Properties

Label 75.3.c.c
Level $75$
Weight $3$
Character orbit 75.c
Analytic conductor $2.044$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(26,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-11})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta + 1) q^{2} + ( - \beta - 2) q^{3} - 7 q^{4} + (5 \beta - 8) q^{6} + (6 \beta - 3) q^{8} + (5 \beta + 1) q^{9} + ( - 10 \beta + 5) q^{11} + (7 \beta + 14) q^{12} - 10 q^{13} + 5 q^{16} + ( - 2 \beta + 1) q^{17}+ \cdots + ( - 35 \beta + 155) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} - 14 q^{4} - 11 q^{6} + 7 q^{9} + 35 q^{12} - 20 q^{13} + 10 q^{16} + 55 q^{18} + 14 q^{19} - 110 q^{22} + 33 q^{24} + 10 q^{27} + 84 q^{31} - 55 q^{33} - 22 q^{34} - 49 q^{36} + 80 q^{37}+ \cdots + 275 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.500000 + 1.65831i
0.500000 1.65831i
3.31662i −2.50000 1.65831i −7.00000 0 −5.50000 + 8.29156i 0 9.94987i 3.50000 + 8.29156i 0
26.2 3.31662i −2.50000 + 1.65831i −7.00000 0 −5.50000 8.29156i 0 9.94987i 3.50000 8.29156i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.3.c.c 2
3.b odd 2 1 inner 75.3.c.c 2
4.b odd 2 1 1200.3.l.s 2
5.b even 2 1 75.3.c.f yes 2
5.c odd 4 2 75.3.d.c 4
12.b even 2 1 1200.3.l.s 2
15.d odd 2 1 75.3.c.f yes 2
15.e even 4 2 75.3.d.c 4
20.d odd 2 1 1200.3.l.f 2
20.e even 4 2 1200.3.c.d 4
60.h even 2 1 1200.3.l.f 2
60.l odd 4 2 1200.3.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.3.c.c 2 1.a even 1 1 trivial
75.3.c.c 2 3.b odd 2 1 inner
75.3.c.f yes 2 5.b even 2 1
75.3.c.f yes 2 15.d odd 2 1
75.3.d.c 4 5.c odd 4 2
75.3.d.c 4 15.e even 4 2
1200.3.c.d 4 20.e even 4 2
1200.3.c.d 4 60.l odd 4 2
1200.3.l.f 2 20.d odd 2 1
1200.3.l.f 2 60.h even 2 1
1200.3.l.s 2 4.b odd 2 1
1200.3.l.s 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(75, [\chi])\):

\( T_{2}^{2} + 11 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13} + 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 11 \) Copy content Toggle raw display
$3$ \( T^{2} + 5T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 275 \) Copy content Toggle raw display
$13$ \( (T + 10)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 11 \) Copy content Toggle raw display
$19$ \( (T - 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 396 \) Copy content Toggle raw display
$29$ \( T^{2} + 1100 \) Copy content Toggle raw display
$31$ \( (T - 42)^{2} \) Copy content Toggle raw display
$37$ \( (T - 40)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 275 \) Copy content Toggle raw display
$43$ \( (T - 50)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 2156 \) Copy content Toggle raw display
$53$ \( T^{2} + 2156 \) Copy content Toggle raw display
$59$ \( T^{2} + 4400 \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( (T + 45)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 1100 \) Copy content Toggle raw display
$73$ \( (T - 35)^{2} \) Copy content Toggle raw display
$79$ \( (T - 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4851 \) Copy content Toggle raw display
$89$ \( T^{2} + 22275 \) Copy content Toggle raw display
$97$ \( (T - 70)^{2} \) Copy content Toggle raw display
show more
show less