Properties

Label 75.14.a.d
Level $75$
Weight $14$
Character orbit 75.a
Self dual yes
Analytic conductor $80.423$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,14,Mod(1,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.4231967139\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1609}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 402 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{1609}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 7) q^{2} + 729 q^{3} + (14 \beta + 6338) q^{4} + ( - 729 \beta - 5103) q^{6} + (896 \beta + 14916) q^{7} + (1756 \beta - 189756) q^{8} + 531441 q^{9} + ( - 57472 \beta + 1908664) q^{11}+ \cdots + ( - 30542977152 \beta + 1014342304824) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{2} + 1458 q^{3} + 12676 q^{4} - 10206 q^{6} + 29832 q^{7} - 379512 q^{8} + 1062882 q^{9} + 3817328 q^{11} + 9240804 q^{12} + 36300124 q^{13} - 26158776 q^{14} - 152042480 q^{16} - 56248076 q^{17}+ \cdots + 2028684609648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
20.5562
−19.5562
−127.337 729.000 8022.72 0 −92828.7 122738. 21555.8 531441. 0
1.2 113.337 729.000 4653.28 0 82622.7 −92906.0 −401068. 531441. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.14.a.d 2
5.b even 2 1 15.14.a.b 2
5.c odd 4 2 75.14.b.d 4
15.d odd 2 1 45.14.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.14.a.b 2 5.b even 2 1
45.14.a.c 2 15.d odd 2 1
75.14.a.d 2 1.a even 1 1 trivial
75.14.b.d 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 14T_{2} - 14432 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(75))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 14T - 14432 \) Copy content Toggle raw display
$3$ \( (T - 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 11403091440 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 44188190518208 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 185817063779908 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 13\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 18\!\cdots\!20 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 82\!\cdots\!80 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 40\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 20\!\cdots\!20 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 10\!\cdots\!40 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 21\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 14\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 81\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 24\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 43\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 78\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 34\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 18\!\cdots\!68 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 54\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 11\!\cdots\!84 \) Copy content Toggle raw display
show more
show less