Properties

Label 755.2.a.k
Level 755755
Weight 22
Character orbit 755.a
Self dual yes
Analytic conductor 6.0296.029
Analytic rank 00
Dimension 1818
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [755,2,Mod(1,755)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(755, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("755.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 755=5151 755 = 5 \cdot 151
Weight: k k == 2 2
Character orbit: [χ][\chi] == 755.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.028705352616.02870535261
Analytic rank: 00
Dimension: 1818
Coefficient field: Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x182x1732x16+64x15+417x14839x132829x12+5789x11++576 x^{18} - 2 x^{17} - 32 x^{16} + 64 x^{15} + 417 x^{14} - 839 x^{13} - 2829 x^{12} + 5789 x^{11} + \cdots + 576 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β171,\beta_1,\ldots,\beta_{17} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2β10q3+(β2+2)q4q5+(β14β12+β11++1)q6+(β11β10++β1)q7+(β32β1)q8++(3β172β16++7)q99+O(q100) q - \beta_1 q^{2} - \beta_{10} q^{3} + (\beta_{2} + 2) q^{4} - q^{5} + (\beta_{14} - \beta_{12} + \beta_{11} + \cdots + 1) q^{6} + ( - \beta_{11} - \beta_{10} + \cdots + \beta_1) q^{7} + ( - \beta_{3} - 2 \beta_1) q^{8}+ \cdots + (3 \beta_{17} - 2 \beta_{16} + \cdots + 7) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q2q2+2q3+32q418q5+10q6+4q7+32q9+2q10+11q11+12q13+q142q15+60q1625q179q18+8q1932q20+20q21++11q99+O(q100) 18 q - 2 q^{2} + 2 q^{3} + 32 q^{4} - 18 q^{5} + 10 q^{6} + 4 q^{7} + 32 q^{9} + 2 q^{10} + 11 q^{11} + 12 q^{13} + q^{14} - 2 q^{15} + 60 q^{16} - 25 q^{17} - 9 q^{18} + 8 q^{19} - 32 q^{20} + 20 q^{21}+ \cdots + 11 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x182x1732x16+64x15+417x14839x132829x12+5789x11++576 x^{18} - 2 x^{17} - 32 x^{16} + 64 x^{15} + 417 x^{14} - 839 x^{13} - 2829 x^{12} + 5789 x^{11} + \cdots + 576 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== ν36ν \nu^{3} - 6\nu Copy content Toggle raw display
β4\beta_{4}== (291189ν1789672ν1613773536ν15+3015680ν14+241721301ν13++1759381728)/246482048 ( 291189 \nu^{17} - 89672 \nu^{16} - 13773536 \nu^{15} + 3015680 \nu^{14} + 241721301 \nu^{13} + \cdots + 1759381728 ) / 246482048 Copy content Toggle raw display
β5\beta_{5}== (6611ν17102932ν16147400ν15+3254088ν14+1129363ν13+103616736)/3624736 ( 6611 \nu^{17} - 102932 \nu^{16} - 147400 \nu^{15} + 3254088 \nu^{14} + 1129363 \nu^{13} + \cdots - 103616736 ) / 3624736 Copy content Toggle raw display
β6\beta_{6}== (352200ν171531101ν16+12859718ν15+49775228ν14191128800ν13+1731721392)/61620512 ( - 352200 \nu^{17} - 1531101 \nu^{16} + 12859718 \nu^{15} + 49775228 \nu^{14} - 191128800 \nu^{13} + \cdots - 1731721392 ) / 61620512 Copy content Toggle raw display
β7\beta_{7}== (200609ν17111305ν16+6840426ν15+2808640ν1494256757ν13+109530144)/30810256 ( - 200609 \nu^{17} - 111305 \nu^{16} + 6840426 \nu^{15} + 2808640 \nu^{14} - 94256757 \nu^{13} + \cdots - 109530144 ) / 30810256 Copy content Toggle raw display
β8\beta_{8}== (4207833ν173035060ν16136531352ν15+90560592ν14+1814253113ν13+3045233376)/246482048 ( 4207833 \nu^{17} - 3035060 \nu^{16} - 136531352 \nu^{15} + 90560592 \nu^{14} + 1814253113 \nu^{13} + \cdots - 3045233376 ) / 246482048 Copy content Toggle raw display
β9\beta_{9}== (376637ν17+816775ν16+12308969ν1526268086ν14165237543ν13++1047452304)/15405128 ( - 376637 \nu^{17} + 816775 \nu^{16} + 12308969 \nu^{15} - 26268086 \nu^{14} - 165237543 \nu^{13} + \cdots + 1047452304 ) / 15405128 Copy content Toggle raw display
β10\beta_{10}== (6655037ν17+7124952ν16+218103744ν15221147168ν14++5512649248)/246482048 ( - 6655037 \nu^{17} + 7124952 \nu^{16} + 218103744 \nu^{15} - 221147168 \nu^{14} + \cdots + 5512649248 ) / 246482048 Copy content Toggle raw display
β11\beta_{11}== (7671053ν173019592ν16252716832ν15+90268544ν14+3409619053ν13+2534526752)/246482048 ( 7671053 \nu^{17} - 3019592 \nu^{16} - 252716832 \nu^{15} + 90268544 \nu^{14} + 3409619053 \nu^{13} + \cdots - 2534526752 ) / 246482048 Copy content Toggle raw display
β12\beta_{12}== (2012075ν17240291ν1666473910ν15+4644444ν14+901092691ν13++402009264)/61620512 ( 2012075 \nu^{17} - 240291 \nu^{16} - 66473910 \nu^{15} + 4644444 \nu^{14} + 901092691 \nu^{13} + \cdots + 402009264 ) / 61620512 Copy content Toggle raw display
β13\beta_{13}== (1080450ν17770753ν1635433032ν15+24019784ν14+475927878ν13+857558448)/30810256 ( 1080450 \nu^{17} - 770753 \nu^{16} - 35433032 \nu^{15} + 24019784 \nu^{14} + 475927878 \nu^{13} + \cdots - 857558448 ) / 30810256 Copy content Toggle raw display
β14\beta_{14}== (2667907ν17+32580ν1687752232ν154559040ν14+1182540091ν13++516806112)/61620512 ( 2667907 \nu^{17} + 32580 \nu^{16} - 87752232 \nu^{15} - 4559040 \nu^{14} + 1182540091 \nu^{13} + \cdots + 516806112 ) / 61620512 Copy content Toggle raw display
β15\beta_{15}== (5514599ν17+1603132ν16+181517160ν1543215552ν14+176155936)/123241024 ( - 5514599 \nu^{17} + 1603132 \nu^{16} + 181517160 \nu^{15} - 43215552 \nu^{14} + \cdots - 176155936 ) / 123241024 Copy content Toggle raw display
β16\beta_{16}== (19147913ν1720921528ν16620919424ν15+652093696ν14+18920576800)/246482048 ( 19147913 \nu^{17} - 20921528 \nu^{16} - 620919424 \nu^{15} + 652093696 \nu^{14} + \cdots - 18920576800 ) / 246482048 Copy content Toggle raw display
β17\beta_{17}== (5467460ν172351091ν16180215470ν15+71663140ν14+2434217780ν13+1937384048)/61620512 ( 5467460 \nu^{17} - 2351091 \nu^{16} - 180215470 \nu^{15} + 71663140 \nu^{14} + 2434217780 \nu^{13} + \cdots - 1937384048 ) / 61620512 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β3+6β1 \beta_{3} + 6\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β15+β13+β11+β9+β5+β4+8β2β1+25 \beta_{15} + \beta_{13} + \beta_{11} + \beta_{9} + \beta_{5} + \beta_{4} + 8\beta_{2} - \beta _1 + 25 Copy content Toggle raw display
ν5\nu^{5}== β11β8+β7+β6β5+10β3+38β1+1 \beta_{11} - \beta_{8} + \beta_{7} + \beta_{6} - \beta_{5} + 10\beta_{3} + 38\beta _1 + 1 Copy content Toggle raw display
ν6\nu^{6}== β17+10β15β14+12β13+2β12+10β11+β10++168 - \beta_{17} + 10 \beta_{15} - \beta_{14} + 12 \beta_{13} + 2 \beta_{12} + 10 \beta_{11} + \beta_{10} + \cdots + 168 Copy content Toggle raw display
ν7\nu^{7}== β16β15+β143β13+19β11+2β10β9++16 - \beta_{16} - \beta_{15} + \beta_{14} - 3 \beta_{13} + 19 \beta_{11} + 2 \beta_{10} - \beta_{9} + \cdots + 16 Copy content Toggle raw display
ν8\nu^{8}== 14β17+78β1520β14+109β13+32β12+82β11++1160 - 14 \beta_{17} + 78 \beta_{15} - 20 \beta_{14} + 109 \beta_{13} + 32 \beta_{12} + 82 \beta_{11} + \cdots + 1160 Copy content Toggle raw display
ν9\nu^{9}== 4β1714β1619β15+16β1451β13+231β11++181 - 4 \beta_{17} - 14 \beta_{16} - 19 \beta_{15} + 16 \beta_{14} - 51 \beta_{13} + 231 \beta_{11} + \cdots + 181 Copy content Toggle raw display
ν10\nu^{10}== 138β176β16+559β15254β14+905β13+350β12++8140 - 138 \beta_{17} - 6 \beta_{16} + 559 \beta_{15} - 254 \beta_{14} + 905 \beta_{13} + 350 \beta_{12} + \cdots + 8140 Copy content Toggle raw display
ν11\nu^{11}== 81β17144β16247β15+181β14587β132β12++1774 - 81 \beta_{17} - 144 \beta_{16} - 247 \beta_{15} + 181 \beta_{14} - 587 \beta_{13} - 2 \beta_{12} + \cdots + 1774 Copy content Toggle raw display
ν12\nu^{12}== 1185β17137β16+3835β152662β14+7237β13+3268β12++57823 - 1185 \beta_{17} - 137 \beta_{16} + 3835 \beta_{15} - 2662 \beta_{14} + 7237 \beta_{13} + 3268 \beta_{12} + \cdots + 57823 Copy content Toggle raw display
ν13\nu^{13}== 1081β171319β162721β15+1786β145742β13++16118 - 1081 \beta_{17} - 1319 \beta_{16} - 2721 \beta_{15} + 1786 \beta_{14} - 5742 \beta_{13} + \cdots + 16118 Copy content Toggle raw display
ν14\nu^{14}== 9476β171993β16+25488β1525193β14+56809β13++414993 - 9476 \beta_{17} - 1993 \beta_{16} + 25488 \beta_{15} - 25193 \beta_{14} + 56809 \beta_{13} + \cdots + 414993 Copy content Toggle raw display
ν15\nu^{15}== 12018β1711392β1627312β15+16418β1451517β13++140033 - 12018 \beta_{17} - 11392 \beta_{16} - 27312 \beta_{15} + 16418 \beta_{14} - 51517 \beta_{13} + \cdots + 140033 Copy content Toggle raw display
ν16\nu^{16}== 72575β1723670β16+164341β15224285β14+441297β13++3005281 - 72575 \beta_{17} - 23670 \beta_{16} + 164341 \beta_{15} - 224285 \beta_{14} + 441297 \beta_{13} + \cdots + 3005281 Copy content Toggle raw display
ν17\nu^{17}== 120606β1795053β16258403β15+144563β14438785β13++1182797 - 120606 \beta_{17} - 95053 \beta_{16} - 258403 \beta_{15} + 144563 \beta_{14} - 438785 \beta_{13} + \cdots + 1182797 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.78505
2.67329
2.53901
2.45014
1.76982
1.47536
1.43785
0.899027
0.348479
0.305904
−0.335211
−1.01684
−1.43913
−1.63907
−2.41658
−2.50213
−2.58952
−2.74545
−2.78505 −1.67120 5.75652 −1.00000 4.65438 −4.20569 −10.4621 −0.207087 2.78505
1.2 −2.67329 3.37901 5.14647 −1.00000 −9.03307 0.692364 −8.41144 8.41770 2.67329
1.3 −2.53901 −3.30364 4.44659 −1.00000 8.38798 3.67389 −6.21194 7.91401 2.53901
1.4 −2.45014 −0.0247552 4.00319 −1.00000 0.0606537 1.10013 −4.90809 −2.99939 2.45014
1.5 −1.76982 2.26705 1.13225 −1.00000 −4.01226 3.82507 1.53576 2.13951 1.76982
1.6 −1.47536 −2.78489 0.176690 −1.00000 4.10872 −0.173538 2.69004 4.75562 1.47536
1.7 −1.43785 −0.254287 0.0674170 −1.00000 0.365627 −3.46667 2.77877 −2.93534 1.43785
1.8 −0.899027 −0.0342120 −1.19175 −1.00000 0.0307575 4.96999 2.86947 −2.99883 0.899027
1.9 −0.348479 1.65774 −1.87856 −1.00000 −0.577689 −0.779308 1.35160 −0.251882 0.348479
1.10 −0.305904 −0.840395 −1.90642 −1.00000 0.257080 −4.91901 1.19499 −2.29374 0.305904
1.11 0.335211 2.61395 −1.88763 −1.00000 0.876225 −0.699553 −1.30318 3.83275 −0.335211
1.12 1.01684 −3.08977 −0.966037 −1.00000 −3.14180 −3.86206 −3.01598 6.54668 −1.01684
1.13 1.43913 2.89473 0.0711026 −1.00000 4.16590 4.37243 −2.77594 5.37946 −1.43913
1.14 1.63907 −1.56822 0.686561 −1.00000 −2.57043 3.96416 −2.15282 −0.540673 −1.63907
1.15 2.41658 0.530330 3.83984 −1.00000 1.28158 1.66759 4.44611 −2.71875 −2.41658
1.16 2.50213 2.91576 4.26066 −1.00000 7.29562 −4.35529 5.65646 5.50167 −2.50213
1.17 2.58952 1.68398 4.70561 −1.00000 4.36069 2.60507 7.00623 −0.164218 −2.58952
1.18 2.74545 −2.37118 5.53751 −1.00000 −6.50997 −0.409554 9.71206 2.62250 −2.74545
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
151151 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 755.2.a.k 18
3.b odd 2 1 6795.2.a.bi 18
5.b even 2 1 3775.2.a.r 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
755.2.a.k 18 1.a even 1 1 trivial
3775.2.a.r 18 5.b even 2 1
6795.2.a.bi 18 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(755))S_{2}^{\mathrm{new}}(\Gamma_0(755)):

T218+2T21732T21664T215+417T214+839T2132829T212++576 T_{2}^{18} + 2 T_{2}^{17} - 32 T_{2}^{16} - 64 T_{2}^{15} + 417 T_{2}^{14} + 839 T_{2}^{13} - 2829 T_{2}^{12} + \cdots + 576 Copy content Toggle raw display
T3182T31741T316+79T315+681T3141245T3135903T312++8 T_{3}^{18} - 2 T_{3}^{17} - 41 T_{3}^{16} + 79 T_{3}^{15} + 681 T_{3}^{14} - 1245 T_{3}^{13} - 5903 T_{3}^{12} + \cdots + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T18+2T17++576 T^{18} + 2 T^{17} + \cdots + 576 Copy content Toggle raw display
33 T182T17++8 T^{18} - 2 T^{17} + \cdots + 8 Copy content Toggle raw display
55 (T+1)18 (T + 1)^{18} Copy content Toggle raw display
77 T184T17+187232 T^{18} - 4 T^{17} + \cdots - 187232 Copy content Toggle raw display
1111 T1811T17++15945984 T^{18} - 11 T^{17} + \cdots + 15945984 Copy content Toggle raw display
1313 T1812T17++6024352 T^{18} - 12 T^{17} + \cdots + 6024352 Copy content Toggle raw display
1717 T18+25T17++8306688 T^{18} + 25 T^{17} + \cdots + 8306688 Copy content Toggle raw display
1919 T188T17+324288 T^{18} - 8 T^{17} + \cdots - 324288 Copy content Toggle raw display
2323 T18++143258712 T^{18} + \cdots + 143258712 Copy content Toggle raw display
2929 T18+3481410264 T^{18} + \cdots - 3481410264 Copy content Toggle raw display
3131 T18++12920205824 T^{18} + \cdots + 12920205824 Copy content Toggle raw display
3737 T18++27363905232896 T^{18} + \cdots + 27363905232896 Copy content Toggle raw display
4141 T18+789639168 T^{18} + \cdots - 789639168 Copy content Toggle raw display
4343 T18++123008974848 T^{18} + \cdots + 123008974848 Copy content Toggle raw display
4747 T18++268399804416 T^{18} + \cdots + 268399804416 Copy content Toggle raw display
5353 T18++41277800448 T^{18} + \cdots + 41277800448 Copy content Toggle raw display
5959 T18+322195609536 T^{18} + \cdots - 322195609536 Copy content Toggle raw display
6161 T18++49054901641216 T^{18} + \cdots + 49054901641216 Copy content Toggle raw display
6767 T18+22497872398488 T^{18} + \cdots - 22497872398488 Copy content Toggle raw display
7171 T18+190086356140032 T^{18} + \cdots - 190086356140032 Copy content Toggle raw display
7373 T18++11 ⁣ ⁣44 T^{18} + \cdots + 11\!\cdots\!44 Copy content Toggle raw display
7979 T18+14 ⁣ ⁣84 T^{18} + \cdots - 14\!\cdots\!84 Copy content Toggle raw display
8383 T18++40860420133992 T^{18} + \cdots + 40860420133992 Copy content Toggle raw display
8989 T18++309732808310784 T^{18} + \cdots + 309732808310784 Copy content Toggle raw display
9797 T18+70 ⁣ ⁣28 T^{18} + \cdots - 70\!\cdots\!28 Copy content Toggle raw display
show more
show less