Properties

Label 75.22.a.h.1.4
Level $75$
Weight $22$
Character 75.1
Self dual yes
Analytic conductor $209.608$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,22,Mod(1,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(209.608008215\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3512166x^{2} + 363520480x + 2321089280000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 5^{2}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1492.88\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1716.88 q^{2} +59049.0 q^{3} +850541. q^{4} +1.01380e8 q^{6} +6.24477e8 q^{7} -2.14029e9 q^{8} +3.48678e9 q^{9} +1.47398e11 q^{11} +5.02236e10 q^{12} +5.50754e11 q^{13} +1.07216e12 q^{14} -5.45834e12 q^{16} +4.04946e12 q^{17} +5.98641e12 q^{18} +1.22679e12 q^{19} +3.68748e13 q^{21} +2.53065e14 q^{22} +2.50983e14 q^{23} -1.26382e14 q^{24} +9.45581e14 q^{26} +2.05891e14 q^{27} +5.31144e14 q^{28} -3.49299e15 q^{29} -2.93209e15 q^{31} -4.88283e15 q^{32} +8.70368e15 q^{33} +6.95245e15 q^{34} +2.96565e15 q^{36} -4.06107e16 q^{37} +2.10626e15 q^{38} +3.25215e16 q^{39} +1.45009e17 q^{41} +6.33097e16 q^{42} -8.05941e16 q^{43} +1.25368e17 q^{44} +4.30909e17 q^{46} -4.95994e16 q^{47} -3.22310e17 q^{48} -1.68574e17 q^{49} +2.39117e17 q^{51} +4.68439e17 q^{52} +1.24656e18 q^{53} +3.53491e17 q^{54} -1.33656e18 q^{56} +7.24408e16 q^{57} -5.99706e18 q^{58} +7.20028e18 q^{59} -4.77418e18 q^{61} -5.03405e18 q^{62} +2.17742e18 q^{63} +3.06371e18 q^{64} +1.49432e19 q^{66} -7.70841e18 q^{67} +3.44423e18 q^{68} +1.48203e19 q^{69} -1.63265e19 q^{71} -7.46272e18 q^{72} +1.29930e19 q^{73} -6.97240e19 q^{74} +1.04344e18 q^{76} +9.20465e19 q^{77} +5.58356e19 q^{78} +9.55293e19 q^{79} +1.21577e19 q^{81} +2.48964e20 q^{82} +2.20974e20 q^{83} +3.13635e19 q^{84} -1.38371e20 q^{86} -2.06258e20 q^{87} -3.15473e20 q^{88} +3.15065e19 q^{89} +3.43933e20 q^{91} +2.13471e20 q^{92} -1.73137e20 q^{93} -8.51565e19 q^{94} -2.88326e20 q^{96} -2.46548e20 q^{97} -2.89422e20 q^{98} +5.13944e20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 897 q^{2} + 236196 q^{3} - 1163123 q^{4} + 52966953 q^{6} + 234577504 q^{7} - 76855629 q^{8} + 13947137604 q^{9} + 31491830256 q^{11} - 68681250027 q^{12} + 27017977768 q^{13} - 2233308126672 q^{14}+ \cdots + 10\!\cdots\!56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1716.88 1.18557 0.592784 0.805362i \(-0.298029\pi\)
0.592784 + 0.805362i \(0.298029\pi\)
\(3\) 59049.0 0.577350
\(4\) 850541. 0.405570
\(5\) 0 0
\(6\) 1.01380e8 0.684488
\(7\) 6.24477e8 0.835579 0.417789 0.908544i \(-0.362805\pi\)
0.417789 + 0.908544i \(0.362805\pi\)
\(8\) −2.14029e9 −0.704737
\(9\) 3.48678e9 0.333333
\(10\) 0 0
\(11\) 1.47398e11 1.71343 0.856717 0.515787i \(-0.172501\pi\)
0.856717 + 0.515787i \(0.172501\pi\)
\(12\) 5.02236e10 0.234156
\(13\) 5.50754e11 1.10803 0.554016 0.832506i \(-0.313095\pi\)
0.554016 + 0.832506i \(0.313095\pi\)
\(14\) 1.07216e12 0.990635
\(15\) 0 0
\(16\) −5.45834e12 −1.24108
\(17\) 4.04946e12 0.487173 0.243587 0.969879i \(-0.421676\pi\)
0.243587 + 0.969879i \(0.421676\pi\)
\(18\) 5.98641e12 0.395189
\(19\) 1.22679e12 0.0459048 0.0229524 0.999737i \(-0.492693\pi\)
0.0229524 + 0.999737i \(0.492693\pi\)
\(20\) 0 0
\(21\) 3.68748e13 0.482422
\(22\) 2.53065e14 2.03139
\(23\) 2.50983e14 1.26329 0.631644 0.775259i \(-0.282380\pi\)
0.631644 + 0.775259i \(0.282380\pi\)
\(24\) −1.26382e14 −0.406880
\(25\) 0 0
\(26\) 9.45581e14 1.31365
\(27\) 2.05891e14 0.192450
\(28\) 5.31144e14 0.338885
\(29\) −3.49299e15 −1.54177 −0.770883 0.636977i \(-0.780185\pi\)
−0.770883 + 0.636977i \(0.780185\pi\)
\(30\) 0 0
\(31\) −2.93209e15 −0.642508 −0.321254 0.946993i \(-0.604104\pi\)
−0.321254 + 0.946993i \(0.604104\pi\)
\(32\) −4.88283e15 −0.766650
\(33\) 8.70368e15 0.989251
\(34\) 6.95245e15 0.577576
\(35\) 0 0
\(36\) 2.96565e15 0.135190
\(37\) −4.06107e16 −1.38843 −0.694213 0.719770i \(-0.744247\pi\)
−0.694213 + 0.719770i \(0.744247\pi\)
\(38\) 2.10626e15 0.0544232
\(39\) 3.25215e16 0.639723
\(40\) 0 0
\(41\) 1.45009e17 1.68720 0.843598 0.536976i \(-0.180433\pi\)
0.843598 + 0.536976i \(0.180433\pi\)
\(42\) 6.33097e16 0.571943
\(43\) −8.05941e16 −0.568702 −0.284351 0.958720i \(-0.591778\pi\)
−0.284351 + 0.958720i \(0.591778\pi\)
\(44\) 1.25368e17 0.694916
\(45\) 0 0
\(46\) 4.30909e17 1.49771
\(47\) −4.95994e16 −0.137546 −0.0687732 0.997632i \(-0.521908\pi\)
−0.0687732 + 0.997632i \(0.521908\pi\)
\(48\) −3.22310e17 −0.716540
\(49\) −1.68574e17 −0.301808
\(50\) 0 0
\(51\) 2.39117e17 0.281270
\(52\) 4.68439e17 0.449384
\(53\) 1.24656e18 0.979079 0.489540 0.871981i \(-0.337165\pi\)
0.489540 + 0.871981i \(0.337165\pi\)
\(54\) 3.53491e17 0.228163
\(55\) 0 0
\(56\) −1.33656e18 −0.588863
\(57\) 7.24408e16 0.0265031
\(58\) −5.99706e18 −1.82787
\(59\) 7.20028e18 1.83402 0.917009 0.398867i \(-0.130596\pi\)
0.917009 + 0.398867i \(0.130596\pi\)
\(60\) 0 0
\(61\) −4.77418e18 −0.856910 −0.428455 0.903563i \(-0.640942\pi\)
−0.428455 + 0.903563i \(0.640942\pi\)
\(62\) −5.03405e18 −0.761737
\(63\) 2.17742e18 0.278526
\(64\) 3.06371e18 0.332168
\(65\) 0 0
\(66\) 1.49432e19 1.17282
\(67\) −7.70841e18 −0.516630 −0.258315 0.966061i \(-0.583167\pi\)
−0.258315 + 0.966061i \(0.583167\pi\)
\(68\) 3.44423e18 0.197583
\(69\) 1.48203e19 0.729360
\(70\) 0 0
\(71\) −1.63265e19 −0.595223 −0.297612 0.954687i \(-0.596190\pi\)
−0.297612 + 0.954687i \(0.596190\pi\)
\(72\) −7.46272e18 −0.234912
\(73\) 1.29930e19 0.353849 0.176924 0.984224i \(-0.443385\pi\)
0.176924 + 0.984224i \(0.443385\pi\)
\(74\) −6.97240e19 −1.64607
\(75\) 0 0
\(76\) 1.04344e18 0.0186176
\(77\) 9.20465e19 1.43171
\(78\) 5.58356e19 0.758434
\(79\) 9.55293e19 1.13515 0.567574 0.823323i \(-0.307882\pi\)
0.567574 + 0.823323i \(0.307882\pi\)
\(80\) 0 0
\(81\) 1.21577e19 0.111111
\(82\) 2.48964e20 2.00028
\(83\) 2.20974e20 1.56323 0.781613 0.623764i \(-0.214397\pi\)
0.781613 + 0.623764i \(0.214397\pi\)
\(84\) 3.13635e19 0.195655
\(85\) 0 0
\(86\) −1.38371e20 −0.674234
\(87\) −2.06258e20 −0.890139
\(88\) −3.15473e20 −1.20752
\(89\) 3.15065e19 0.107104 0.0535519 0.998565i \(-0.482946\pi\)
0.0535519 + 0.998565i \(0.482946\pi\)
\(90\) 0 0
\(91\) 3.43933e20 0.925848
\(92\) 2.13471e20 0.512351
\(93\) −1.73137e20 −0.370952
\(94\) −8.51565e19 −0.163070
\(95\) 0 0
\(96\) −2.88326e20 −0.442626
\(97\) −2.46548e20 −0.339467 −0.169733 0.985490i \(-0.554291\pi\)
−0.169733 + 0.985490i \(0.554291\pi\)
\(98\) −2.89422e20 −0.357814
\(99\) 5.13944e20 0.571144
\(100\) 0 0
\(101\) 2.15225e21 1.93873 0.969367 0.245616i \(-0.0789902\pi\)
0.969367 + 0.245616i \(0.0789902\pi\)
\(102\) 4.10535e20 0.333464
\(103\) 1.53340e21 1.12426 0.562128 0.827050i \(-0.309983\pi\)
0.562128 + 0.827050i \(0.309983\pi\)
\(104\) −1.17877e21 −0.780871
\(105\) 0 0
\(106\) 2.14021e21 1.16076
\(107\) −1.54824e21 −0.760865 −0.380433 0.924809i \(-0.624225\pi\)
−0.380433 + 0.924809i \(0.624225\pi\)
\(108\) 1.75119e20 0.0780519
\(109\) 2.85208e21 1.15394 0.576971 0.816764i \(-0.304234\pi\)
0.576971 + 0.816764i \(0.304234\pi\)
\(110\) 0 0
\(111\) −2.39802e21 −0.801608
\(112\) −3.40861e21 −1.03702
\(113\) −3.30356e21 −0.915499 −0.457750 0.889081i \(-0.651344\pi\)
−0.457750 + 0.889081i \(0.651344\pi\)
\(114\) 1.24373e20 0.0314213
\(115\) 0 0
\(116\) −2.97093e21 −0.625293
\(117\) 1.92036e21 0.369344
\(118\) 1.23621e22 2.17435
\(119\) 2.52880e21 0.407071
\(120\) 0 0
\(121\) 1.43258e22 1.93585
\(122\) −8.19671e21 −1.01592
\(123\) 8.56265e21 0.974102
\(124\) −2.49386e21 −0.260582
\(125\) 0 0
\(126\) 3.73838e21 0.330212
\(127\) 8.37131e20 0.0680541 0.0340271 0.999421i \(-0.489167\pi\)
0.0340271 + 0.999421i \(0.489167\pi\)
\(128\) 1.55001e22 1.16046
\(129\) −4.75900e21 −0.328340
\(130\) 0 0
\(131\) 1.90600e22 1.11886 0.559429 0.828879i \(-0.311021\pi\)
0.559429 + 0.828879i \(0.311021\pi\)
\(132\) 7.40284e21 0.401210
\(133\) 7.66104e20 0.0383571
\(134\) −1.32344e22 −0.612499
\(135\) 0 0
\(136\) −8.66701e21 −0.343329
\(137\) 8.63318e20 0.0316669 0.0158334 0.999875i \(-0.494960\pi\)
0.0158334 + 0.999875i \(0.494960\pi\)
\(138\) 2.54448e22 0.864705
\(139\) 8.91438e21 0.280825 0.140412 0.990093i \(-0.455157\pi\)
0.140412 + 0.990093i \(0.455157\pi\)
\(140\) 0 0
\(141\) −2.92880e21 −0.0794124
\(142\) −2.80307e22 −0.705677
\(143\) 8.11798e22 1.89854
\(144\) −1.90321e22 −0.413694
\(145\) 0 0
\(146\) 2.23074e22 0.419512
\(147\) −9.95412e21 −0.174249
\(148\) −3.45411e22 −0.563103
\(149\) −9.42240e22 −1.43122 −0.715609 0.698501i \(-0.753851\pi\)
−0.715609 + 0.698501i \(0.753851\pi\)
\(150\) 0 0
\(151\) 2.62382e22 0.346479 0.173239 0.984880i \(-0.444577\pi\)
0.173239 + 0.984880i \(0.444577\pi\)
\(152\) −2.62569e21 −0.0323508
\(153\) 1.41196e22 0.162391
\(154\) 1.58033e23 1.69739
\(155\) 0 0
\(156\) 2.76608e22 0.259452
\(157\) −1.62221e23 −1.42286 −0.711428 0.702759i \(-0.751951\pi\)
−0.711428 + 0.702759i \(0.751951\pi\)
\(158\) 1.64013e23 1.34579
\(159\) 7.36083e22 0.565272
\(160\) 0 0
\(161\) 1.56733e23 1.05558
\(162\) 2.08733e22 0.131730
\(163\) −2.32312e23 −1.37436 −0.687181 0.726486i \(-0.741152\pi\)
−0.687181 + 0.726486i \(0.741152\pi\)
\(164\) 1.23336e23 0.684275
\(165\) 0 0
\(166\) 3.79387e23 1.85331
\(167\) 1.76825e23 0.811002 0.405501 0.914095i \(-0.367097\pi\)
0.405501 + 0.914095i \(0.367097\pi\)
\(168\) −7.89226e22 −0.339980
\(169\) 5.62653e22 0.227735
\(170\) 0 0
\(171\) 4.27756e21 0.0153016
\(172\) −6.85486e22 −0.230648
\(173\) −1.88916e23 −0.598113 −0.299057 0.954235i \(-0.596672\pi\)
−0.299057 + 0.954235i \(0.596672\pi\)
\(174\) −3.54120e23 −1.05532
\(175\) 0 0
\(176\) −8.04546e23 −2.12651
\(177\) 4.25170e23 1.05887
\(178\) 5.40930e22 0.126979
\(179\) −1.14808e23 −0.254107 −0.127053 0.991896i \(-0.540552\pi\)
−0.127053 + 0.991896i \(0.540552\pi\)
\(180\) 0 0
\(181\) 3.15471e23 0.621347 0.310673 0.950517i \(-0.399445\pi\)
0.310673 + 0.950517i \(0.399445\pi\)
\(182\) 5.90494e23 1.09765
\(183\) −2.81910e23 −0.494737
\(184\) −5.37176e23 −0.890286
\(185\) 0 0
\(186\) −2.97256e23 −0.439789
\(187\) 5.96881e23 0.834739
\(188\) −4.21863e22 −0.0557846
\(189\) 1.28574e23 0.160807
\(190\) 0 0
\(191\) −4.11188e23 −0.460458 −0.230229 0.973137i \(-0.573947\pi\)
−0.230229 + 0.973137i \(0.573947\pi\)
\(192\) 1.80909e23 0.191777
\(193\) 9.08221e22 0.0911675 0.0455837 0.998961i \(-0.485485\pi\)
0.0455837 + 0.998961i \(0.485485\pi\)
\(194\) −4.23294e23 −0.402461
\(195\) 0 0
\(196\) −1.43379e23 −0.122404
\(197\) −1.22586e24 −0.992076 −0.496038 0.868301i \(-0.665212\pi\)
−0.496038 + 0.868301i \(0.665212\pi\)
\(198\) 8.82382e23 0.677130
\(199\) 1.05217e24 0.765824 0.382912 0.923785i \(-0.374921\pi\)
0.382912 + 0.923785i \(0.374921\pi\)
\(200\) 0 0
\(201\) −4.55174e23 −0.298276
\(202\) 3.69517e24 2.29850
\(203\) −2.18129e24 −1.28827
\(204\) 2.03378e23 0.114074
\(205\) 0 0
\(206\) 2.63267e24 1.33288
\(207\) 8.75124e23 0.421096
\(208\) −3.00620e24 −1.37516
\(209\) 1.80826e23 0.0786548
\(210\) 0 0
\(211\) 5.34118e22 0.0210219 0.0105109 0.999945i \(-0.496654\pi\)
0.0105109 + 0.999945i \(0.496654\pi\)
\(212\) 1.06025e24 0.397085
\(213\) −9.64062e23 −0.343652
\(214\) −2.65814e24 −0.902057
\(215\) 0 0
\(216\) −4.40666e23 −0.135627
\(217\) −1.83102e24 −0.536866
\(218\) 4.89670e24 1.36808
\(219\) 7.67221e23 0.204295
\(220\) 0 0
\(221\) 2.23026e24 0.539803
\(222\) −4.11713e24 −0.950360
\(223\) −1.04158e24 −0.229346 −0.114673 0.993403i \(-0.536582\pi\)
−0.114673 + 0.993403i \(0.536582\pi\)
\(224\) −3.04922e24 −0.640596
\(225\) 0 0
\(226\) −5.67182e24 −1.08539
\(227\) −4.64270e24 −0.848201 −0.424101 0.905615i \(-0.639410\pi\)
−0.424101 + 0.905615i \(0.639410\pi\)
\(228\) 6.16139e22 0.0107489
\(229\) −3.77779e24 −0.629456 −0.314728 0.949182i \(-0.601913\pi\)
−0.314728 + 0.949182i \(0.601913\pi\)
\(230\) 0 0
\(231\) 5.43525e24 0.826597
\(232\) 7.47600e24 1.08654
\(233\) −1.16866e25 −1.62350 −0.811750 0.584005i \(-0.801485\pi\)
−0.811750 + 0.584005i \(0.801485\pi\)
\(234\) 3.29704e24 0.437882
\(235\) 0 0
\(236\) 6.12414e24 0.743822
\(237\) 5.64091e24 0.655378
\(238\) 4.34165e24 0.482611
\(239\) −1.39609e25 −1.48503 −0.742514 0.669831i \(-0.766367\pi\)
−0.742514 + 0.669831i \(0.766367\pi\)
\(240\) 0 0
\(241\) 1.83127e25 1.78473 0.892366 0.451312i \(-0.149044\pi\)
0.892366 + 0.451312i \(0.149044\pi\)
\(242\) 2.45958e25 2.29508
\(243\) 7.17898e23 0.0641500
\(244\) −4.06063e24 −0.347537
\(245\) 0 0
\(246\) 1.47011e25 1.15486
\(247\) 6.75660e23 0.0508640
\(248\) 6.27550e24 0.452800
\(249\) 1.30483e25 0.902529
\(250\) 0 0
\(251\) 2.08800e25 1.32787 0.663936 0.747789i \(-0.268885\pi\)
0.663936 + 0.747789i \(0.268885\pi\)
\(252\) 1.85198e24 0.112962
\(253\) 3.69943e25 2.16456
\(254\) 1.43726e24 0.0806828
\(255\) 0 0
\(256\) 2.01868e25 1.04363
\(257\) 2.97816e24 0.147792 0.0738959 0.997266i \(-0.476457\pi\)
0.0738959 + 0.997266i \(0.476457\pi\)
\(258\) −8.17066e24 −0.389269
\(259\) −2.53605e25 −1.16014
\(260\) 0 0
\(261\) −1.21793e25 −0.513922
\(262\) 3.27238e25 1.32648
\(263\) 4.48688e25 1.74747 0.873734 0.486404i \(-0.161692\pi\)
0.873734 + 0.486404i \(0.161692\pi\)
\(264\) −1.86284e25 −0.697162
\(265\) 0 0
\(266\) 1.31531e24 0.0454749
\(267\) 1.86043e24 0.0618365
\(268\) −6.55632e24 −0.209529
\(269\) 5.40734e25 1.66182 0.830912 0.556404i \(-0.187819\pi\)
0.830912 + 0.556404i \(0.187819\pi\)
\(270\) 0 0
\(271\) 1.64805e25 0.468591 0.234295 0.972165i \(-0.424722\pi\)
0.234295 + 0.972165i \(0.424722\pi\)
\(272\) −2.21033e25 −0.604622
\(273\) 2.03089e25 0.534539
\(274\) 1.48222e24 0.0375432
\(275\) 0 0
\(276\) 1.26053e25 0.295806
\(277\) 2.02544e25 0.457596 0.228798 0.973474i \(-0.426520\pi\)
0.228798 + 0.973474i \(0.426520\pi\)
\(278\) 1.53050e25 0.332937
\(279\) −1.02235e25 −0.214169
\(280\) 0 0
\(281\) 9.60686e25 1.86709 0.933545 0.358461i \(-0.116699\pi\)
0.933545 + 0.358461i \(0.116699\pi\)
\(282\) −5.02841e24 −0.0941488
\(283\) 9.26489e24 0.167141 0.0835704 0.996502i \(-0.473368\pi\)
0.0835704 + 0.996502i \(0.473368\pi\)
\(284\) −1.38863e25 −0.241404
\(285\) 0 0
\(286\) 1.39376e26 2.25085
\(287\) 9.05550e25 1.40978
\(288\) −1.70254e25 −0.255550
\(289\) −5.26938e25 −0.762662
\(290\) 0 0
\(291\) −1.45584e25 −0.195991
\(292\) 1.10510e25 0.143510
\(293\) −4.08300e25 −0.511528 −0.255764 0.966739i \(-0.582327\pi\)
−0.255764 + 0.966739i \(0.582327\pi\)
\(294\) −1.70901e25 −0.206584
\(295\) 0 0
\(296\) 8.69186e25 0.978476
\(297\) 3.03479e25 0.329750
\(298\) −1.61772e26 −1.69681
\(299\) 1.38230e26 1.39976
\(300\) 0 0
\(301\) −5.03292e25 −0.475195
\(302\) 4.50480e25 0.410774
\(303\) 1.27088e26 1.11933
\(304\) −6.69625e24 −0.0569716
\(305\) 0 0
\(306\) 2.42417e25 0.192525
\(307\) −1.09642e26 −0.841445 −0.420723 0.907189i \(-0.638223\pi\)
−0.420723 + 0.907189i \(0.638223\pi\)
\(308\) 7.82893e25 0.580657
\(309\) 9.05459e25 0.649089
\(310\) 0 0
\(311\) −6.99628e25 −0.468687 −0.234343 0.972154i \(-0.575294\pi\)
−0.234343 + 0.972154i \(0.575294\pi\)
\(312\) −6.96053e25 −0.450836
\(313\) −6.95169e25 −0.435386 −0.217693 0.976017i \(-0.569853\pi\)
−0.217693 + 0.976017i \(0.569853\pi\)
\(314\) −2.78515e26 −1.68689
\(315\) 0 0
\(316\) 8.12516e25 0.460381
\(317\) 1.47035e26 0.805933 0.402967 0.915215i \(-0.367979\pi\)
0.402967 + 0.915215i \(0.367979\pi\)
\(318\) 1.26377e26 0.670167
\(319\) −5.14858e26 −2.64171
\(320\) 0 0
\(321\) −9.14218e25 −0.439286
\(322\) 2.69093e26 1.25146
\(323\) 4.96784e24 0.0223636
\(324\) 1.03406e25 0.0450633
\(325\) 0 0
\(326\) −3.98853e26 −1.62940
\(327\) 1.68413e26 0.666229
\(328\) −3.10362e26 −1.18903
\(329\) −3.09737e25 −0.114931
\(330\) 0 0
\(331\) 4.36548e26 1.51998 0.759990 0.649935i \(-0.225204\pi\)
0.759990 + 0.649935i \(0.225204\pi\)
\(332\) 1.87948e26 0.633997
\(333\) −1.41601e26 −0.462809
\(334\) 3.03589e26 0.961497
\(335\) 0 0
\(336\) −2.01275e26 −0.598725
\(337\) −4.15229e26 −1.19722 −0.598610 0.801041i \(-0.704280\pi\)
−0.598610 + 0.801041i \(0.704280\pi\)
\(338\) 9.66010e25 0.269995
\(339\) −1.95072e26 −0.528564
\(340\) 0 0
\(341\) −4.32182e26 −1.10090
\(342\) 7.34407e24 0.0181411
\(343\) −4.54070e26 −1.08776
\(344\) 1.72495e26 0.400785
\(345\) 0 0
\(346\) −3.24346e26 −0.709104
\(347\) −2.48113e26 −0.526246 −0.263123 0.964762i \(-0.584753\pi\)
−0.263123 + 0.964762i \(0.584753\pi\)
\(348\) −1.75430e26 −0.361013
\(349\) −8.30405e24 −0.0165815 −0.00829074 0.999966i \(-0.502639\pi\)
−0.00829074 + 0.999966i \(0.502639\pi\)
\(350\) 0 0
\(351\) 1.13395e26 0.213241
\(352\) −7.19718e26 −1.31360
\(353\) −9.55014e25 −0.169190 −0.0845951 0.996415i \(-0.526960\pi\)
−0.0845951 + 0.996415i \(0.526960\pi\)
\(354\) 7.29967e26 1.25536
\(355\) 0 0
\(356\) 2.67976e25 0.0434381
\(357\) 1.49323e26 0.235023
\(358\) −1.97112e26 −0.301260
\(359\) 7.06762e25 0.104901 0.0524507 0.998624i \(-0.483297\pi\)
0.0524507 + 0.998624i \(0.483297\pi\)
\(360\) 0 0
\(361\) −7.12704e26 −0.997893
\(362\) 5.41627e26 0.736648
\(363\) 8.45924e26 1.11767
\(364\) 2.92529e26 0.375496
\(365\) 0 0
\(366\) −4.84008e26 −0.586544
\(367\) 1.33814e27 1.57583 0.787915 0.615785i \(-0.211161\pi\)
0.787915 + 0.615785i \(0.211161\pi\)
\(368\) −1.36995e27 −1.56784
\(369\) 5.05616e26 0.562398
\(370\) 0 0
\(371\) 7.78451e26 0.818098
\(372\) −1.47260e26 −0.150447
\(373\) 9.62756e24 0.00956255 0.00478127 0.999989i \(-0.498478\pi\)
0.00478127 + 0.999989i \(0.498478\pi\)
\(374\) 1.02478e27 0.989639
\(375\) 0 0
\(376\) 1.06157e26 0.0969340
\(377\) −1.92378e27 −1.70833
\(378\) 2.20747e26 0.190648
\(379\) −1.97813e27 −1.66166 −0.830830 0.556526i \(-0.812134\pi\)
−0.830830 + 0.556526i \(0.812134\pi\)
\(380\) 0 0
\(381\) 4.94318e25 0.0392911
\(382\) −7.05962e26 −0.545904
\(383\) 2.14854e27 1.61643 0.808215 0.588888i \(-0.200434\pi\)
0.808215 + 0.588888i \(0.200434\pi\)
\(384\) 9.15264e26 0.669990
\(385\) 0 0
\(386\) 1.55931e26 0.108085
\(387\) −2.81014e26 −0.189567
\(388\) −2.09699e26 −0.137677
\(389\) 2.40240e27 1.53524 0.767618 0.640907i \(-0.221442\pi\)
0.767618 + 0.640907i \(0.221442\pi\)
\(390\) 0 0
\(391\) 1.01635e27 0.615440
\(392\) 3.60796e26 0.212696
\(393\) 1.12547e27 0.645972
\(394\) −2.10466e27 −1.17617
\(395\) 0 0
\(396\) 4.37130e26 0.231639
\(397\) −2.20346e27 −1.13711 −0.568557 0.822644i \(-0.692498\pi\)
−0.568557 + 0.822644i \(0.692498\pi\)
\(398\) 1.80646e27 0.907935
\(399\) 4.52376e25 0.0221455
\(400\) 0 0
\(401\) −2.56251e27 −1.19028 −0.595141 0.803622i \(-0.702904\pi\)
−0.595141 + 0.803622i \(0.702904\pi\)
\(402\) −7.81481e26 −0.353627
\(403\) −1.61486e27 −0.711920
\(404\) 1.83058e27 0.786292
\(405\) 0 0
\(406\) −3.74503e27 −1.52733
\(407\) −5.98593e27 −2.37898
\(408\) −5.11778e26 −0.198221
\(409\) −4.40538e27 −1.66299 −0.831494 0.555534i \(-0.812514\pi\)
−0.831494 + 0.555534i \(0.812514\pi\)
\(410\) 0 0
\(411\) 5.09781e25 0.0182829
\(412\) 1.30422e27 0.455964
\(413\) 4.49641e27 1.53247
\(414\) 1.50249e27 0.499238
\(415\) 0 0
\(416\) −2.68924e27 −0.849473
\(417\) 5.26385e26 0.162134
\(418\) 3.10458e26 0.0932505
\(419\) 1.22792e27 0.359686 0.179843 0.983695i \(-0.442441\pi\)
0.179843 + 0.983695i \(0.442441\pi\)
\(420\) 0 0
\(421\) −2.61500e25 −0.00728633 −0.00364317 0.999993i \(-0.501160\pi\)
−0.00364317 + 0.999993i \(0.501160\pi\)
\(422\) 9.17019e25 0.0249229
\(423\) −1.72942e26 −0.0458488
\(424\) −2.66800e27 −0.689994
\(425\) 0 0
\(426\) −1.65518e27 −0.407423
\(427\) −2.98137e27 −0.716016
\(428\) −1.31684e27 −0.308584
\(429\) 4.79359e27 1.09612
\(430\) 0 0
\(431\) −3.68868e27 −0.803265 −0.401633 0.915801i \(-0.631557\pi\)
−0.401633 + 0.915801i \(0.631557\pi\)
\(432\) −1.12382e27 −0.238847
\(433\) −4.87388e27 −1.01100 −0.505501 0.862826i \(-0.668692\pi\)
−0.505501 + 0.862826i \(0.668692\pi\)
\(434\) −3.14365e27 −0.636491
\(435\) 0 0
\(436\) 2.42582e27 0.468004
\(437\) 3.07904e26 0.0579910
\(438\) 1.31723e27 0.242205
\(439\) 8.77061e27 1.57453 0.787267 0.616612i \(-0.211495\pi\)
0.787267 + 0.616612i \(0.211495\pi\)
\(440\) 0 0
\(441\) −5.87781e26 −0.100603
\(442\) 3.82909e27 0.639973
\(443\) −2.39913e26 −0.0391575 −0.0195787 0.999808i \(-0.506233\pi\)
−0.0195787 + 0.999808i \(0.506233\pi\)
\(444\) −2.03962e27 −0.325108
\(445\) 0 0
\(446\) −1.78827e27 −0.271905
\(447\) −5.56383e27 −0.826314
\(448\) 1.91322e27 0.277552
\(449\) −1.18190e27 −0.167491 −0.0837457 0.996487i \(-0.526688\pi\)
−0.0837457 + 0.996487i \(0.526688\pi\)
\(450\) 0 0
\(451\) 2.13740e28 2.89090
\(452\) −2.80981e27 −0.371299
\(453\) 1.54934e27 0.200040
\(454\) −7.97098e27 −1.00560
\(455\) 0 0
\(456\) −1.55044e26 −0.0186777
\(457\) −1.24883e28 −1.47023 −0.735114 0.677944i \(-0.762871\pi\)
−0.735114 + 0.677944i \(0.762871\pi\)
\(458\) −6.48603e27 −0.746262
\(459\) 8.33748e26 0.0937565
\(460\) 0 0
\(461\) −4.81654e27 −0.517459 −0.258729 0.965950i \(-0.583304\pi\)
−0.258729 + 0.965950i \(0.583304\pi\)
\(462\) 9.33170e27 0.979986
\(463\) −2.77535e27 −0.284917 −0.142458 0.989801i \(-0.545501\pi\)
−0.142458 + 0.989801i \(0.545501\pi\)
\(464\) 1.90659e28 1.91346
\(465\) 0 0
\(466\) −2.00646e28 −1.92477
\(467\) 1.30821e28 1.22702 0.613508 0.789688i \(-0.289758\pi\)
0.613508 + 0.789688i \(0.289758\pi\)
\(468\) 1.63334e27 0.149795
\(469\) −4.81373e27 −0.431685
\(470\) 0 0
\(471\) −9.57900e27 −0.821486
\(472\) −1.54107e28 −1.29250
\(473\) −1.18794e28 −0.974433
\(474\) 9.68479e27 0.776994
\(475\) 0 0
\(476\) 2.15084e27 0.165096
\(477\) 4.34650e27 0.326360
\(478\) −2.39692e28 −1.76060
\(479\) −1.98117e28 −1.42363 −0.711817 0.702365i \(-0.752127\pi\)
−0.711817 + 0.702365i \(0.752127\pi\)
\(480\) 0 0
\(481\) −2.23665e28 −1.53842
\(482\) 3.14408e28 2.11592
\(483\) 9.25495e27 0.609437
\(484\) 1.21847e28 0.785123
\(485\) 0 0
\(486\) 1.23255e27 0.0760542
\(487\) 2.14424e28 1.29485 0.647425 0.762129i \(-0.275846\pi\)
0.647425 + 0.762129i \(0.275846\pi\)
\(488\) 1.02181e28 0.603896
\(489\) −1.37178e28 −0.793489
\(490\) 0 0
\(491\) −1.64770e28 −0.913109 −0.456554 0.889695i \(-0.650917\pi\)
−0.456554 + 0.889695i \(0.650917\pi\)
\(492\) 7.28289e27 0.395066
\(493\) −1.41447e28 −0.751107
\(494\) 1.16003e27 0.0603027
\(495\) 0 0
\(496\) 1.60043e28 0.797406
\(497\) −1.01955e28 −0.497356
\(498\) 2.24024e28 1.07001
\(499\) −2.46207e28 −1.15145 −0.575724 0.817644i \(-0.695280\pi\)
−0.575724 + 0.817644i \(0.695280\pi\)
\(500\) 0 0
\(501\) 1.04414e28 0.468232
\(502\) 3.58486e28 1.57428
\(503\) −9.01822e27 −0.387844 −0.193922 0.981017i \(-0.562121\pi\)
−0.193922 + 0.981017i \(0.562121\pi\)
\(504\) −4.66030e27 −0.196288
\(505\) 0 0
\(506\) 6.35150e28 2.56623
\(507\) 3.32241e27 0.131483
\(508\) 7.12015e26 0.0276007
\(509\) −1.26550e28 −0.480534 −0.240267 0.970707i \(-0.577235\pi\)
−0.240267 + 0.970707i \(0.577235\pi\)
\(510\) 0 0
\(511\) 8.11381e27 0.295669
\(512\) 2.15236e27 0.0768388
\(513\) 2.52585e26 0.00883438
\(514\) 5.11316e27 0.175217
\(515\) 0 0
\(516\) −4.04773e27 −0.133165
\(517\) −7.31084e27 −0.235677
\(518\) −4.35410e28 −1.37542
\(519\) −1.11553e28 −0.345321
\(520\) 0 0
\(521\) −3.11290e28 −0.925483 −0.462742 0.886493i \(-0.653134\pi\)
−0.462742 + 0.886493i \(0.653134\pi\)
\(522\) −2.09105e28 −0.609289
\(523\) 2.19095e28 0.625699 0.312850 0.949803i \(-0.398716\pi\)
0.312850 + 0.949803i \(0.398716\pi\)
\(524\) 1.62113e28 0.453774
\(525\) 0 0
\(526\) 7.70346e28 2.07174
\(527\) −1.18734e28 −0.313013
\(528\) −4.75077e28 −1.22774
\(529\) 2.35210e28 0.595896
\(530\) 0 0
\(531\) 2.51058e28 0.611339
\(532\) 6.51602e26 0.0155565
\(533\) 7.98644e28 1.86947
\(534\) 3.19414e27 0.0733113
\(535\) 0 0
\(536\) 1.64982e28 0.364088
\(537\) −6.77931e27 −0.146709
\(538\) 9.28378e28 1.97020
\(539\) −2.48474e28 −0.517129
\(540\) 0 0
\(541\) 8.64723e28 1.73104 0.865518 0.500879i \(-0.166990\pi\)
0.865518 + 0.500879i \(0.166990\pi\)
\(542\) 2.82952e28 0.555546
\(543\) 1.86282e28 0.358735
\(544\) −1.97728e28 −0.373491
\(545\) 0 0
\(546\) 3.48681e28 0.633731
\(547\) −6.69174e28 −1.19309 −0.596544 0.802581i \(-0.703460\pi\)
−0.596544 + 0.802581i \(0.703460\pi\)
\(548\) 7.34288e26 0.0128431
\(549\) −1.66465e28 −0.285637
\(550\) 0 0
\(551\) −4.28517e27 −0.0707744
\(552\) −3.17197e28 −0.514007
\(553\) 5.96559e28 0.948505
\(554\) 3.47745e28 0.542511
\(555\) 0 0
\(556\) 7.58204e27 0.113894
\(557\) 6.14899e28 0.906409 0.453204 0.891407i \(-0.350281\pi\)
0.453204 + 0.891407i \(0.350281\pi\)
\(558\) −1.75527e28 −0.253912
\(559\) −4.43875e28 −0.630140
\(560\) 0 0
\(561\) 3.52452e28 0.481937
\(562\) 1.64939e29 2.21356
\(563\) −1.12154e28 −0.147733 −0.0738663 0.997268i \(-0.523534\pi\)
−0.0738663 + 0.997268i \(0.523534\pi\)
\(564\) −2.49106e27 −0.0322073
\(565\) 0 0
\(566\) 1.59067e28 0.198157
\(567\) 7.59219e27 0.0928421
\(568\) 3.49434e28 0.419476
\(569\) −1.24550e29 −1.46779 −0.733895 0.679263i \(-0.762300\pi\)
−0.733895 + 0.679263i \(0.762300\pi\)
\(570\) 0 0
\(571\) −6.70182e28 −0.761226 −0.380613 0.924734i \(-0.624287\pi\)
−0.380613 + 0.924734i \(0.624287\pi\)
\(572\) 6.90467e28 0.769990
\(573\) −2.42802e28 −0.265845
\(574\) 1.55473e29 1.67139
\(575\) 0 0
\(576\) 1.06825e28 0.110723
\(577\) −1.60912e29 −1.63773 −0.818864 0.573987i \(-0.805396\pi\)
−0.818864 + 0.573987i \(0.805396\pi\)
\(578\) −9.04692e28 −0.904187
\(579\) 5.36296e27 0.0526356
\(580\) 0 0
\(581\) 1.37993e29 1.30620
\(582\) −2.49951e28 −0.232361
\(583\) 1.83740e29 1.67759
\(584\) −2.78087e28 −0.249370
\(585\) 0 0
\(586\) −7.01004e28 −0.606451
\(587\) −1.88288e29 −1.60001 −0.800006 0.599992i \(-0.795170\pi\)
−0.800006 + 0.599992i \(0.795170\pi\)
\(588\) −8.46638e27 −0.0706702
\(589\) −3.59706e27 −0.0294942
\(590\) 0 0
\(591\) −7.23857e28 −0.572775
\(592\) 2.21667e29 1.72315
\(593\) −2.04137e29 −1.55901 −0.779503 0.626398i \(-0.784529\pi\)
−0.779503 + 0.626398i \(0.784529\pi\)
\(594\) 5.21038e28 0.390941
\(595\) 0 0
\(596\) −8.01414e28 −0.580459
\(597\) 6.21296e28 0.442149
\(598\) 2.37325e29 1.65951
\(599\) 9.66401e28 0.664012 0.332006 0.943277i \(-0.392275\pi\)
0.332006 + 0.943277i \(0.392275\pi\)
\(600\) 0 0
\(601\) −1.22230e29 −0.810951 −0.405476 0.914106i \(-0.632894\pi\)
−0.405476 + 0.914106i \(0.632894\pi\)
\(602\) −8.64095e28 −0.563376
\(603\) −2.68776e28 −0.172210
\(604\) 2.23167e28 0.140521
\(605\) 0 0
\(606\) 2.18196e29 1.32704
\(607\) 1.06271e29 0.635235 0.317617 0.948219i \(-0.397117\pi\)
0.317617 + 0.948219i \(0.397117\pi\)
\(608\) −5.99022e27 −0.0351929
\(609\) −1.28803e29 −0.743781
\(610\) 0 0
\(611\) −2.73171e28 −0.152406
\(612\) 1.20093e28 0.0658609
\(613\) −3.11548e29 −1.67954 −0.839768 0.542945i \(-0.817309\pi\)
−0.839768 + 0.542945i \(0.817309\pi\)
\(614\) −1.88244e29 −0.997590
\(615\) 0 0
\(616\) −1.97006e29 −1.00898
\(617\) 2.29331e29 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(618\) 1.55457e29 0.769539
\(619\) 1.75961e29 0.856376 0.428188 0.903690i \(-0.359152\pi\)
0.428188 + 0.903690i \(0.359152\pi\)
\(620\) 0 0
\(621\) 5.16752e28 0.243120
\(622\) −1.20118e29 −0.555660
\(623\) 1.96751e28 0.0894937
\(624\) −1.77513e29 −0.793949
\(625\) 0 0
\(626\) −1.19352e29 −0.516180
\(627\) 1.06776e28 0.0454114
\(628\) −1.37976e29 −0.577067
\(629\) −1.64452e29 −0.676404
\(630\) 0 0
\(631\) −1.30487e28 −0.0519108 −0.0259554 0.999663i \(-0.508263\pi\)
−0.0259554 + 0.999663i \(0.508263\pi\)
\(632\) −2.04460e29 −0.799981
\(633\) 3.15391e27 0.0121370
\(634\) 2.52442e29 0.955488
\(635\) 0 0
\(636\) 6.26069e28 0.229257
\(637\) −9.28427e28 −0.334413
\(638\) −8.83952e29 −3.13193
\(639\) −5.69269e28 −0.198408
\(640\) 0 0
\(641\) −3.70997e29 −1.25130 −0.625650 0.780104i \(-0.715166\pi\)
−0.625650 + 0.780104i \(0.715166\pi\)
\(642\) −1.56961e29 −0.520803
\(643\) 1.15073e29 0.375627 0.187814 0.982205i \(-0.439860\pi\)
0.187814 + 0.982205i \(0.439860\pi\)
\(644\) 1.33308e29 0.428110
\(645\) 0 0
\(646\) 8.52921e27 0.0265135
\(647\) −2.45274e29 −0.750165 −0.375082 0.926991i \(-0.622386\pi\)
−0.375082 + 0.926991i \(0.622386\pi\)
\(648\) −2.60209e28 −0.0783041
\(649\) 1.06130e30 3.14247
\(650\) 0 0
\(651\) −1.08120e29 −0.309960
\(652\) −1.97591e29 −0.557400
\(653\) −6.64107e29 −1.84353 −0.921764 0.387751i \(-0.873252\pi\)
−0.921764 + 0.387751i \(0.873252\pi\)
\(654\) 2.89145e29 0.789859
\(655\) 0 0
\(656\) −7.91510e29 −2.09395
\(657\) 4.53036e28 0.117950
\(658\) −5.31783e28 −0.136258
\(659\) −1.71049e29 −0.431344 −0.215672 0.976466i \(-0.569194\pi\)
−0.215672 + 0.976466i \(0.569194\pi\)
\(660\) 0 0
\(661\) −1.36074e29 −0.332399 −0.166200 0.986092i \(-0.553150\pi\)
−0.166200 + 0.986092i \(0.553150\pi\)
\(662\) 7.49502e29 1.80204
\(663\) 1.31694e29 0.311656
\(664\) −4.72948e29 −1.10166
\(665\) 0 0
\(666\) −2.43112e29 −0.548691
\(667\) −8.76681e29 −1.94769
\(668\) 1.50397e29 0.328918
\(669\) −6.15041e28 −0.132413
\(670\) 0 0
\(671\) −7.03702e29 −1.46826
\(672\) −1.80053e29 −0.369848
\(673\) 8.46772e29 1.71241 0.856206 0.516634i \(-0.172815\pi\)
0.856206 + 0.516634i \(0.172815\pi\)
\(674\) −7.12900e29 −1.41938
\(675\) 0 0
\(676\) 4.78559e28 0.0923625
\(677\) −2.36669e29 −0.449738 −0.224869 0.974389i \(-0.572195\pi\)
−0.224869 + 0.974389i \(0.572195\pi\)
\(678\) −3.34916e29 −0.626648
\(679\) −1.53963e29 −0.283651
\(680\) 0 0
\(681\) −2.74147e29 −0.489709
\(682\) −7.42007e29 −1.30519
\(683\) 1.02867e30 1.78180 0.890898 0.454203i \(-0.150076\pi\)
0.890898 + 0.454203i \(0.150076\pi\)
\(684\) 3.63824e27 0.00620586
\(685\) 0 0
\(686\) −7.79586e29 −1.28962
\(687\) −2.23075e29 −0.363417
\(688\) 4.39910e29 0.705806
\(689\) 6.86550e29 1.08485
\(690\) 0 0
\(691\) 8.33280e29 1.27724 0.638619 0.769523i \(-0.279506\pi\)
0.638619 + 0.769523i \(0.279506\pi\)
\(692\) −1.60680e29 −0.242577
\(693\) 3.20946e29 0.477236
\(694\) −4.25981e29 −0.623901
\(695\) 0 0
\(696\) 4.41450e29 0.627314
\(697\) 5.87209e29 0.821956
\(698\) −1.42571e28 −0.0196584
\(699\) −6.90084e29 −0.937328
\(700\) 0 0
\(701\) 6.99649e29 0.922234 0.461117 0.887339i \(-0.347449\pi\)
0.461117 + 0.887339i \(0.347449\pi\)
\(702\) 1.94687e29 0.252811
\(703\) −4.98209e28 −0.0637354
\(704\) 4.51583e29 0.569148
\(705\) 0 0
\(706\) −1.63965e29 −0.200586
\(707\) 1.34403e30 1.61997
\(708\) 3.61624e29 0.429446
\(709\) 2.89141e29 0.338318 0.169159 0.985589i \(-0.445895\pi\)
0.169159 + 0.985589i \(0.445895\pi\)
\(710\) 0 0
\(711\) 3.33090e29 0.378382
\(712\) −6.74330e28 −0.0754801
\(713\) −7.35904e29 −0.811673
\(714\) 2.56370e29 0.278635
\(715\) 0 0
\(716\) −9.76491e28 −0.103058
\(717\) −8.24375e29 −0.857381
\(718\) 1.21343e29 0.124368
\(719\) 1.03572e29 0.104614 0.0523070 0.998631i \(-0.483343\pi\)
0.0523070 + 0.998631i \(0.483343\pi\)
\(720\) 0 0
\(721\) 9.57575e29 0.939404
\(722\) −1.22363e30 −1.18307
\(723\) 1.08135e30 1.03042
\(724\) 2.68321e29 0.251999
\(725\) 0 0
\(726\) 1.45235e30 1.32507
\(727\) −3.99248e29 −0.359030 −0.179515 0.983755i \(-0.557453\pi\)
−0.179515 + 0.983755i \(0.557453\pi\)
\(728\) −7.36116e29 −0.652479
\(729\) 4.23912e28 0.0370370
\(730\) 0 0
\(731\) −3.26363e29 −0.277056
\(732\) −2.39776e29 −0.200650
\(733\) −1.02595e30 −0.846317 −0.423158 0.906056i \(-0.639079\pi\)
−0.423158 + 0.906056i \(0.639079\pi\)
\(734\) 2.29744e30 1.86825
\(735\) 0 0
\(736\) −1.22551e30 −0.968500
\(737\) −1.13620e30 −0.885210
\(738\) 8.68084e29 0.666761
\(739\) −5.23998e28 −0.0396792 −0.0198396 0.999803i \(-0.506316\pi\)
−0.0198396 + 0.999803i \(0.506316\pi\)
\(740\) 0 0
\(741\) 3.98971e28 0.0293663
\(742\) 1.33651e30 0.969910
\(743\) −1.53956e30 −1.10158 −0.550788 0.834645i \(-0.685673\pi\)
−0.550788 + 0.834645i \(0.685673\pi\)
\(744\) 3.70562e29 0.261424
\(745\) 0 0
\(746\) 1.65294e28 0.0113370
\(747\) 7.70490e29 0.521075
\(748\) 5.07671e29 0.338545
\(749\) −9.66839e29 −0.635763
\(750\) 0 0
\(751\) 1.28343e30 0.820639 0.410320 0.911942i \(-0.365417\pi\)
0.410320 + 0.911942i \(0.365417\pi\)
\(752\) 2.70731e29 0.170706
\(753\) 1.23294e30 0.766648
\(754\) −3.30290e30 −2.02533
\(755\) 0 0
\(756\) 1.09358e29 0.0652185
\(757\) −7.23137e29 −0.425318 −0.212659 0.977126i \(-0.568212\pi\)
−0.212659 + 0.977126i \(0.568212\pi\)
\(758\) −3.39622e30 −1.97001
\(759\) 2.18448e30 1.24971
\(760\) 0 0
\(761\) −2.50610e29 −0.139463 −0.0697316 0.997566i \(-0.522214\pi\)
−0.0697316 + 0.997566i \(0.522214\pi\)
\(762\) 8.48686e28 0.0465822
\(763\) 1.78106e30 0.964210
\(764\) −3.49732e29 −0.186748
\(765\) 0 0
\(766\) 3.68880e30 1.91639
\(767\) 3.96558e30 2.03215
\(768\) 1.19201e30 0.602541
\(769\) −1.40362e30 −0.699880 −0.349940 0.936772i \(-0.613798\pi\)
−0.349940 + 0.936772i \(0.613798\pi\)
\(770\) 0 0
\(771\) 1.75857e29 0.0853276
\(772\) 7.72479e28 0.0369747
\(773\) 1.31390e30 0.620410 0.310205 0.950670i \(-0.399602\pi\)
0.310205 + 0.950670i \(0.399602\pi\)
\(774\) −4.82469e29 −0.224745
\(775\) 0 0
\(776\) 5.27682e29 0.239235
\(777\) −1.49751e30 −0.669807
\(778\) 4.12465e30 1.82013
\(779\) 1.77896e29 0.0774503
\(780\) 0 0
\(781\) −2.40648e30 −1.01988
\(782\) 1.74495e30 0.729645
\(783\) −7.19175e29 −0.296713
\(784\) 9.20133e29 0.374569
\(785\) 0 0
\(786\) 1.93231e30 0.765844
\(787\) 3.99554e30 1.56257 0.781287 0.624171i \(-0.214563\pi\)
0.781287 + 0.624171i \(0.214563\pi\)
\(788\) −1.04264e30 −0.402356
\(789\) 2.64946e30 1.00890
\(790\) 0 0
\(791\) −2.06300e30 −0.764972
\(792\) −1.09999e30 −0.402507
\(793\) −2.62940e30 −0.949484
\(794\) −3.78308e30 −1.34813
\(795\) 0 0
\(796\) 8.94914e29 0.310595
\(797\) 3.18052e30 1.08940 0.544698 0.838633i \(-0.316644\pi\)
0.544698 + 0.838633i \(0.316644\pi\)
\(798\) 7.76678e28 0.0262549
\(799\) −2.00851e29 −0.0670089
\(800\) 0 0
\(801\) 1.09856e29 0.0357013
\(802\) −4.39953e30 −1.41116
\(803\) 1.91513e30 0.606296
\(804\) −3.87144e29 −0.120972
\(805\) 0 0
\(806\) −2.77252e30 −0.844029
\(807\) 3.19298e30 0.959454
\(808\) −4.60643e30 −1.36630
\(809\) 2.04768e30 0.599519 0.299759 0.954015i \(-0.403094\pi\)
0.299759 + 0.954015i \(0.403094\pi\)
\(810\) 0 0
\(811\) 2.02072e30 0.576485 0.288242 0.957557i \(-0.406929\pi\)
0.288242 + 0.957557i \(0.406929\pi\)
\(812\) −1.85528e30 −0.522481
\(813\) 9.73159e29 0.270541
\(814\) −1.02771e31 −2.82044
\(815\) 0 0
\(816\) −1.30518e30 −0.349079
\(817\) −9.88722e28 −0.0261061
\(818\) −7.56354e30 −1.97158
\(819\) 1.19922e30 0.308616
\(820\) 0 0
\(821\) −3.31897e30 −0.832531 −0.416265 0.909243i \(-0.636661\pi\)
−0.416265 + 0.909243i \(0.636661\pi\)
\(822\) 8.75235e28 0.0216756
\(823\) 8.46852e29 0.207066 0.103533 0.994626i \(-0.466985\pi\)
0.103533 + 0.994626i \(0.466985\pi\)
\(824\) −3.28192e30 −0.792305
\(825\) 0 0
\(826\) 7.71983e30 1.81684
\(827\) 7.77607e30 1.80697 0.903487 0.428614i \(-0.140998\pi\)
0.903487 + 0.428614i \(0.140998\pi\)
\(828\) 7.44329e29 0.170784
\(829\) 4.65905e30 1.05554 0.527770 0.849387i \(-0.323028\pi\)
0.527770 + 0.849387i \(0.323028\pi\)
\(830\) 0 0
\(831\) 1.19600e30 0.264193
\(832\) 1.68735e30 0.368053
\(833\) −6.82633e29 −0.147033
\(834\) 9.03742e29 0.192221
\(835\) 0 0
\(836\) 1.53800e29 0.0319000
\(837\) −6.03690e29 −0.123651
\(838\) 2.10820e30 0.426431
\(839\) −2.71344e29 −0.0542025 −0.0271013 0.999633i \(-0.508628\pi\)
−0.0271013 + 0.999633i \(0.508628\pi\)
\(840\) 0 0
\(841\) 7.06813e30 1.37704
\(842\) −4.48965e28 −0.00863843
\(843\) 5.67275e30 1.07796
\(844\) 4.54289e28 0.00852584
\(845\) 0 0
\(846\) −2.96922e29 −0.0543568
\(847\) 8.94614e30 1.61756
\(848\) −6.80417e30 −1.21512
\(849\) 5.47082e29 0.0964988
\(850\) 0 0
\(851\) −1.01926e31 −1.75398
\(852\) −8.19975e29 −0.139375
\(853\) −9.28049e30 −1.55814 −0.779070 0.626937i \(-0.784308\pi\)
−0.779070 + 0.626937i \(0.784308\pi\)
\(854\) −5.11866e30 −0.848885
\(855\) 0 0
\(856\) 3.31367e30 0.536210
\(857\) −4.26068e30 −0.681053 −0.340526 0.940235i \(-0.610605\pi\)
−0.340526 + 0.940235i \(0.610605\pi\)
\(858\) 8.23003e30 1.29953
\(859\) −1.38058e30 −0.215344 −0.107672 0.994186i \(-0.534340\pi\)
−0.107672 + 0.994186i \(0.534340\pi\)
\(860\) 0 0
\(861\) 5.34718e30 0.813939
\(862\) −6.33303e30 −0.952325
\(863\) −6.77274e30 −1.00612 −0.503061 0.864251i \(-0.667793\pi\)
−0.503061 + 0.864251i \(0.667793\pi\)
\(864\) −1.00533e30 −0.147542
\(865\) 0 0
\(866\) −8.36789e30 −1.19861
\(867\) −3.11152e30 −0.440323
\(868\) −1.55736e30 −0.217737
\(869\) 1.40808e31 1.94500
\(870\) 0 0
\(871\) −4.24544e30 −0.572442
\(872\) −6.10428e30 −0.813226
\(873\) −8.59658e29 −0.113156
\(874\) 5.28636e29 0.0687522
\(875\) 0 0
\(876\) 6.52553e29 0.0828557
\(877\) −7.75502e30 −0.972943 −0.486471 0.873697i \(-0.661716\pi\)
−0.486471 + 0.873697i \(0.661716\pi\)
\(878\) 1.50581e31 1.86672
\(879\) −2.41097e30 −0.295331
\(880\) 0 0
\(881\) 1.13987e31 1.36335 0.681677 0.731653i \(-0.261251\pi\)
0.681677 + 0.731653i \(0.261251\pi\)
\(882\) −1.00915e30 −0.119271
\(883\) 5.95571e28 0.00695579 0.00347789 0.999994i \(-0.498893\pi\)
0.00347789 + 0.999994i \(0.498893\pi\)
\(884\) 1.89692e30 0.218928
\(885\) 0 0
\(886\) −4.11903e29 −0.0464238
\(887\) −1.42633e31 −1.58863 −0.794315 0.607506i \(-0.792170\pi\)
−0.794315 + 0.607506i \(0.792170\pi\)
\(888\) 5.13246e30 0.564923
\(889\) 5.22770e29 0.0568646
\(890\) 0 0
\(891\) 1.79201e30 0.190381
\(892\) −8.85904e29 −0.0930156
\(893\) −6.08481e28 −0.00631404
\(894\) −9.55246e30 −0.979651
\(895\) 0 0
\(896\) 9.67945e30 0.969653
\(897\) 8.16234e30 0.808154
\(898\) −2.02918e30 −0.198572
\(899\) 1.02417e31 0.990597
\(900\) 0 0
\(901\) 5.04791e30 0.476981
\(902\) 3.66967e31 3.42735
\(903\) −2.97189e30 −0.274354
\(904\) 7.07056e30 0.645186
\(905\) 0 0
\(906\) 2.66004e30 0.237160
\(907\) −4.56820e30 −0.402595 −0.201297 0.979530i \(-0.564516\pi\)
−0.201297 + 0.979530i \(0.564516\pi\)
\(908\) −3.94880e30 −0.344005
\(909\) 7.50443e30 0.646245
\(910\) 0 0
\(911\) −1.83971e31 −1.54813 −0.774065 0.633107i \(-0.781780\pi\)
−0.774065 + 0.633107i \(0.781780\pi\)
\(912\) −3.95407e29 −0.0328926
\(913\) 3.25711e31 2.67848
\(914\) −2.14410e31 −1.74305
\(915\) 0 0
\(916\) −3.21317e30 −0.255288
\(917\) 1.19025e31 0.934893
\(918\) 1.43145e30 0.111155
\(919\) −6.31613e29 −0.0484884 −0.0242442 0.999706i \(-0.507718\pi\)
−0.0242442 + 0.999706i \(0.507718\pi\)
\(920\) 0 0
\(921\) −6.47428e30 −0.485809
\(922\) −8.26945e30 −0.613482
\(923\) −8.99187e30 −0.659527
\(924\) 4.62290e30 0.335243
\(925\) 0 0
\(926\) −4.76496e30 −0.337788
\(927\) 5.34664e30 0.374752
\(928\) 1.70557e31 1.18199
\(929\) 1.48189e31 1.01543 0.507717 0.861524i \(-0.330489\pi\)
0.507717 + 0.861524i \(0.330489\pi\)
\(930\) 0 0
\(931\) −2.06805e29 −0.0138544
\(932\) −9.93996e30 −0.658442
\(933\) −4.13123e30 −0.270596
\(934\) 2.24605e31 1.45471
\(935\) 0 0
\(936\) −4.11012e30 −0.260290
\(937\) −1.44221e31 −0.903154 −0.451577 0.892232i \(-0.649138\pi\)
−0.451577 + 0.892232i \(0.649138\pi\)
\(938\) −8.26461e30 −0.511791
\(939\) −4.10490e30 −0.251370
\(940\) 0 0
\(941\) −3.60517e30 −0.215891 −0.107945 0.994157i \(-0.534427\pi\)
−0.107945 + 0.994157i \(0.534427\pi\)
\(942\) −1.64460e31 −0.973927
\(943\) 3.63949e31 2.13141
\(944\) −3.93016e31 −2.27617
\(945\) 0 0
\(946\) −2.03955e31 −1.15526
\(947\) −9.57878e30 −0.536581 −0.268291 0.963338i \(-0.586459\pi\)
−0.268291 + 0.963338i \(0.586459\pi\)
\(948\) 4.79783e30 0.265801
\(949\) 7.15592e30 0.392076
\(950\) 0 0
\(951\) 8.68228e30 0.465306
\(952\) −5.41235e30 −0.286878
\(953\) −1.99764e31 −1.04723 −0.523614 0.851956i \(-0.675417\pi\)
−0.523614 + 0.851956i \(0.675417\pi\)
\(954\) 7.46244e30 0.386921
\(955\) 0 0
\(956\) −1.18743e31 −0.602282
\(957\) −3.04019e31 −1.52519
\(958\) −3.40143e31 −1.68781
\(959\) 5.39123e29 0.0264602
\(960\) 0 0
\(961\) −1.22284e31 −0.587183
\(962\) −3.84007e31 −1.82390
\(963\) −5.39837e30 −0.253622
\(964\) 1.55757e31 0.723833
\(965\) 0 0
\(966\) 1.58897e31 0.722529
\(967\) 1.46532e30 0.0659105 0.0329552 0.999457i \(-0.489508\pi\)
0.0329552 + 0.999457i \(0.489508\pi\)
\(968\) −3.06613e31 −1.36427
\(969\) 2.93346e29 0.0129116
\(970\) 0 0
\(971\) −2.87520e31 −1.23841 −0.619207 0.785228i \(-0.712546\pi\)
−0.619207 + 0.785228i \(0.712546\pi\)
\(972\) 6.10602e29 0.0260173
\(973\) 5.56683e30 0.234651
\(974\) 3.68141e31 1.53513
\(975\) 0 0
\(976\) 2.60591e31 1.06350
\(977\) −1.39361e31 −0.562662 −0.281331 0.959611i \(-0.590776\pi\)
−0.281331 + 0.959611i \(0.590776\pi\)
\(978\) −2.35518e31 −0.940734
\(979\) 4.64398e30 0.183515
\(980\) 0 0
\(981\) 9.94460e30 0.384648
\(982\) −2.82891e31 −1.08255
\(983\) 1.40200e31 0.530805 0.265403 0.964138i \(-0.414495\pi\)
0.265403 + 0.964138i \(0.414495\pi\)
\(984\) −1.83265e31 −0.686486
\(985\) 0 0
\(986\) −2.42848e31 −0.890487
\(987\) −1.82897e30 −0.0663553
\(988\) 5.74677e29 0.0206289
\(989\) −2.02278e31 −0.718434
\(990\) 0 0
\(991\) −5.54876e31 −1.92940 −0.964701 0.263349i \(-0.915173\pi\)
−0.964701 + 0.263349i \(0.915173\pi\)
\(992\) 1.43169e31 0.492579
\(993\) 2.57777e31 0.877561
\(994\) −1.75045e31 −0.589649
\(995\) 0 0
\(996\) 1.10981e31 0.366038
\(997\) 5.26811e31 1.71932 0.859659 0.510869i \(-0.170676\pi\)
0.859659 + 0.510869i \(0.170676\pi\)
\(998\) −4.22709e31 −1.36512
\(999\) −8.36139e30 −0.267203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.22.a.h.1.4 4
5.2 odd 4 75.22.b.h.49.8 8
5.3 odd 4 75.22.b.h.49.1 8
5.4 even 2 15.22.a.e.1.1 4
15.14 odd 2 45.22.a.g.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.22.a.e.1.1 4 5.4 even 2
45.22.a.g.1.4 4 15.14 odd 2
75.22.a.h.1.4 4 1.1 even 1 trivial
75.22.b.h.49.1 8 5.3 odd 4
75.22.b.h.49.8 8 5.2 odd 4