Properties

Label 75.18.a.e.1.3
Level $75$
Weight $18$
Character 75.1
Self dual yes
Analytic conductor $137.417$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,18,Mod(1,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(137.416565508\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 37234x - 350700 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-188.067\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+670.613 q^{2} +6561.00 q^{3} +318650. q^{4} +4.39989e6 q^{6} +2.70804e7 q^{7} +1.25792e8 q^{8} +4.30467e7 q^{9} +1.01644e9 q^{11} +2.09066e9 q^{12} +1.04834e9 q^{13} +1.81605e10 q^{14} +4.25918e10 q^{16} -2.00099e10 q^{17} +2.88677e10 q^{18} +1.64417e10 q^{19} +1.77675e11 q^{21} +6.81636e11 q^{22} -5.92721e11 q^{23} +8.25322e11 q^{24} +7.03032e11 q^{26} +2.82430e11 q^{27} +8.62917e12 q^{28} +4.83212e11 q^{29} -5.20802e12 q^{31} +1.20748e13 q^{32} +6.66885e12 q^{33} -1.34189e13 q^{34} +1.37168e13 q^{36} -3.82367e13 q^{37} +1.10260e13 q^{38} +6.87817e12 q^{39} -6.56402e13 q^{41} +1.19151e14 q^{42} +5.83804e13 q^{43} +3.23888e14 q^{44} -3.97486e14 q^{46} -7.43658e12 q^{47} +2.79445e14 q^{48} +5.00719e14 q^{49} -1.31285e14 q^{51} +3.34054e14 q^{52} +3.01466e14 q^{53} +1.89401e14 q^{54} +3.40650e15 q^{56} +1.07874e14 q^{57} +3.24048e14 q^{58} -3.44389e14 q^{59} -2.43237e15 q^{61} -3.49257e15 q^{62} +1.16572e15 q^{63} +2.51491e15 q^{64} +4.47222e15 q^{66} -1.19632e15 q^{67} -6.37614e15 q^{68} -3.88884e15 q^{69} +5.42254e15 q^{71} +5.41494e15 q^{72} +5.84732e15 q^{73} -2.56420e16 q^{74} +5.23914e15 q^{76} +2.75256e16 q^{77} +4.61259e15 q^{78} +2.03455e15 q^{79} +1.85302e15 q^{81} -4.40192e16 q^{82} +1.18343e16 q^{83} +5.66160e16 q^{84} +3.91507e16 q^{86} +3.17035e15 q^{87} +1.27860e17 q^{88} -2.43170e16 q^{89} +2.83895e16 q^{91} -1.88870e17 q^{92} -3.41698e16 q^{93} -4.98707e15 q^{94} +7.92225e16 q^{96} +1.06105e17 q^{97} +3.35788e17 q^{98} +4.37543e16 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 442 q^{2} + 19683 q^{3} + 298148 q^{4} + 2899962 q^{6} - 4962644 q^{7} + 108831912 q^{8} + 129140163 q^{9} + 1049849720 q^{11} + 1956149028 q^{12} + 3091742090 q^{13} + 27586028328 q^{14} + 22392797456 q^{16}+ \cdots + 45\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 670.613 1.85232 0.926162 0.377126i \(-0.123088\pi\)
0.926162 + 0.377126i \(0.123088\pi\)
\(3\) 6561.00 0.577350
\(4\) 318650. 2.43110
\(5\) 0 0
\(6\) 4.39989e6 1.06944
\(7\) 2.70804e7 1.77551 0.887753 0.460320i \(-0.152265\pi\)
0.887753 + 0.460320i \(0.152265\pi\)
\(8\) 1.25792e8 2.65087
\(9\) 4.30467e7 0.333333
\(10\) 0 0
\(11\) 1.01644e9 1.42969 0.714847 0.699281i \(-0.246496\pi\)
0.714847 + 0.699281i \(0.246496\pi\)
\(12\) 2.09066e9 1.40360
\(13\) 1.04834e9 0.356438 0.178219 0.983991i \(-0.442966\pi\)
0.178219 + 0.983991i \(0.442966\pi\)
\(14\) 1.81605e10 3.28881
\(15\) 0 0
\(16\) 4.25918e10 2.47917
\(17\) −2.00099e10 −0.695711 −0.347855 0.937548i \(-0.613090\pi\)
−0.347855 + 0.937548i \(0.613090\pi\)
\(18\) 2.88677e10 0.617441
\(19\) 1.64417e10 0.222096 0.111048 0.993815i \(-0.464579\pi\)
0.111048 + 0.993815i \(0.464579\pi\)
\(20\) 0 0
\(21\) 1.77675e11 1.02509
\(22\) 6.81636e11 2.64826
\(23\) −5.92721e11 −1.57821 −0.789103 0.614261i \(-0.789454\pi\)
−0.789103 + 0.614261i \(0.789454\pi\)
\(24\) 8.25322e11 1.53048
\(25\) 0 0
\(26\) 7.03032e11 0.660239
\(27\) 2.82430e11 0.192450
\(28\) 8.62917e12 4.31644
\(29\) 4.83212e11 0.179372 0.0896860 0.995970i \(-0.471414\pi\)
0.0896860 + 0.995970i \(0.471414\pi\)
\(30\) 0 0
\(31\) −5.20802e12 −1.09673 −0.548363 0.836240i \(-0.684749\pi\)
−0.548363 + 0.836240i \(0.684749\pi\)
\(32\) 1.20748e13 1.94135
\(33\) 6.66885e12 0.825434
\(34\) −1.34189e13 −1.28868
\(35\) 0 0
\(36\) 1.37168e13 0.810368
\(37\) −3.82367e13 −1.78964 −0.894820 0.446427i \(-0.852696\pi\)
−0.894820 + 0.446427i \(0.852696\pi\)
\(38\) 1.10260e13 0.411393
\(39\) 6.87817e12 0.205790
\(40\) 0 0
\(41\) −6.56402e13 −1.28383 −0.641915 0.766776i \(-0.721860\pi\)
−0.641915 + 0.766776i \(0.721860\pi\)
\(42\) 1.19151e14 1.89880
\(43\) 5.83804e13 0.761703 0.380851 0.924636i \(-0.375631\pi\)
0.380851 + 0.924636i \(0.375631\pi\)
\(44\) 3.23888e14 3.47573
\(45\) 0 0
\(46\) −3.97486e14 −2.92335
\(47\) −7.43658e12 −0.0455556 −0.0227778 0.999741i \(-0.507251\pi\)
−0.0227778 + 0.999741i \(0.507251\pi\)
\(48\) 2.79445e14 1.43135
\(49\) 5.00719e14 2.15242
\(50\) 0 0
\(51\) −1.31285e14 −0.401669
\(52\) 3.34054e14 0.866539
\(53\) 3.01466e14 0.665109 0.332555 0.943084i \(-0.392089\pi\)
0.332555 + 0.943084i \(0.392089\pi\)
\(54\) 1.89401e14 0.356480
\(55\) 0 0
\(56\) 3.40650e15 4.70664
\(57\) 1.07874e14 0.128227
\(58\) 3.24048e14 0.332255
\(59\) −3.44389e14 −0.305357 −0.152678 0.988276i \(-0.548790\pi\)
−0.152678 + 0.988276i \(0.548790\pi\)
\(60\) 0 0
\(61\) −2.43237e15 −1.62452 −0.812261 0.583294i \(-0.801763\pi\)
−0.812261 + 0.583294i \(0.801763\pi\)
\(62\) −3.49257e15 −2.03149
\(63\) 1.16572e15 0.591835
\(64\) 2.51491e15 1.11684
\(65\) 0 0
\(66\) 4.47222e15 1.52897
\(67\) −1.19632e15 −0.359924 −0.179962 0.983674i \(-0.557597\pi\)
−0.179962 + 0.983674i \(0.557597\pi\)
\(68\) −6.37614e15 −1.69135
\(69\) −3.88884e15 −0.911177
\(70\) 0 0
\(71\) 5.42254e15 0.996567 0.498283 0.867014i \(-0.333964\pi\)
0.498283 + 0.867014i \(0.333964\pi\)
\(72\) 5.41494e15 0.883623
\(73\) 5.84732e15 0.848619 0.424309 0.905517i \(-0.360517\pi\)
0.424309 + 0.905517i \(0.360517\pi\)
\(74\) −2.56420e16 −3.31499
\(75\) 0 0
\(76\) 5.23914e15 0.539938
\(77\) 2.75256e16 2.53843
\(78\) 4.61259e15 0.381189
\(79\) 2.03455e15 0.150882 0.0754411 0.997150i \(-0.475964\pi\)
0.0754411 + 0.997150i \(0.475964\pi\)
\(80\) 0 0
\(81\) 1.85302e15 0.111111
\(82\) −4.40192e16 −2.37807
\(83\) 1.18343e16 0.576740 0.288370 0.957519i \(-0.406887\pi\)
0.288370 + 0.957519i \(0.406887\pi\)
\(84\) 5.66160e16 2.49210
\(85\) 0 0
\(86\) 3.91507e16 1.41092
\(87\) 3.17035e15 0.103560
\(88\) 1.27860e17 3.78993
\(89\) −2.43170e16 −0.654780 −0.327390 0.944889i \(-0.606169\pi\)
−0.327390 + 0.944889i \(0.606169\pi\)
\(90\) 0 0
\(91\) 2.83895e16 0.632858
\(92\) −1.88870e17 −3.83678
\(93\) −3.41698e16 −0.633195
\(94\) −4.98707e15 −0.0843837
\(95\) 0 0
\(96\) 7.92225e16 1.12084
\(97\) 1.06105e17 1.37459 0.687296 0.726377i \(-0.258797\pi\)
0.687296 + 0.726377i \(0.258797\pi\)
\(98\) 3.35788e17 3.98698
\(99\) 4.37543e16 0.476564
\(100\) 0 0
\(101\) 6.36534e16 0.584911 0.292455 0.956279i \(-0.405528\pi\)
0.292455 + 0.956279i \(0.405528\pi\)
\(102\) −8.80413e16 −0.744021
\(103\) 3.76414e16 0.292785 0.146393 0.989227i \(-0.453234\pi\)
0.146393 + 0.989227i \(0.453234\pi\)
\(104\) 1.31873e17 0.944872
\(105\) 0 0
\(106\) 2.02167e17 1.23200
\(107\) −1.97603e17 −1.11181 −0.555906 0.831245i \(-0.687629\pi\)
−0.555906 + 0.831245i \(0.687629\pi\)
\(108\) 8.99961e16 0.467866
\(109\) 2.14472e17 1.03097 0.515484 0.856899i \(-0.327612\pi\)
0.515484 + 0.856899i \(0.327612\pi\)
\(110\) 0 0
\(111\) −2.50871e17 −1.03325
\(112\) 1.15340e18 4.40177
\(113\) −3.29313e17 −1.16531 −0.582656 0.812719i \(-0.697986\pi\)
−0.582656 + 0.812719i \(0.697986\pi\)
\(114\) 7.23416e16 0.237518
\(115\) 0 0
\(116\) 1.53975e17 0.436072
\(117\) 4.51277e16 0.118813
\(118\) −2.30952e17 −0.565620
\(119\) −5.41876e17 −1.23524
\(120\) 0 0
\(121\) 5.27698e17 1.04402
\(122\) −1.63118e18 −3.00914
\(123\) −4.30666e17 −0.741219
\(124\) −1.65953e18 −2.66626
\(125\) 0 0
\(126\) 7.81749e17 1.09627
\(127\) −4.24273e17 −0.556306 −0.278153 0.960537i \(-0.589722\pi\)
−0.278153 + 0.960537i \(0.589722\pi\)
\(128\) 1.03865e17 0.127405
\(129\) 3.83034e17 0.439769
\(130\) 0 0
\(131\) −1.01448e18 −1.02197 −0.510985 0.859590i \(-0.670719\pi\)
−0.510985 + 0.859590i \(0.670719\pi\)
\(132\) 2.12503e18 2.00672
\(133\) 4.45247e17 0.394332
\(134\) −8.02266e17 −0.666696
\(135\) 0 0
\(136\) −2.51708e18 −1.84424
\(137\) 1.60921e18 1.10787 0.553934 0.832560i \(-0.313126\pi\)
0.553934 + 0.832560i \(0.313126\pi\)
\(138\) −2.60791e18 −1.68780
\(139\) −1.37382e18 −0.836188 −0.418094 0.908404i \(-0.637302\pi\)
−0.418094 + 0.908404i \(0.637302\pi\)
\(140\) 0 0
\(141\) −4.87914e16 −0.0263015
\(142\) 3.63642e18 1.84596
\(143\) 1.06557e18 0.509597
\(144\) 1.83344e18 0.826389
\(145\) 0 0
\(146\) 3.92129e18 1.57192
\(147\) 3.28521e18 1.24270
\(148\) −1.21841e19 −4.35080
\(149\) −3.59822e18 −1.21340 −0.606701 0.794930i \(-0.707507\pi\)
−0.606701 + 0.794930i \(0.707507\pi\)
\(150\) 0 0
\(151\) 1.83062e18 0.551182 0.275591 0.961275i \(-0.411127\pi\)
0.275591 + 0.961275i \(0.411127\pi\)
\(152\) 2.06823e18 0.588747
\(153\) −8.61360e17 −0.231904
\(154\) 1.84590e19 4.70199
\(155\) 0 0
\(156\) 2.19173e18 0.500296
\(157\) −2.03936e18 −0.440907 −0.220453 0.975398i \(-0.570754\pi\)
−0.220453 + 0.975398i \(0.570754\pi\)
\(158\) 1.36440e18 0.279483
\(159\) 1.97792e18 0.384001
\(160\) 0 0
\(161\) −1.60511e19 −2.80211
\(162\) 1.24266e18 0.205814
\(163\) 1.26018e19 1.98078 0.990390 0.138302i \(-0.0441646\pi\)
0.990390 + 0.138302i \(0.0441646\pi\)
\(164\) −2.09162e19 −3.12112
\(165\) 0 0
\(166\) 7.93626e18 1.06831
\(167\) −9.46306e18 −1.21044 −0.605218 0.796060i \(-0.706914\pi\)
−0.605218 + 0.796060i \(0.706914\pi\)
\(168\) 2.23501e19 2.71738
\(169\) −7.55140e18 −0.872952
\(170\) 0 0
\(171\) 7.07760e17 0.0740319
\(172\) 1.86029e19 1.85178
\(173\) 5.05953e18 0.479422 0.239711 0.970844i \(-0.422947\pi\)
0.239711 + 0.970844i \(0.422947\pi\)
\(174\) 2.12608e18 0.191828
\(175\) 0 0
\(176\) 4.32919e19 3.54445
\(177\) −2.25954e18 −0.176298
\(178\) −1.63073e19 −1.21287
\(179\) 1.38935e18 0.0985284 0.0492642 0.998786i \(-0.484312\pi\)
0.0492642 + 0.998786i \(0.484312\pi\)
\(180\) 0 0
\(181\) 6.56442e18 0.423573 0.211787 0.977316i \(-0.432072\pi\)
0.211787 + 0.977316i \(0.432072\pi\)
\(182\) 1.90384e19 1.17226
\(183\) −1.59588e19 −0.937918
\(184\) −7.45596e19 −4.18362
\(185\) 0 0
\(186\) −2.29147e19 −1.17288
\(187\) −2.03388e19 −0.994653
\(188\) −2.36966e18 −0.110750
\(189\) 7.64831e18 0.341696
\(190\) 0 0
\(191\) 1.88960e19 0.771943 0.385972 0.922511i \(-0.373866\pi\)
0.385972 + 0.922511i \(0.373866\pi\)
\(192\) 1.65003e19 0.644809
\(193\) 2.57702e18 0.0963563 0.0481781 0.998839i \(-0.484658\pi\)
0.0481781 + 0.998839i \(0.484658\pi\)
\(194\) 7.11551e19 2.54619
\(195\) 0 0
\(196\) 1.59554e20 5.23276
\(197\) 2.58028e19 0.810410 0.405205 0.914226i \(-0.367200\pi\)
0.405205 + 0.914226i \(0.367200\pi\)
\(198\) 2.93422e19 0.882752
\(199\) 5.04896e18 0.145529 0.0727647 0.997349i \(-0.476818\pi\)
0.0727647 + 0.997349i \(0.476818\pi\)
\(200\) 0 0
\(201\) −7.84904e18 −0.207802
\(202\) 4.26868e19 1.08344
\(203\) 1.30856e19 0.318476
\(204\) −4.18339e19 −0.976499
\(205\) 0 0
\(206\) 2.52428e19 0.542333
\(207\) −2.55147e19 −0.526069
\(208\) 4.46507e19 0.883670
\(209\) 1.67119e19 0.317529
\(210\) 0 0
\(211\) 4.88902e19 0.856685 0.428342 0.903616i \(-0.359098\pi\)
0.428342 + 0.903616i \(0.359098\pi\)
\(212\) 9.60620e19 1.61695
\(213\) 3.55773e19 0.575368
\(214\) −1.32515e20 −2.05944
\(215\) 0 0
\(216\) 3.55274e19 0.510160
\(217\) −1.41035e20 −1.94724
\(218\) 1.43828e20 1.90969
\(219\) 3.83643e19 0.489950
\(220\) 0 0
\(221\) −2.09772e19 −0.247978
\(222\) −1.68237e20 −1.91391
\(223\) −6.03668e18 −0.0661008 −0.0330504 0.999454i \(-0.510522\pi\)
−0.0330504 + 0.999454i \(0.510522\pi\)
\(224\) 3.26990e20 3.44688
\(225\) 0 0
\(226\) −2.20842e20 −2.15854
\(227\) 1.85243e20 1.74390 0.871952 0.489591i \(-0.162854\pi\)
0.871952 + 0.489591i \(0.162854\pi\)
\(228\) 3.43740e19 0.311733
\(229\) 1.07933e20 0.943092 0.471546 0.881841i \(-0.343696\pi\)
0.471546 + 0.881841i \(0.343696\pi\)
\(230\) 0 0
\(231\) 1.80595e20 1.46556
\(232\) 6.07842e19 0.475492
\(233\) 1.20686e20 0.910190 0.455095 0.890443i \(-0.349605\pi\)
0.455095 + 0.890443i \(0.349605\pi\)
\(234\) 3.02632e19 0.220080
\(235\) 0 0
\(236\) −1.09740e20 −0.742355
\(237\) 1.33487e19 0.0871119
\(238\) −3.63389e20 −2.28806
\(239\) 1.11522e20 0.677607 0.338804 0.940857i \(-0.389978\pi\)
0.338804 + 0.940857i \(0.389978\pi\)
\(240\) 0 0
\(241\) −1.89825e20 −1.07451 −0.537253 0.843421i \(-0.680538\pi\)
−0.537253 + 0.843421i \(0.680538\pi\)
\(242\) 3.53881e20 1.93387
\(243\) 1.21577e19 0.0641500
\(244\) −7.75073e20 −3.94938
\(245\) 0 0
\(246\) −2.88810e20 −1.37298
\(247\) 1.72365e19 0.0791634
\(248\) −6.55128e20 −2.90728
\(249\) 7.76451e19 0.332981
\(250\) 0 0
\(251\) −1.47560e20 −0.591210 −0.295605 0.955310i \(-0.595521\pi\)
−0.295605 + 0.955310i \(0.595521\pi\)
\(252\) 3.71457e20 1.43881
\(253\) −6.02464e20 −2.25635
\(254\) −2.84523e20 −1.03046
\(255\) 0 0
\(256\) −2.59980e20 −0.880848
\(257\) −5.88705e20 −1.92959 −0.964797 0.262994i \(-0.915290\pi\)
−0.964797 + 0.262994i \(0.915290\pi\)
\(258\) 2.56868e20 0.814595
\(259\) −1.03547e21 −3.17752
\(260\) 0 0
\(261\) 2.08007e19 0.0597906
\(262\) −6.80324e20 −1.89302
\(263\) 2.53714e20 0.683472 0.341736 0.939796i \(-0.388985\pi\)
0.341736 + 0.939796i \(0.388985\pi\)
\(264\) 8.38888e20 2.18812
\(265\) 0 0
\(266\) 2.98589e20 0.730431
\(267\) −1.59544e20 −0.378038
\(268\) −3.81206e20 −0.875013
\(269\) −3.54749e20 −0.788909 −0.394455 0.918915i \(-0.629067\pi\)
−0.394455 + 0.918915i \(0.629067\pi\)
\(270\) 0 0
\(271\) 6.20629e20 1.29596 0.647982 0.761656i \(-0.275613\pi\)
0.647982 + 0.761656i \(0.275613\pi\)
\(272\) −8.52256e20 −1.72478
\(273\) 1.86264e20 0.365381
\(274\) 1.07916e21 2.05213
\(275\) 0 0
\(276\) −1.23918e21 −2.21517
\(277\) 5.37902e20 0.932449 0.466225 0.884666i \(-0.345614\pi\)
0.466225 + 0.884666i \(0.345614\pi\)
\(278\) −9.21301e20 −1.54889
\(279\) −2.24188e20 −0.365575
\(280\) 0 0
\(281\) −8.40846e20 −1.29037 −0.645183 0.764028i \(-0.723219\pi\)
−0.645183 + 0.764028i \(0.723219\pi\)
\(282\) −3.27201e19 −0.0487189
\(283\) 4.49542e20 0.649510 0.324755 0.945798i \(-0.394718\pi\)
0.324755 + 0.945798i \(0.394718\pi\)
\(284\) 1.72789e21 2.42276
\(285\) 0 0
\(286\) 7.14588e20 0.943940
\(287\) −1.77756e21 −2.27945
\(288\) 5.19779e20 0.647117
\(289\) −4.26845e20 −0.515987
\(290\) 0 0
\(291\) 6.96152e20 0.793622
\(292\) 1.86325e21 2.06308
\(293\) 8.24381e20 0.886652 0.443326 0.896360i \(-0.353798\pi\)
0.443326 + 0.896360i \(0.353798\pi\)
\(294\) 2.20311e21 2.30188
\(295\) 0 0
\(296\) −4.80987e21 −4.74410
\(297\) 2.87072e20 0.275145
\(298\) −2.41301e21 −2.24761
\(299\) −6.21374e20 −0.562533
\(300\) 0 0
\(301\) 1.58097e21 1.35241
\(302\) 1.22764e21 1.02097
\(303\) 4.17630e20 0.337698
\(304\) 7.00280e20 0.550612
\(305\) 0 0
\(306\) −5.77639e20 −0.429560
\(307\) −2.06003e20 −0.149004 −0.0745021 0.997221i \(-0.523737\pi\)
−0.0745021 + 0.997221i \(0.523737\pi\)
\(308\) 8.77101e21 6.17119
\(309\) 2.46965e20 0.169040
\(310\) 0 0
\(311\) 9.73195e20 0.630575 0.315287 0.948996i \(-0.397899\pi\)
0.315287 + 0.948996i \(0.397899\pi\)
\(312\) 8.65219e20 0.545522
\(313\) 1.65984e21 1.01845 0.509226 0.860633i \(-0.329932\pi\)
0.509226 + 0.860633i \(0.329932\pi\)
\(314\) −1.36762e21 −0.816702
\(315\) 0 0
\(316\) 6.48309e20 0.366811
\(317\) −3.08017e21 −1.69657 −0.848283 0.529543i \(-0.822364\pi\)
−0.848283 + 0.529543i \(0.822364\pi\)
\(318\) 1.32642e21 0.711294
\(319\) 4.91155e20 0.256447
\(320\) 0 0
\(321\) −1.29647e21 −0.641905
\(322\) −1.07641e22 −5.19042
\(323\) −3.28996e20 −0.154514
\(324\) 5.90465e20 0.270123
\(325\) 0 0
\(326\) 8.45090e21 3.66905
\(327\) 1.40715e21 0.595229
\(328\) −8.25702e21 −3.40327
\(329\) −2.01386e20 −0.0808841
\(330\) 0 0
\(331\) −3.68783e21 −1.40680 −0.703401 0.710794i \(-0.748336\pi\)
−0.703401 + 0.710794i \(0.748336\pi\)
\(332\) 3.77101e21 1.40212
\(333\) −1.64596e21 −0.596547
\(334\) −6.34605e21 −2.24212
\(335\) 0 0
\(336\) 7.56747e21 2.54137
\(337\) −2.06121e20 −0.0674946 −0.0337473 0.999430i \(-0.510744\pi\)
−0.0337473 + 0.999430i \(0.510744\pi\)
\(338\) −5.06406e21 −1.61699
\(339\) −2.16062e21 −0.672793
\(340\) 0 0
\(341\) −5.29363e21 −1.56798
\(342\) 4.74633e20 0.137131
\(343\) 7.25994e21 2.04613
\(344\) 7.34380e21 2.01918
\(345\) 0 0
\(346\) 3.39299e21 0.888045
\(347\) −1.45695e21 −0.372087 −0.186044 0.982541i \(-0.559567\pi\)
−0.186044 + 0.982541i \(0.559567\pi\)
\(348\) 1.01023e21 0.251766
\(349\) −6.15182e21 −1.49619 −0.748096 0.663590i \(-0.769032\pi\)
−0.748096 + 0.663590i \(0.769032\pi\)
\(350\) 0 0
\(351\) 2.96083e20 0.0685966
\(352\) 1.22732e22 2.77553
\(353\) −4.05523e21 −0.895222 −0.447611 0.894228i \(-0.647725\pi\)
−0.447611 + 0.894228i \(0.647725\pi\)
\(354\) −1.51528e21 −0.326561
\(355\) 0 0
\(356\) −7.74862e21 −1.59184
\(357\) −3.55525e21 −0.713165
\(358\) 9.31717e20 0.182507
\(359\) 2.30064e21 0.440094 0.220047 0.975489i \(-0.429379\pi\)
0.220047 + 0.975489i \(0.429379\pi\)
\(360\) 0 0
\(361\) −5.21006e21 −0.950673
\(362\) 4.40219e21 0.784595
\(363\) 3.46223e21 0.602767
\(364\) 9.04632e21 1.53854
\(365\) 0 0
\(366\) −1.07022e22 −1.73733
\(367\) −3.92558e21 −0.622648 −0.311324 0.950304i \(-0.600772\pi\)
−0.311324 + 0.950304i \(0.600772\pi\)
\(368\) −2.52450e22 −3.91263
\(369\) −2.82560e21 −0.427943
\(370\) 0 0
\(371\) 8.16382e21 1.18091
\(372\) −1.08882e22 −1.53936
\(373\) −1.72627e20 −0.0238553 −0.0119276 0.999929i \(-0.503797\pi\)
−0.0119276 + 0.999929i \(0.503797\pi\)
\(374\) −1.36395e22 −1.84242
\(375\) 0 0
\(376\) −9.35463e20 −0.120762
\(377\) 5.06571e20 0.0639350
\(378\) 5.12906e21 0.632932
\(379\) −2.57296e21 −0.310455 −0.155228 0.987879i \(-0.549611\pi\)
−0.155228 + 0.987879i \(0.549611\pi\)
\(380\) 0 0
\(381\) −2.78365e21 −0.321183
\(382\) 1.26719e22 1.42989
\(383\) −1.66889e21 −0.184178 −0.0920890 0.995751i \(-0.529354\pi\)
−0.0920890 + 0.995751i \(0.529354\pi\)
\(384\) 6.81460e20 0.0735572
\(385\) 0 0
\(386\) 1.72818e21 0.178483
\(387\) 2.51309e21 0.253901
\(388\) 3.38102e22 3.34178
\(389\) 5.43023e21 0.525106 0.262553 0.964918i \(-0.415436\pi\)
0.262553 + 0.964918i \(0.415436\pi\)
\(390\) 0 0
\(391\) 1.18603e22 1.09797
\(392\) 6.29865e22 5.70579
\(393\) −6.65601e21 −0.590034
\(394\) 1.73037e22 1.50114
\(395\) 0 0
\(396\) 1.39423e22 1.15858
\(397\) 1.04340e22 0.848659 0.424330 0.905508i \(-0.360510\pi\)
0.424330 + 0.905508i \(0.360510\pi\)
\(398\) 3.38590e21 0.269568
\(399\) 2.92127e21 0.227668
\(400\) 0 0
\(401\) −1.07284e22 −0.801326 −0.400663 0.916225i \(-0.631220\pi\)
−0.400663 + 0.916225i \(0.631220\pi\)
\(402\) −5.26367e21 −0.384917
\(403\) −5.45979e21 −0.390915
\(404\) 2.02831e22 1.42198
\(405\) 0 0
\(406\) 8.77536e21 0.589921
\(407\) −3.88652e22 −2.55864
\(408\) −1.65146e22 −1.06477
\(409\) −3.09142e22 −1.95213 −0.976066 0.217474i \(-0.930218\pi\)
−0.976066 + 0.217474i \(0.930218\pi\)
\(410\) 0 0
\(411\) 1.05580e22 0.639628
\(412\) 1.19944e22 0.711791
\(413\) −9.32621e21 −0.542163
\(414\) −1.71105e22 −0.974450
\(415\) 0 0
\(416\) 1.26585e22 0.691971
\(417\) −9.01363e21 −0.482773
\(418\) 1.12072e22 0.588166
\(419\) −1.50465e22 −0.773780 −0.386890 0.922126i \(-0.626451\pi\)
−0.386890 + 0.922126i \(0.626451\pi\)
\(420\) 0 0
\(421\) −2.30163e22 −1.13668 −0.568339 0.822795i \(-0.692414\pi\)
−0.568339 + 0.822795i \(0.692414\pi\)
\(422\) 3.27864e22 1.58686
\(423\) −3.20120e20 −0.0151852
\(424\) 3.79220e22 1.76312
\(425\) 0 0
\(426\) 2.38586e22 1.06577
\(427\) −6.58695e22 −2.88435
\(428\) −6.29662e22 −2.70293
\(429\) 6.99123e21 0.294216
\(430\) 0 0
\(431\) 1.28296e22 0.518985 0.259493 0.965745i \(-0.416445\pi\)
0.259493 + 0.965745i \(0.416445\pi\)
\(432\) 1.20292e22 0.477116
\(433\) −7.37153e21 −0.286689 −0.143344 0.989673i \(-0.545786\pi\)
−0.143344 + 0.989673i \(0.545786\pi\)
\(434\) −9.45802e22 −3.60693
\(435\) 0 0
\(436\) 6.83414e22 2.50639
\(437\) −9.74532e21 −0.350513
\(438\) 2.57276e22 0.907547
\(439\) 3.49450e22 1.20903 0.604514 0.796595i \(-0.293367\pi\)
0.604514 + 0.796595i \(0.293367\pi\)
\(440\) 0 0
\(441\) 2.15543e22 0.717473
\(442\) −1.40676e22 −0.459335
\(443\) 3.18362e22 1.01974 0.509870 0.860251i \(-0.329693\pi\)
0.509870 + 0.860251i \(0.329693\pi\)
\(444\) −7.99400e22 −2.51194
\(445\) 0 0
\(446\) −4.04828e21 −0.122440
\(447\) −2.36079e22 −0.700558
\(448\) 6.81047e22 1.98296
\(449\) −1.60496e22 −0.458532 −0.229266 0.973364i \(-0.573633\pi\)
−0.229266 + 0.973364i \(0.573633\pi\)
\(450\) 0 0
\(451\) −6.67192e22 −1.83548
\(452\) −1.04936e23 −2.83300
\(453\) 1.20107e22 0.318225
\(454\) 1.24227e23 3.23028
\(455\) 0 0
\(456\) 1.35697e22 0.339913
\(457\) 6.60625e22 1.62430 0.812152 0.583446i \(-0.198296\pi\)
0.812152 + 0.583446i \(0.198296\pi\)
\(458\) 7.23815e22 1.74691
\(459\) −5.65138e21 −0.133890
\(460\) 0 0
\(461\) 2.90192e22 0.662563 0.331282 0.943532i \(-0.392519\pi\)
0.331282 + 0.943532i \(0.392519\pi\)
\(462\) 1.21109e23 2.71470
\(463\) 8.02536e22 1.76614 0.883072 0.469237i \(-0.155471\pi\)
0.883072 + 0.469237i \(0.155471\pi\)
\(464\) 2.05808e22 0.444693
\(465\) 0 0
\(466\) 8.09337e22 1.68597
\(467\) 3.77237e22 0.771651 0.385826 0.922572i \(-0.373917\pi\)
0.385826 + 0.922572i \(0.373917\pi\)
\(468\) 1.43799e22 0.288846
\(469\) −3.23968e22 −0.639047
\(470\) 0 0
\(471\) −1.33802e22 −0.254558
\(472\) −4.33215e22 −0.809462
\(473\) 5.93401e22 1.08900
\(474\) 8.95180e21 0.161359
\(475\) 0 0
\(476\) −1.72669e23 −3.00299
\(477\) 1.29771e22 0.221703
\(478\) 7.47881e22 1.25515
\(479\) 6.60372e21 0.108877 0.0544385 0.998517i \(-0.482663\pi\)
0.0544385 + 0.998517i \(0.482663\pi\)
\(480\) 0 0
\(481\) −4.00851e22 −0.637896
\(482\) −1.27299e23 −1.99033
\(483\) −1.05311e23 −1.61780
\(484\) 1.68151e23 2.53813
\(485\) 0 0
\(486\) 8.15309e21 0.118827
\(487\) 5.47261e22 0.783788 0.391894 0.920010i \(-0.371820\pi\)
0.391894 + 0.920010i \(0.371820\pi\)
\(488\) −3.05973e23 −4.30640
\(489\) 8.26801e22 1.14360
\(490\) 0 0
\(491\) 8.78896e22 1.17421 0.587103 0.809512i \(-0.300268\pi\)
0.587103 + 0.809512i \(0.300268\pi\)
\(492\) −1.37231e23 −1.80198
\(493\) −9.66901e21 −0.124791
\(494\) 1.15590e22 0.146636
\(495\) 0 0
\(496\) −2.21819e23 −2.71897
\(497\) 1.46845e23 1.76941
\(498\) 5.20698e22 0.616789
\(499\) 5.68475e22 0.661998 0.330999 0.943631i \(-0.392614\pi\)
0.330999 + 0.943631i \(0.392614\pi\)
\(500\) 0 0
\(501\) −6.20871e22 −0.698845
\(502\) −9.89556e22 −1.09511
\(503\) 9.35523e22 1.01795 0.508975 0.860781i \(-0.330024\pi\)
0.508975 + 0.860781i \(0.330024\pi\)
\(504\) 1.46639e23 1.56888
\(505\) 0 0
\(506\) −4.04020e23 −4.17949
\(507\) −4.95447e22 −0.503999
\(508\) −1.35194e23 −1.35244
\(509\) −1.72895e23 −1.70091 −0.850454 0.526050i \(-0.823673\pi\)
−0.850454 + 0.526050i \(0.823673\pi\)
\(510\) 0 0
\(511\) 1.58348e23 1.50673
\(512\) −1.87960e23 −1.75902
\(513\) 4.64361e21 0.0427424
\(514\) −3.94793e23 −3.57423
\(515\) 0 0
\(516\) 1.22054e23 1.06913
\(517\) −7.55882e21 −0.0651305
\(518\) −6.94397e23 −5.88579
\(519\) 3.31956e22 0.276795
\(520\) 0 0
\(521\) −1.19149e23 −0.961542 −0.480771 0.876846i \(-0.659643\pi\)
−0.480771 + 0.876846i \(0.659643\pi\)
\(522\) 1.39492e22 0.110752
\(523\) −1.24654e22 −0.0973735 −0.0486868 0.998814i \(-0.515504\pi\)
−0.0486868 + 0.998814i \(0.515504\pi\)
\(524\) −3.23264e23 −2.48452
\(525\) 0 0
\(526\) 1.70144e23 1.26601
\(527\) 1.04212e23 0.763004
\(528\) 2.84038e23 2.04639
\(529\) 2.10268e23 1.49073
\(530\) 0 0
\(531\) −1.48248e22 −0.101786
\(532\) 1.41878e23 0.958663
\(533\) −6.88134e22 −0.457606
\(534\) −1.06992e23 −0.700248
\(535\) 0 0
\(536\) −1.50487e23 −0.954112
\(537\) 9.11554e21 0.0568854
\(538\) −2.37899e23 −1.46132
\(539\) 5.08949e23 3.07730
\(540\) 0 0
\(541\) −7.61271e22 −0.446028 −0.223014 0.974815i \(-0.571590\pi\)
−0.223014 + 0.974815i \(0.571590\pi\)
\(542\) 4.16202e23 2.40054
\(543\) 4.30692e22 0.244550
\(544\) −2.41614e23 −1.35062
\(545\) 0 0
\(546\) 1.24911e23 0.676804
\(547\) 1.74228e23 0.929447 0.464723 0.885456i \(-0.346154\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(548\) 5.12775e23 2.69335
\(549\) −1.04705e23 −0.541507
\(550\) 0 0
\(551\) 7.94481e21 0.0398378
\(552\) −4.89186e23 −2.41541
\(553\) 5.50965e22 0.267892
\(554\) 3.60724e23 1.72720
\(555\) 0 0
\(556\) −4.37767e23 −2.03286
\(557\) −4.06323e22 −0.185824 −0.0929122 0.995674i \(-0.529618\pi\)
−0.0929122 + 0.995674i \(0.529618\pi\)
\(558\) −1.50344e23 −0.677164
\(559\) 6.12027e22 0.271500
\(560\) 0 0
\(561\) −1.33443e23 −0.574263
\(562\) −5.63882e23 −2.39017
\(563\) −3.27464e23 −1.36723 −0.683615 0.729843i \(-0.739593\pi\)
−0.683615 + 0.729843i \(0.739593\pi\)
\(564\) −1.55474e22 −0.0639417
\(565\) 0 0
\(566\) 3.01469e23 1.20310
\(567\) 5.01806e22 0.197278
\(568\) 6.82112e23 2.64177
\(569\) 3.74009e23 1.42701 0.713506 0.700649i \(-0.247106\pi\)
0.713506 + 0.700649i \(0.247106\pi\)
\(570\) 0 0
\(571\) 2.13597e23 0.791021 0.395511 0.918461i \(-0.370568\pi\)
0.395511 + 0.918461i \(0.370568\pi\)
\(572\) 3.39545e23 1.23888
\(573\) 1.23976e23 0.445682
\(574\) −1.19206e24 −4.22227
\(575\) 0 0
\(576\) 1.08258e23 0.372281
\(577\) −8.63899e22 −0.292731 −0.146366 0.989231i \(-0.546758\pi\)
−0.146366 + 0.989231i \(0.546758\pi\)
\(578\) −2.86248e23 −0.955775
\(579\) 1.69078e22 0.0556313
\(580\) 0 0
\(581\) 3.20479e23 1.02400
\(582\) 4.66848e23 1.47004
\(583\) 3.06421e23 0.950902
\(584\) 7.35547e23 2.24958
\(585\) 0 0
\(586\) 5.52841e23 1.64237
\(587\) −1.46869e23 −0.430037 −0.215018 0.976610i \(-0.568981\pi\)
−0.215018 + 0.976610i \(0.568981\pi\)
\(588\) 1.04683e24 3.02114
\(589\) −8.56286e22 −0.243578
\(590\) 0 0
\(591\) 1.69292e23 0.467890
\(592\) −1.62857e24 −4.43682
\(593\) 6.72164e23 1.80514 0.902569 0.430545i \(-0.141679\pi\)
0.902569 + 0.430545i \(0.141679\pi\)
\(594\) 1.92514e23 0.509657
\(595\) 0 0
\(596\) −1.14657e24 −2.94991
\(597\) 3.31262e22 0.0840214
\(598\) −4.16701e23 −1.04199
\(599\) −2.15383e23 −0.530986 −0.265493 0.964113i \(-0.585535\pi\)
−0.265493 + 0.964113i \(0.585535\pi\)
\(600\) 0 0
\(601\) −3.86809e23 −0.926964 −0.463482 0.886106i \(-0.653400\pi\)
−0.463482 + 0.886106i \(0.653400\pi\)
\(602\) 1.06022e24 2.50510
\(603\) −5.14976e22 −0.119975
\(604\) 5.83328e23 1.33998
\(605\) 0 0
\(606\) 2.80068e23 0.625527
\(607\) 5.57542e23 1.22793 0.613965 0.789333i \(-0.289574\pi\)
0.613965 + 0.789333i \(0.289574\pi\)
\(608\) 1.98529e23 0.431166
\(609\) 8.58545e22 0.183872
\(610\) 0 0
\(611\) −7.79607e21 −0.0162377
\(612\) −2.74472e23 −0.563782
\(613\) −3.77874e23 −0.765478 −0.382739 0.923857i \(-0.625019\pi\)
−0.382739 + 0.923857i \(0.625019\pi\)
\(614\) −1.38149e23 −0.276004
\(615\) 0 0
\(616\) 3.46250e24 6.72904
\(617\) 2.68278e23 0.514235 0.257118 0.966380i \(-0.417227\pi\)
0.257118 + 0.966380i \(0.417227\pi\)
\(618\) 1.65618e23 0.313116
\(619\) 3.02103e23 0.563358 0.281679 0.959509i \(-0.409109\pi\)
0.281679 + 0.959509i \(0.409109\pi\)
\(620\) 0 0
\(621\) −1.67402e23 −0.303726
\(622\) 6.52637e23 1.16803
\(623\) −6.58516e23 −1.16257
\(624\) 2.92953e23 0.510187
\(625\) 0 0
\(626\) 1.11311e24 1.88650
\(627\) 1.09647e23 0.183325
\(628\) −6.49842e23 −1.07189
\(629\) 7.65112e23 1.24507
\(630\) 0 0
\(631\) 4.97599e23 0.788189 0.394094 0.919070i \(-0.371058\pi\)
0.394094 + 0.919070i \(0.371058\pi\)
\(632\) 2.55930e23 0.399969
\(633\) 3.20769e23 0.494607
\(634\) −2.06560e24 −3.14259
\(635\) 0 0
\(636\) 6.30263e23 0.933547
\(637\) 5.24924e23 0.767205
\(638\) 3.29375e23 0.475023
\(639\) 2.33422e23 0.332189
\(640\) 0 0
\(641\) 2.45883e23 0.340750 0.170375 0.985379i \(-0.445502\pi\)
0.170375 + 0.985379i \(0.445502\pi\)
\(642\) −8.69432e23 −1.18902
\(643\) −1.29703e24 −1.75048 −0.875239 0.483691i \(-0.839296\pi\)
−0.875239 + 0.483691i \(0.839296\pi\)
\(644\) −5.11469e24 −6.81223
\(645\) 0 0
\(646\) −2.20629e23 −0.286211
\(647\) −6.72178e23 −0.860593 −0.430297 0.902688i \(-0.641591\pi\)
−0.430297 + 0.902688i \(0.641591\pi\)
\(648\) 2.33095e23 0.294541
\(649\) −3.50050e23 −0.436567
\(650\) 0 0
\(651\) −9.25333e23 −1.12424
\(652\) 4.01555e24 4.81548
\(653\) 9.05901e23 1.07231 0.536153 0.844121i \(-0.319877\pi\)
0.536153 + 0.844121i \(0.319877\pi\)
\(654\) 9.43653e23 1.10256
\(655\) 0 0
\(656\) −2.79573e24 −3.18283
\(657\) 2.51708e23 0.282873
\(658\) −1.35052e23 −0.149824
\(659\) 9.59082e23 1.05034 0.525170 0.850997i \(-0.324002\pi\)
0.525170 + 0.850997i \(0.324002\pi\)
\(660\) 0 0
\(661\) −9.10262e23 −0.971525 −0.485762 0.874091i \(-0.661458\pi\)
−0.485762 + 0.874091i \(0.661458\pi\)
\(662\) −2.47311e24 −2.60585
\(663\) −1.37631e23 −0.143170
\(664\) 1.48867e24 1.52886
\(665\) 0 0
\(666\) −1.10381e24 −1.10500
\(667\) −2.86410e23 −0.283086
\(668\) −3.01540e24 −2.94270
\(669\) −3.96067e22 −0.0381633
\(670\) 0 0
\(671\) −2.47235e24 −2.32257
\(672\) 2.14538e24 1.99006
\(673\) 8.50468e23 0.778987 0.389493 0.921029i \(-0.372650\pi\)
0.389493 + 0.921029i \(0.372650\pi\)
\(674\) −1.38228e23 −0.125022
\(675\) 0 0
\(676\) −2.40625e24 −2.12224
\(677\) −4.30263e23 −0.374741 −0.187370 0.982289i \(-0.559996\pi\)
−0.187370 + 0.982289i \(0.559996\pi\)
\(678\) −1.44894e24 −1.24623
\(679\) 2.87335e24 2.44060
\(680\) 0 0
\(681\) 1.21538e24 1.00684
\(682\) −3.54998e24 −2.90441
\(683\) 1.92309e23 0.155390 0.0776950 0.996977i \(-0.475244\pi\)
0.0776950 + 0.996977i \(0.475244\pi\)
\(684\) 2.25528e23 0.179979
\(685\) 0 0
\(686\) 4.86861e24 3.79009
\(687\) 7.08151e23 0.544495
\(688\) 2.48653e24 1.88839
\(689\) 3.16039e23 0.237070
\(690\) 0 0
\(691\) 9.14440e23 0.669255 0.334627 0.942350i \(-0.391390\pi\)
0.334627 + 0.942350i \(0.391390\pi\)
\(692\) 1.61222e24 1.16553
\(693\) 1.18488e24 0.846143
\(694\) −9.77051e23 −0.689226
\(695\) 0 0
\(696\) 3.98805e23 0.274525
\(697\) 1.31345e24 0.893174
\(698\) −4.12549e24 −2.77143
\(699\) 7.91822e23 0.525499
\(700\) 0 0
\(701\) −1.18189e24 −0.765548 −0.382774 0.923842i \(-0.625031\pi\)
−0.382774 + 0.923842i \(0.625031\pi\)
\(702\) 1.98557e23 0.127063
\(703\) −6.28675e23 −0.397472
\(704\) 2.55624e24 1.59674
\(705\) 0 0
\(706\) −2.71949e24 −1.65824
\(707\) 1.72376e24 1.03851
\(708\) −7.20002e23 −0.428599
\(709\) 3.06841e23 0.180476 0.0902381 0.995920i \(-0.471237\pi\)
0.0902381 + 0.995920i \(0.471237\pi\)
\(710\) 0 0
\(711\) 8.75807e22 0.0502941
\(712\) −3.05889e24 −1.73574
\(713\) 3.08690e24 1.73086
\(714\) −2.38420e24 −1.32101
\(715\) 0 0
\(716\) 4.42717e23 0.239533
\(717\) 7.31695e23 0.391217
\(718\) 1.54284e24 0.815197
\(719\) 1.71139e24 0.893621 0.446811 0.894629i \(-0.352560\pi\)
0.446811 + 0.894629i \(0.352560\pi\)
\(720\) 0 0
\(721\) 1.01934e24 0.519841
\(722\) −3.49393e24 −1.76096
\(723\) −1.24544e24 −0.620366
\(724\) 2.09175e24 1.02975
\(725\) 0 0
\(726\) 2.32182e24 1.11652
\(727\) −1.28685e24 −0.611623 −0.305812 0.952092i \(-0.598928\pi\)
−0.305812 + 0.952092i \(0.598928\pi\)
\(728\) 3.57118e24 1.67763
\(729\) 7.97664e22 0.0370370
\(730\) 0 0
\(731\) −1.16819e24 −0.529925
\(732\) −5.08526e24 −2.28018
\(733\) 3.55442e24 1.57538 0.787690 0.616072i \(-0.211277\pi\)
0.787690 + 0.616072i \(0.211277\pi\)
\(734\) −2.63255e24 −1.15335
\(735\) 0 0
\(736\) −7.15696e24 −3.06385
\(737\) −1.21598e24 −0.514581
\(738\) −1.89488e24 −0.792689
\(739\) −3.45741e24 −1.42979 −0.714895 0.699231i \(-0.753526\pi\)
−0.714895 + 0.699231i \(0.753526\pi\)
\(740\) 0 0
\(741\) 1.13089e23 0.0457050
\(742\) 5.47476e24 2.18742
\(743\) −1.33858e24 −0.528737 −0.264369 0.964422i \(-0.585164\pi\)
−0.264369 + 0.964422i \(0.585164\pi\)
\(744\) −4.29829e24 −1.67852
\(745\) 0 0
\(746\) −1.15766e23 −0.0441877
\(747\) 5.09429e23 0.192247
\(748\) −6.48095e24 −2.41810
\(749\) −5.35117e24 −1.97403
\(750\) 0 0
\(751\) 1.02936e24 0.371217 0.185609 0.982624i \(-0.440574\pi\)
0.185609 + 0.982624i \(0.440574\pi\)
\(752\) −3.16737e23 −0.112940
\(753\) −9.68141e23 −0.341335
\(754\) 3.39713e23 0.118428
\(755\) 0 0
\(756\) 2.43713e24 0.830699
\(757\) −2.63626e24 −0.888531 −0.444265 0.895895i \(-0.646535\pi\)
−0.444265 + 0.895895i \(0.646535\pi\)
\(758\) −1.72546e24 −0.575064
\(759\) −3.95276e24 −1.30270
\(760\) 0 0
\(761\) −6.77132e23 −0.218225 −0.109112 0.994029i \(-0.534801\pi\)
−0.109112 + 0.994029i \(0.534801\pi\)
\(762\) −1.86675e24 −0.594935
\(763\) 5.80799e24 1.83049
\(764\) 6.02119e24 1.87667
\(765\) 0 0
\(766\) −1.11918e24 −0.341157
\(767\) −3.61038e23 −0.108841
\(768\) −1.70573e24 −0.508558
\(769\) 2.15350e24 0.634996 0.317498 0.948259i \(-0.397157\pi\)
0.317498 + 0.948259i \(0.397157\pi\)
\(770\) 0 0
\(771\) −3.86249e24 −1.11405
\(772\) 8.21166e23 0.234252
\(773\) 8.52370e23 0.240493 0.120246 0.992744i \(-0.461632\pi\)
0.120246 + 0.992744i \(0.461632\pi\)
\(774\) 1.68531e24 0.470307
\(775\) 0 0
\(776\) 1.33471e25 3.64387
\(777\) −6.79369e24 −1.83454
\(778\) 3.64158e24 0.972666
\(779\) −1.07924e24 −0.285133
\(780\) 0 0
\(781\) 5.51167e24 1.42478
\(782\) 7.95365e24 2.03380
\(783\) 1.36473e23 0.0345201
\(784\) 2.13265e25 5.33621
\(785\) 0 0
\(786\) −4.46361e24 −1.09294
\(787\) −5.38452e24 −1.30425 −0.652126 0.758110i \(-0.726123\pi\)
−0.652126 + 0.758110i \(0.726123\pi\)
\(788\) 8.22207e24 1.97019
\(789\) 1.66462e24 0.394603
\(790\) 0 0
\(791\) −8.91794e24 −2.06902
\(792\) 5.50395e24 1.26331
\(793\) −2.54995e24 −0.579042
\(794\) 6.99721e24 1.57199
\(795\) 0 0
\(796\) 1.60885e24 0.353797
\(797\) −1.12702e24 −0.245208 −0.122604 0.992456i \(-0.539124\pi\)
−0.122604 + 0.992456i \(0.539124\pi\)
\(798\) 1.95904e24 0.421715
\(799\) 1.48805e23 0.0316935
\(800\) 0 0
\(801\) −1.04677e24 −0.218260
\(802\) −7.19463e24 −1.48432
\(803\) 5.94344e24 1.21326
\(804\) −2.50109e24 −0.505189
\(805\) 0 0
\(806\) −3.66140e24 −0.724102
\(807\) −2.32751e24 −0.455477
\(808\) 8.00709e24 1.55052
\(809\) −1.34479e24 −0.257686 −0.128843 0.991665i \(-0.541126\pi\)
−0.128843 + 0.991665i \(0.541126\pi\)
\(810\) 0 0
\(811\) 4.40358e24 0.826283 0.413141 0.910667i \(-0.364432\pi\)
0.413141 + 0.910667i \(0.364432\pi\)
\(812\) 4.16972e24 0.774248
\(813\) 4.07194e24 0.748225
\(814\) −2.60635e25 −4.73942
\(815\) 0 0
\(816\) −5.59165e24 −0.995803
\(817\) 9.59872e23 0.169171
\(818\) −2.07314e25 −3.61598
\(819\) 1.22208e24 0.210953
\(820\) 0 0
\(821\) 1.72971e24 0.292453 0.146227 0.989251i \(-0.453287\pi\)
0.146227 + 0.989251i \(0.453287\pi\)
\(822\) 7.08036e24 1.18480
\(823\) 1.17051e25 1.93855 0.969274 0.245986i \(-0.0791116\pi\)
0.969274 + 0.245986i \(0.0791116\pi\)
\(824\) 4.73499e24 0.776135
\(825\) 0 0
\(826\) −6.25428e24 −1.00426
\(827\) −6.19900e24 −0.985202 −0.492601 0.870255i \(-0.663954\pi\)
−0.492601 + 0.870255i \(0.663954\pi\)
\(828\) −8.13025e24 −1.27893
\(829\) 5.61442e24 0.874161 0.437081 0.899422i \(-0.356012\pi\)
0.437081 + 0.899422i \(0.356012\pi\)
\(830\) 0 0
\(831\) 3.52918e24 0.538350
\(832\) 2.63648e24 0.398085
\(833\) −1.00193e25 −1.49746
\(834\) −6.04465e24 −0.894252
\(835\) 0 0
\(836\) 5.32525e24 0.771946
\(837\) −1.47090e24 −0.211065
\(838\) −1.00904e25 −1.43329
\(839\) 8.30559e24 1.16787 0.583934 0.811801i \(-0.301513\pi\)
0.583934 + 0.811801i \(0.301513\pi\)
\(840\) 0 0
\(841\) −7.02365e24 −0.967826
\(842\) −1.54350e25 −2.10550
\(843\) −5.51679e24 −0.744993
\(844\) 1.55789e25 2.08269
\(845\) 0 0
\(846\) −2.14677e23 −0.0281279
\(847\) 1.42903e25 1.85367
\(848\) 1.28400e25 1.64892
\(849\) 2.94945e24 0.374995
\(850\) 0 0
\(851\) 2.26637e25 2.82442
\(852\) 1.13367e25 1.39878
\(853\) −9.95169e24 −1.21571 −0.607855 0.794048i \(-0.707970\pi\)
−0.607855 + 0.794048i \(0.707970\pi\)
\(854\) −4.41730e25 −5.34275
\(855\) 0 0
\(856\) −2.48569e25 −2.94727
\(857\) −2.47493e24 −0.290553 −0.145276 0.989391i \(-0.546407\pi\)
−0.145276 + 0.989391i \(0.546407\pi\)
\(858\) 4.68841e24 0.544984
\(859\) 3.92176e24 0.451377 0.225689 0.974200i \(-0.427537\pi\)
0.225689 + 0.974200i \(0.427537\pi\)
\(860\) 0 0
\(861\) −1.16626e25 −1.31604
\(862\) 8.60367e24 0.961329
\(863\) 1.05637e25 1.16876 0.584381 0.811480i \(-0.301337\pi\)
0.584381 + 0.811480i \(0.301337\pi\)
\(864\) 3.41027e24 0.373613
\(865\) 0 0
\(866\) −4.94344e24 −0.531040
\(867\) −2.80053e24 −0.297905
\(868\) −4.49409e25 −4.73395
\(869\) 2.06799e24 0.215715
\(870\) 0 0
\(871\) −1.25415e24 −0.128291
\(872\) 2.69789e25 2.73296
\(873\) 4.56745e24 0.458198
\(874\) −6.53534e24 −0.649263
\(875\) 0 0
\(876\) 1.22248e25 1.19112
\(877\) 8.71589e23 0.0841037 0.0420518 0.999115i \(-0.486611\pi\)
0.0420518 + 0.999115i \(0.486611\pi\)
\(878\) 2.34346e25 2.23951
\(879\) 5.40876e24 0.511909
\(880\) 0 0
\(881\) 3.51372e24 0.326191 0.163096 0.986610i \(-0.447852\pi\)
0.163096 + 0.986610i \(0.447852\pi\)
\(882\) 1.44546e25 1.32899
\(883\) −1.29043e25 −1.17508 −0.587540 0.809195i \(-0.699904\pi\)
−0.587540 + 0.809195i \(0.699904\pi\)
\(884\) −6.68438e24 −0.602860
\(885\) 0 0
\(886\) 2.13498e25 1.88889
\(887\) 3.42654e24 0.300265 0.150133 0.988666i \(-0.452030\pi\)
0.150133 + 0.988666i \(0.452030\pi\)
\(888\) −3.15576e25 −2.73901
\(889\) −1.14895e25 −0.987724
\(890\) 0 0
\(891\) 1.88348e24 0.158855
\(892\) −1.92359e24 −0.160698
\(893\) −1.22270e23 −0.0101177
\(894\) −1.58318e25 −1.29766
\(895\) 0 0
\(896\) 2.81272e24 0.226208
\(897\) −4.07683e24 −0.324779
\(898\) −1.07630e25 −0.849349
\(899\) −2.51658e24 −0.196722
\(900\) 0 0
\(901\) −6.03229e24 −0.462724
\(902\) −4.47428e25 −3.39991
\(903\) 1.03727e25 0.780813
\(904\) −4.14250e25 −3.08909
\(905\) 0 0
\(906\) 8.05454e24 0.589456
\(907\) 1.11742e25 0.810126 0.405063 0.914289i \(-0.367250\pi\)
0.405063 + 0.914289i \(0.367250\pi\)
\(908\) 5.90277e25 4.23961
\(909\) 2.74007e24 0.194970
\(910\) 0 0
\(911\) −2.26295e25 −1.58041 −0.790204 0.612843i \(-0.790026\pi\)
−0.790204 + 0.612843i \(0.790026\pi\)
\(912\) 4.59453e24 0.317896
\(913\) 1.20289e25 0.824561
\(914\) 4.43024e25 3.00874
\(915\) 0 0
\(916\) 3.43930e25 2.29276
\(917\) −2.74726e25 −1.81451
\(918\) −3.78989e24 −0.248007
\(919\) −2.06020e25 −1.33576 −0.667879 0.744270i \(-0.732798\pi\)
−0.667879 + 0.744270i \(0.732798\pi\)
\(920\) 0 0
\(921\) −1.35159e24 −0.0860276
\(922\) 1.94606e25 1.22728
\(923\) 5.68467e24 0.355215
\(924\) 5.75466e25 3.56294
\(925\) 0 0
\(926\) 5.38191e25 3.27147
\(927\) 1.62034e24 0.0975950
\(928\) 5.83467e24 0.348224
\(929\) 1.38098e25 0.816681 0.408341 0.912830i \(-0.366108\pi\)
0.408341 + 0.912830i \(0.366108\pi\)
\(930\) 0 0
\(931\) 8.23265e24 0.478043
\(932\) 3.84566e25 2.21277
\(933\) 6.38513e24 0.364063
\(934\) 2.52980e25 1.42935
\(935\) 0 0
\(936\) 5.67670e24 0.314957
\(937\) 1.59511e25 0.877011 0.438506 0.898728i \(-0.355508\pi\)
0.438506 + 0.898728i \(0.355508\pi\)
\(938\) −2.17257e25 −1.18372
\(939\) 1.08902e25 0.588003
\(940\) 0 0
\(941\) −2.23853e25 −1.18700 −0.593500 0.804834i \(-0.702254\pi\)
−0.593500 + 0.804834i \(0.702254\pi\)
\(942\) −8.97296e24 −0.471523
\(943\) 3.89063e25 2.02615
\(944\) −1.46682e25 −0.757031
\(945\) 0 0
\(946\) 3.97942e25 2.01718
\(947\) 2.89242e25 1.45307 0.726534 0.687130i \(-0.241130\pi\)
0.726534 + 0.687130i \(0.241130\pi\)
\(948\) 4.25356e24 0.211778
\(949\) 6.12999e24 0.302480
\(950\) 0 0
\(951\) −2.02090e25 −0.979513
\(952\) −6.81637e25 −3.27446
\(953\) −2.32682e25 −1.10783 −0.553915 0.832573i \(-0.686867\pi\)
−0.553915 + 0.832573i \(0.686867\pi\)
\(954\) 8.70262e24 0.410666
\(955\) 0 0
\(956\) 3.55364e25 1.64733
\(957\) 3.22246e24 0.148060
\(958\) 4.42854e24 0.201676
\(959\) 4.35781e25 1.96703
\(960\) 0 0
\(961\) 4.57337e24 0.202809
\(962\) −2.68816e25 −1.18159
\(963\) −8.50616e24 −0.370604
\(964\) −6.04877e25 −2.61224
\(965\) 0 0
\(966\) −7.06232e25 −2.99669
\(967\) 3.76920e25 1.58535 0.792674 0.609646i \(-0.208689\pi\)
0.792674 + 0.609646i \(0.208689\pi\)
\(968\) 6.63803e25 2.76757
\(969\) −2.15854e24 −0.0892089
\(970\) 0 0
\(971\) −1.07235e25 −0.435484 −0.217742 0.976006i \(-0.569869\pi\)
−0.217742 + 0.976006i \(0.569869\pi\)
\(972\) 3.87404e24 0.155955
\(973\) −3.72036e25 −1.48466
\(974\) 3.67000e25 1.45183
\(975\) 0 0
\(976\) −1.03599e26 −4.02746
\(977\) −1.87551e25 −0.722795 −0.361398 0.932412i \(-0.617700\pi\)
−0.361398 + 0.932412i \(0.617700\pi\)
\(978\) 5.54463e25 2.11833
\(979\) −2.47168e25 −0.936135
\(980\) 0 0
\(981\) 9.23231e24 0.343656
\(982\) 5.89399e25 2.17501
\(983\) 1.72208e24 0.0630013 0.0315006 0.999504i \(-0.489971\pi\)
0.0315006 + 0.999504i \(0.489971\pi\)
\(984\) −5.41743e25 −1.96488
\(985\) 0 0
\(986\) −6.48416e24 −0.231153
\(987\) −1.32129e24 −0.0466985
\(988\) 5.49240e24 0.192455
\(989\) −3.46033e25 −1.20212
\(990\) 0 0
\(991\) 5.69965e25 1.94636 0.973178 0.230053i \(-0.0738901\pi\)
0.973178 + 0.230053i \(0.0738901\pi\)
\(992\) −6.28856e25 −2.12913
\(993\) −2.41958e25 −0.812217
\(994\) 9.84759e25 3.27752
\(995\) 0 0
\(996\) 2.47416e25 0.809512
\(997\) −1.93741e24 −0.0628512 −0.0314256 0.999506i \(-0.510005\pi\)
−0.0314256 + 0.999506i \(0.510005\pi\)
\(998\) 3.81227e25 1.22623
\(999\) −1.07992e25 −0.344416
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.18.a.e.1.3 3
5.2 odd 4 75.18.b.d.49.6 6
5.3 odd 4 75.18.b.d.49.1 6
5.4 even 2 15.18.a.b.1.1 3
15.14 odd 2 45.18.a.e.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.18.a.b.1.1 3 5.4 even 2
45.18.a.e.1.3 3 15.14 odd 2
75.18.a.e.1.3 3 1.1 even 1 trivial
75.18.b.d.49.1 6 5.3 odd 4
75.18.b.d.49.6 6 5.2 odd 4