 −0.679158 −0.339579 0.940578i \(-0.610285\pi\)
−0.339579 + 0.940578i \(0.610285\pi\)
\(770\) 0 0
\(771\) −1.48978e15 −0.196935
\(772\) 3.98777e15 0.523402
\(773\) 9.32127e15 1.21475 0.607376 0.794414i \(-0.292222\pi\)
0.607376 + 0.794414i \(0.292222\pi\)
\(774\) −2.48965e15 −0.322154
\(775\) 0 0
\(776\) −1.53394e15 −0.195690
\(777\) −1.09622e16 −1.38862
\(778\) −2.05769e15 −0.258816
\(779\) −3.33596e15 −0.416643
\(780\) 0 0
\(781\) −3.75093e15 −0.461911
\(782\) −7.95557e15 −0.972823
\(783\) −1.62931e14 −0.0197841
\(784\) 2.06456e14 0.0248937
\(785\) 0 0
\(786\) 3.10038e15 0.368630
\(787\) −8.41800e15 −0.993912 −0.496956 0.867776i \(-0.665549\pi\)
−0.496956 + 0.867776i \(0.665549\pi\)
\(788\) 4.71038e15 0.552283
\(789\) 7.90683e15 0.920617
\(790\) 0 0
\(791\) −1.49702e16 −1.71892
\(792\) 2.77506e15 0.316435
\(793\) 1.22644e16 1.38882
\(794\) 4.11774e15 0.463069
\(795\) 0 0
\(796\) 2.81913e15 0.312676
\(797\) −1.32426e16 −1.45866 −0.729328 0.684164i \(-0.760167\pi\)
−0.729328 + 0.684164i \(0.760167\pi\)
\(798\) 2.92684e15 0.320171
\(799\) 7.10375e15 0.771757
\(800\) 0 0
\(801\) 4.41503e15 0.473102
\(802\) −2.55286e15 −0.271686
\(803\) −3.23901e15 −0.342356
\(804\) 5.16997e15 0.542725
\(805\) 0 0
\(806\) 8.85427e15 0.916875
\(807\) 8.91738e15 0.917134
\(808\) 4.89097e15 0.499611
\(809\) −2.72166e15 −0.276132 −0.138066 0.990423i \(-0.544089\pi\)
−0.138066 + 0.990423i \(0.544089\pi\)
\(810\) 0 0
\(811\) 1.27431e16 1.27544 0.637722 0.770267i \(-0.279877\pi\)
0.637722 + 0.770267i \(0.279877\pi\)
\(812\) 1.04847e15 0.104232
\(813\) 4.55286e15 0.449559
\(814\) 8.82947e15 0.865965
\(815\) 0 0
\(816\) −9.23850e13 −0.00893934
\(817\) −9.15968e15 −0.880358
\(818\) −8.96800e14 −0.0856155
\(819\) −7.90450e15 −0.749571
\(820\) 0 0
\(821\) 2.99243e15 0.279986 0.139993 0.990152i \(-0.455292\pi\)
0.139993 + 0.990152i \(0.455292\pi\)
\(822\) 3.90966e15 0.363366
\(823\) −1.31983e16 −1.21848 −0.609239 0.792987i \(-0.708525\pi\)
−0.609239 + 0.792987i \(0.708525\pi\)
\(824\) 9.26423e13 0.00849591
\(825\) 0 0
\(826\) −1.16735e16 −1.05636
\(827\) 8.07855e15 0.726195 0.363097 0.931751i \(-0.381719\pi\)
0.363097 + 0.931751i \(0.381719\pi\)
\(828\) −3.64683e15 −0.325648
\(829\) −9.24683e15 −0.820244 −0.410122 0.912031i \(-0.634514\pi\)
−0.410122 + 0.912031i \(0.634514\pi\)
\(830\) 0 0
\(831\) 7.36397e15 0.644623
\(832\) −9.56245e15 −0.831555
\(833\) −1.92041e16 −1.65900
\(834\) 4.68031e15 0.401663
\(835\) 0 0
\(836\) 3.92616e15 0.332532
\(837\) −2.47065e15 −0.207884
\(838\) −4.48370e15 −0.374796
\(839\) −7.02444e14 −0.0583339 −0.0291669 0.999575i \(-0.509285\pi\)
−0.0291669 + 0.999575i \(0.509285\pi\)
\(840\) 0 0
\(841\) −1.20716e16 −0.989432
\(842\) −3.17278e15 −0.258359
\(843\) 1.19921e16 0.970159
\(844\) 1.39094e16 1.11795
\(845\) 0 0
\(846\) −1.95523e15 −0.155118
\(847\) −1.85608e15 −0.146298
\(848\) −7.82012e13 −0.00612402
\(849\) 1.32465e15 0.103064
\(850\) 0 0
\(851\) −3.01734e16 −2.31746
\(852\) −2.28925e15 −0.174693
\(853\) −4.32915e15 −0.328234 −0.164117 0.986441i \(-0.552477\pi\)
−0.164117 + 0.986441i \(0.552477\pi\)
\(854\) −1.32228e16 −0.996106
\(855\) 0 0
\(856\) −1.52414e16 −1.13350
\(857\) −2.43435e16 −1.79882 −0.899412 0.437103i \(-0.856005\pi\)
−0.899412 + 0.437103i \(0.856005\pi\)
\(858\) 6.36664e15 0.467445
\(859\) 1.46780e16 1.07079 0.535394 0.844603i \(-0.320163\pi\)
0.535394 + 0.844603i \(0.320163\pi\)
\(860\) 0 0
\(861\) −9.71344e15 −0.699610
\(862\) 2.80106e15 0.200462
\(863\) −2.68085e16 −1.90640 −0.953199 0.302342i \(-0.902232\pi\)
−0.953199 + 0.302342i \(0.902232\pi\)
\(864\) 2.73603e15 0.193328
\(865\) 0 0
\(866\) −3.37724e15 −0.235621
\(867\) 2.65373e14 0.0183972
\(868\) 1.58988e16 1.09523
\(869\) −1.26134e16 −0.863422
\(870\) 0 0
\(871\) 3.08441e16 2.08484
\(872\) −6.49841e15 −0.436482
\(873\) 9.81983e14 0.0655429
\(874\) 8.05608e15 0.534332
\(875\) 0 0
\(876\) −1.97682e15 −0.129478
\(877\) −1.33110e16 −0.866386 −0.433193 0.901301i \(-0.642613\pi\)
−0.433193 + 0.901301i \(0.642613\pi\)
\(878\) 7.92035e15 0.512300
\(879\) −1.18051e16 −0.758807
\(880\) 0 0
\(881\) −1.89533e16 −1.20314 −0.601570 0.798820i \(-0.705458\pi\)
−0.601570 + 0.798820i \(0.705458\pi\)
\(882\) 5.28573e15 0.333448
\(883\) 3.10076e15 0.194395 0.0971975 0.995265i \(-0.469012\pi\)
0.0971975 + 0.995265i \(0.469012\pi\)
\(884\) −1.41174e16 −0.879563
\(885\) 0 0
\(886\) −1.33744e16 −0.822980
\(887\) 2.17069e16 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(888\) 1.40132e16 0.851657
\(889\) −8.50094e15 −0.513461
\(890\) 0 0
\(891\) −1.77651e15 −0.105984
\(892\) 1.26616e16 0.750726
\(893\) −7.19350e15 −0.423894
\(894\) −7.59451e14 −0.0444778
\(895\) 0 0
\(896\) −1.78684e16 −1.03369
\(897\) −2.17570e16 −1.25095
\(898\) 1.90423e16 1.08818
\(899\) 1.95514e15 0.111045
\(900\) 0 0
\(901\) 7.27411e15 0.408125
\(902\) 7.82365e15 0.436288
\(903\) −2.66706e16 −1.47826
\(904\) 1.91366e16 1.05424
\(905\) 0 0
\(906\) 1.65526e15 0.0900866
\(907\) 7.15520e15 0.387063 0.193532 0.981094i \(-0.438006\pi\)
0.193532 + 0.981094i \(0.438006\pi\)
\(908\) 6.94761e15 0.373562
\(909\) −3.13105e15 −0.167336
\(910\) 0 0
\(911\) 2.19413e16 1.15854 0.579270 0.815135i \(-0.303338\pi\)
0.579270 + 0.815135i \(0.303338\pi\)
\(912\) 9.35522e13 0.00491001
\(913\) 1.83122e16 0.955325
\(914\) 5.95252e15 0.308672
\(915\) 0 0
\(916\) −2.78153e15 −0.142514
\(917\) 3.32131e16 1.69152
\(918\) −2.36526e15 −0.119741
\(919\) −3.69170e15 −0.185777 −0.0928884 0.995677i \(-0.529610\pi\)
−0.0928884 + 0.995677i \(0.529610\pi\)
\(920\) 0 0
\(921\) 1.62435e16 0.807700
\(922\) −8.92906e15 −0.441353
\(923\) −1.36577e16 −0.671071
\(924\) 1.14320e16 0.558374
\(925\) 0 0
\(926\) −2.44268e15 −0.117898
\(927\) −5.93069e13 −0.00284555
\(928\) −2.16515e15 −0.103270
\(929\) 2.85838e16 1.35530 0.677648 0.735387i \(-0.263000\pi\)
0.677648 + 0.735387i \(0.263000\pi\)
\(930\) 0 0
\(931\) 1.94467e16 0.911221
\(932\) −2.53537e16 −1.18101
\(933\) 1.76526e16 0.817445
\(934\) −1.07203e16 −0.493512
\(935\) 0 0
\(936\) 1.01044e16 0.459721
\(937\) −1.92375e16 −0.870125 −0.435062 0.900400i \(-0.643274\pi\)
−0.435062 + 0.900400i \(0.643274\pi\)
\(938\) −3.32544e16 −1.49532
\(939\) −1.52589e16 −0.682122
\(940\) 0 0
\(941\) −2.64255e16 −1.16756 −0.583781 0.811911i \(-0.698427\pi\)
−0.583781 + 0.811911i \(0.698427\pi\)
\(942\) 3.92907e15 0.172588
\(943\) −2.67361e16 −1.16757
\(944\) −3.73128e14 −0.0161999
\(945\) 0 0
\(946\) 2.14817e16 0.921867
\(947\) 1.92888e16 0.822961 0.411481 0.911418i \(-0.365012\pi\)
0.411481 + 0.911418i \(0.365012\pi\)
\(948\) −7.69816e15 −0.326544
\(949\) −1.17937e16 −0.497379
\(950\) 0 0
\(951\) 1.02093e16 0.425600
\(952\) 3.95801e16 1.64049
\(953\) −1.47724e16 −0.608750 −0.304375 0.952552i \(-0.598448\pi\)
−0.304375 + 0.952552i \(0.598448\pi\)
\(954\) −2.00212e15 −0.0820304
\(955\) 0 0
\(956\) −1.32389e15 −0.0536210
\(957\) 1.40584e15 0.0566135
\(958\) −1.63022e16 −0.652735
\(959\) 4.18826e16 1.66737
\(960\) 0 0
\(961\) 4.23870e15 0.166822
\(962\) 3.21495e16 1.25809
\(963\) 9.75711e15 0.379644
\(964\) −1.74137e16 −0.673699
\(965\) 0 0
\(966\) 2.34572e16 0.897228
\(967\) 6.09293e15 0.231729 0.115865 0.993265i \(-0.463036\pi\)
0.115865 + 0.993265i \(0.463036\pi\)
\(968\) 2.37265e15 0.0897263
\(969\) −8.70202e15 −0.327219
\(970\) 0 0
\(971\) 2.81975e16 1.04835 0.524174 0.851611i \(-0.324374\pi\)
0.524174 + 0.851611i \(0.324374\pi\)
\(972\) −1.08423e15 −0.0400829
\(973\) 5.01383e16 1.84310
\(974\) −1.04539e16 −0.382125
\(975\) 0 0
\(976\) −4.22649e14 −0.0152759
\(977\) 1.84959e16 0.664745 0.332372 0.943148i \(-0.392151\pi\)
0.332372 + 0.943148i \(0.392151\pi\)
\(978\) −1.79037e16 −0.639851
\(979\) −3.80947e16 −1.35382
\(980\) 0 0
\(981\) 4.16009e15 0.146192
\(982\) −1.02942e15 −0.0359731
\(983\) 2.21617e16 0.770121 0.385060 0.922891i \(-0.374181\pi\)
0.385060 + 0.922891i \(0.374181\pi\)
\(984\) 1.24168e16 0.429079
\(985\) 0 0
\(986\) 1.87174e15 0.0639621
\(987\) −2.09456e16 −0.711785
\(988\) 1.42958e16 0.483108
\(989\) −7.34106e16 −2.46706
\(990\) 0 0
\(991\) 7.87374e15 0.261683 0.130842 0.991403i \(-0.458232\pi\)
0.130842 + 0.991403i \(0.458232\pi\)
\(992\) −3.28317e16 −1.08512
\(993\) 3.31292e16 1.08890
\(994\) 1.47250e16 0.481315
\(995\) 0 0
\(996\) 1.11762e16 0.361301
\(997\) 6.16649e15 0.198251 0.0991254 0.995075i \(-0.468396\pi\)
0.0991254 + 0.995075i \(0.468396\pi\)
\(998\) 7.54196e15 0.241138
\(999\) −8.97081e15 −0.285247
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.12.a.c.1.2 2
3.2 odd 2 225.12.a.i.1.1 2
5.2 odd 4 75.12.b.d.49.4 4
5.3 odd 4 75.12.b.d.49.1 4
5.4 even 2 15.12.a.c.1.1 2
15.2 even 4 225.12.b.i.199.1 4
15.8 even 4 225.12.b.i.199.4 4
15.14 odd 2 45.12.a.c.1.2 2
20.19 odd 2 240.12.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.12.a.c.1.1 2 5.4 even 2
45.12.a.c.1.2 2 15.14 odd 2
75.12.a.c.1.2 2 1.1 even 1 trivial
75.12.b.d.49.1 4 5.3 odd 4
75.12.b.d.49.4 4 5.2 odd 4
225.12.a.i.1.1 2 3.2 odd 2
225.12.b.i.199.1 4 15.2 even 4
225.12.b.i.199.4 4 15.8 even 4
240.12.a.m.1.2 2 20.19 odd 2