Properties

Label 756.2.w.a.341.3
Level $756$
Weight $2$
Character 756.341
Analytic conductor $6.037$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [756,2,Mod(341,756)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(756, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("756.341");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 341.3
Root \(-1.61108 + 0.635951i\) of defining polynomial
Character \(\chi\) \(=\) 756.341
Dual form 756.2.w.a.521.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09150 - 1.89054i) q^{5} +(-1.25859 + 2.32722i) q^{7} +(1.26889 + 0.732592i) q^{11} +(2.92752 + 1.69021i) q^{13} +(-1.32136 - 2.28866i) q^{17} +(6.87816 + 3.97111i) q^{19} +(3.47245 - 2.00482i) q^{23} +(0.117249 - 0.203081i) q^{25} +(6.71261 - 3.87553i) q^{29} -0.706968i q^{31} +(5.77345 - 0.160752i) q^{35} +(1.41738 - 2.45498i) q^{37} +(-3.74173 + 6.48086i) q^{41} +(-1.27112 - 2.20164i) q^{43} +12.5508 q^{47} +(-3.83190 - 5.85803i) q^{49} +(2.41675 - 1.39531i) q^{53} -3.19850i q^{55} -13.4330 q^{59} +7.79493i q^{61} -7.37945i q^{65} +5.84058 q^{67} +11.6854i q^{71} +(-3.95924 + 2.28587i) q^{73} +(-3.30191 + 2.03094i) q^{77} +9.38377 q^{79} +(-1.70847 - 2.95917i) q^{83} +(-2.88452 + 4.99614i) q^{85} +(-4.61937 + 8.00099i) q^{89} +(-7.61803 + 4.68571i) q^{91} -17.3379i q^{95} +(6.38394 - 3.68577i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{7} + 6 q^{11} - 3 q^{13} - 9 q^{17} - 21 q^{23} - 8 q^{25} - 6 q^{29} + 15 q^{35} + q^{37} + 6 q^{41} - 2 q^{43} + 36 q^{47} - 5 q^{49} + 30 q^{59} + 14 q^{67} - 3 q^{77} + 2 q^{79} + 6 q^{85}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.09150 1.89054i −0.488134 0.845473i 0.511773 0.859121i \(-0.328989\pi\)
−0.999907 + 0.0136476i \(0.995656\pi\)
\(6\) 0 0
\(7\) −1.25859 + 2.32722i −0.475703 + 0.879606i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.26889 + 0.732592i 0.382584 + 0.220885i 0.678942 0.734192i \(-0.262439\pi\)
−0.296358 + 0.955077i \(0.595772\pi\)
\(12\) 0 0
\(13\) 2.92752 + 1.69021i 0.811948 + 0.468779i 0.847632 0.530585i \(-0.178028\pi\)
−0.0356837 + 0.999363i \(0.511361\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.32136 2.28866i −0.320476 0.555081i 0.660110 0.751169i \(-0.270509\pi\)
−0.980586 + 0.196088i \(0.937176\pi\)
\(18\) 0 0
\(19\) 6.87816 + 3.97111i 1.57796 + 0.911034i 0.995144 + 0.0984279i \(0.0313814\pi\)
0.582813 + 0.812606i \(0.301952\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.47245 2.00482i 0.724056 0.418034i −0.0921879 0.995742i \(-0.529386\pi\)
0.816244 + 0.577708i \(0.196053\pi\)
\(24\) 0 0
\(25\) 0.117249 0.203081i 0.0234498 0.0406163i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.71261 3.87553i 1.24650 0.719667i 0.276091 0.961132i \(-0.410961\pi\)
0.970410 + 0.241464i \(0.0776276\pi\)
\(30\) 0 0
\(31\) 0.706968i 0.126975i −0.997983 0.0634876i \(-0.979778\pi\)
0.997983 0.0634876i \(-0.0202223\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.77345 0.160752i 0.975890 0.0271721i
\(36\) 0 0
\(37\) 1.41738 2.45498i 0.233016 0.403596i −0.725678 0.688034i \(-0.758474\pi\)
0.958694 + 0.284438i \(0.0918071\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.74173 + 6.48086i −0.584360 + 1.01214i 0.410595 + 0.911818i \(0.365321\pi\)
−0.994955 + 0.100323i \(0.968012\pi\)
\(42\) 0 0
\(43\) −1.27112 2.20164i −0.193844 0.335748i 0.752677 0.658390i \(-0.228762\pi\)
−0.946521 + 0.322642i \(0.895429\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.5508 1.83072 0.915358 0.402640i \(-0.131907\pi\)
0.915358 + 0.402640i \(0.131907\pi\)
\(48\) 0 0
\(49\) −3.83190 5.85803i −0.547414 0.836862i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.41675 1.39531i 0.331966 0.191661i −0.324748 0.945801i \(-0.605279\pi\)
0.656714 + 0.754140i \(0.271946\pi\)
\(54\) 0 0
\(55\) 3.19850i 0.431286i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.4330 −1.74883 −0.874414 0.485180i \(-0.838754\pi\)
−0.874414 + 0.485180i \(0.838754\pi\)
\(60\) 0 0
\(61\) 7.79493i 0.998039i 0.866591 + 0.499020i \(0.166306\pi\)
−0.866591 + 0.499020i \(0.833694\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.37945i 0.915308i
\(66\) 0 0
\(67\) 5.84058 0.713541 0.356770 0.934192i \(-0.383878\pi\)
0.356770 + 0.934192i \(0.383878\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.6854i 1.38680i 0.720554 + 0.693398i \(0.243887\pi\)
−0.720554 + 0.693398i \(0.756113\pi\)
\(72\) 0 0
\(73\) −3.95924 + 2.28587i −0.463394 + 0.267541i −0.713470 0.700685i \(-0.752878\pi\)
0.250076 + 0.968226i \(0.419544\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.30191 + 2.03094i −0.376288 + 0.231448i
\(78\) 0 0
\(79\) 9.38377 1.05576 0.527879 0.849320i \(-0.322988\pi\)
0.527879 + 0.849320i \(0.322988\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.70847 2.95917i −0.187529 0.324811i 0.756896 0.653535i \(-0.226715\pi\)
−0.944426 + 0.328724i \(0.893381\pi\)
\(84\) 0 0
\(85\) −2.88452 + 4.99614i −0.312871 + 0.541908i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.61937 + 8.00099i −0.489653 + 0.848103i −0.999929 0.0119070i \(-0.996210\pi\)
0.510276 + 0.860010i \(0.329543\pi\)
\(90\) 0 0
\(91\) −7.61803 + 4.68571i −0.798586 + 0.491196i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 17.3379i 1.77883i
\(96\) 0 0
\(97\) 6.38394 3.68577i 0.648191 0.374233i −0.139572 0.990212i \(-0.544573\pi\)
0.787763 + 0.615979i \(0.211239\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.96357 + 6.86510i −0.394390 + 0.683103i −0.993023 0.117920i \(-0.962377\pi\)
0.598633 + 0.801023i \(0.295711\pi\)
\(102\) 0 0
\(103\) −3.26825 + 1.88693i −0.322031 + 0.185924i −0.652297 0.757963i \(-0.726195\pi\)
0.330267 + 0.943888i \(0.392861\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.88241 + 3.97356i 0.665347 + 0.384138i 0.794311 0.607511i \(-0.207832\pi\)
−0.128964 + 0.991649i \(0.541165\pi\)
\(108\) 0 0
\(109\) 0.505142 + 0.874932i 0.0483838 + 0.0838033i 0.889203 0.457513i \(-0.151260\pi\)
−0.840819 + 0.541316i \(0.817926\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5557 + 6.09431i 0.992992 + 0.573304i 0.906167 0.422919i \(-0.138995\pi\)
0.0868250 + 0.996224i \(0.472328\pi\)
\(114\) 0 0
\(115\) −7.58037 4.37653i −0.706873 0.408113i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.98925 0.194605i 0.640703 0.0178394i
\(120\) 0 0
\(121\) −4.42662 7.66713i −0.402420 0.697012i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.4269 −1.02206
\(126\) 0 0
\(127\) 6.79350 0.602826 0.301413 0.953494i \(-0.402542\pi\)
0.301413 + 0.953494i \(0.402542\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.86790 11.8956i −0.600051 1.03932i −0.992813 0.119679i \(-0.961813\pi\)
0.392761 0.919640i \(-0.371520\pi\)
\(132\) 0 0
\(133\) −17.8984 + 11.0090i −1.55199 + 0.954600i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.4028 10.0475i −1.48682 0.858416i −0.486933 0.873439i \(-0.661884\pi\)
−0.999887 + 0.0150235i \(0.995218\pi\)
\(138\) 0 0
\(139\) 8.51403 + 4.91558i 0.722151 + 0.416934i 0.815544 0.578695i \(-0.196438\pi\)
−0.0933930 + 0.995629i \(0.529771\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.47646 + 4.28936i 0.207092 + 0.358694i
\(144\) 0 0
\(145\) −14.6536 8.46029i −1.21692 0.702589i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.3512 + 10.0177i −1.42146 + 0.820682i −0.996424 0.0844939i \(-0.973073\pi\)
−0.425038 + 0.905175i \(0.639739\pi\)
\(150\) 0 0
\(151\) 11.1168 19.2549i 0.904675 1.56694i 0.0833218 0.996523i \(-0.473447\pi\)
0.821353 0.570420i \(-0.193220\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.33655 + 0.771657i −0.107354 + 0.0619810i
\(156\) 0 0
\(157\) 8.02869i 0.640759i −0.947289 0.320380i \(-0.896189\pi\)
0.947289 0.320380i \(-0.103811\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.295263 + 10.6044i 0.0232700 + 0.835744i
\(162\) 0 0
\(163\) −6.22604 + 10.7838i −0.487661 + 0.844654i −0.999899 0.0141893i \(-0.995483\pi\)
0.512238 + 0.858844i \(0.328817\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.85984 17.0777i 0.762978 1.32152i −0.178332 0.983970i \(-0.557070\pi\)
0.941309 0.337546i \(-0.109597\pi\)
\(168\) 0 0
\(169\) −0.786412 1.36211i −0.0604933 0.104777i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.82747 −0.138940 −0.0694699 0.997584i \(-0.522131\pi\)
−0.0694699 + 0.997584i \(0.522131\pi\)
\(174\) 0 0
\(175\) 0.325046 + 0.528460i 0.0245712 + 0.0399479i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.1182 + 6.99645i −0.905757 + 0.522939i −0.879064 0.476705i \(-0.841831\pi\)
−0.0266934 + 0.999644i \(0.508498\pi\)
\(180\) 0 0
\(181\) 16.3594i 1.21599i −0.793942 0.607994i \(-0.791975\pi\)
0.793942 0.607994i \(-0.208025\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.18830 −0.454973
\(186\) 0 0
\(187\) 3.87206i 0.283153i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.6631i 0.988624i −0.869285 0.494312i \(-0.835420\pi\)
0.869285 0.494312i \(-0.164580\pi\)
\(192\) 0 0
\(193\) −4.37769 −0.315113 −0.157557 0.987510i \(-0.550362\pi\)
−0.157557 + 0.987510i \(0.550362\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00603i 0.0716767i −0.999358 0.0358384i \(-0.988590\pi\)
0.999358 0.0358384i \(-0.0114101\pi\)
\(198\) 0 0
\(199\) −5.67639 + 3.27726i −0.402388 + 0.232319i −0.687514 0.726171i \(-0.741298\pi\)
0.285126 + 0.958490i \(0.407965\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.570774 + 20.4994i 0.0400605 + 1.43878i
\(204\) 0 0
\(205\) 16.3364 1.14098
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.81840 + 10.0778i 0.402467 + 0.697094i
\(210\) 0 0
\(211\) −9.11202 + 15.7825i −0.627297 + 1.08651i 0.360794 + 0.932645i \(0.382506\pi\)
−0.988092 + 0.153866i \(0.950828\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.77486 + 4.80620i −0.189244 + 0.327780i
\(216\) 0 0
\(217\) 1.64527 + 0.889784i 0.111688 + 0.0604024i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.93345i 0.600929i
\(222\) 0 0
\(223\) −8.71705 + 5.03279i −0.583737 + 0.337021i −0.762617 0.646850i \(-0.776086\pi\)
0.178880 + 0.983871i \(0.442753\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.94372 + 17.2230i −0.659988 + 1.14313i 0.320630 + 0.947204i \(0.396105\pi\)
−0.980618 + 0.195928i \(0.937228\pi\)
\(228\) 0 0
\(229\) −15.3854 + 8.88275i −1.01669 + 0.586988i −0.913145 0.407636i \(-0.866353\pi\)
−0.103549 + 0.994624i \(0.533020\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.9077 + 8.02962i 0.911124 + 0.526038i 0.880793 0.473502i \(-0.157010\pi\)
0.0303317 + 0.999540i \(0.490344\pi\)
\(234\) 0 0
\(235\) −13.6992 23.7277i −0.893636 1.54782i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.11117 + 4.10564i 0.459983 + 0.265572i 0.712037 0.702142i \(-0.247773\pi\)
−0.252054 + 0.967713i \(0.581106\pi\)
\(240\) 0 0
\(241\) −24.6614 14.2382i −1.58858 0.917166i −0.993542 0.113468i \(-0.963804\pi\)
−0.595037 0.803698i \(-0.702863\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.89230 + 13.6384i −0.440333 + 0.871325i
\(246\) 0 0
\(247\) 13.4240 + 23.2510i 0.854147 + 1.47943i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.656343 −0.0414280 −0.0207140 0.999785i \(-0.506594\pi\)
−0.0207140 + 0.999785i \(0.506594\pi\)
\(252\) 0 0
\(253\) 5.87486 0.369349
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.82042 + 6.61716i 0.238311 + 0.412767i 0.960230 0.279211i \(-0.0900728\pi\)
−0.721918 + 0.691978i \(0.756739\pi\)
\(258\) 0 0
\(259\) 3.92937 + 6.38837i 0.244159 + 0.396954i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.73888 + 3.31334i 0.353874 + 0.204310i 0.666390 0.745603i \(-0.267838\pi\)
−0.312516 + 0.949913i \(0.601172\pi\)
\(264\) 0 0
\(265\) −5.27577 3.04597i −0.324088 0.187112i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.38347 7.59239i −0.267265 0.462916i 0.700890 0.713270i \(-0.252786\pi\)
−0.968154 + 0.250354i \(0.919453\pi\)
\(270\) 0 0
\(271\) 14.2608 + 8.23346i 0.866280 + 0.500147i 0.866110 0.499853i \(-0.166613\pi\)
0.000169619 1.00000i \(0.499946\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.297551 0.171791i 0.0179430 0.0103594i
\(276\) 0 0
\(277\) 8.88732 15.3933i 0.533987 0.924893i −0.465225 0.885193i \(-0.654026\pi\)
0.999212 0.0397001i \(-0.0126402\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.0252 8.09748i 0.836676 0.483055i −0.0194568 0.999811i \(-0.506194\pi\)
0.856133 + 0.516755i \(0.172860\pi\)
\(282\) 0 0
\(283\) 28.3729i 1.68660i −0.537447 0.843298i \(-0.680611\pi\)
0.537447 0.843298i \(-0.319389\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.3731 16.8646i −0.612304 0.995484i
\(288\) 0 0
\(289\) 5.00804 8.67417i 0.294590 0.510246i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.38260 7.59088i 0.256034 0.443464i −0.709142 0.705066i \(-0.750917\pi\)
0.965176 + 0.261602i \(0.0842507\pi\)
\(294\) 0 0
\(295\) 14.6621 + 25.3956i 0.853663 + 1.47859i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.5542 0.783861
\(300\) 0 0
\(301\) 6.72353 0.187206i 0.387538 0.0107904i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.7366 8.50818i 0.843816 0.487177i
\(306\) 0 0
\(307\) 12.8497i 0.733372i 0.930345 + 0.366686i \(0.119508\pi\)
−0.930345 + 0.366686i \(0.880492\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.59343 0.373879 0.186939 0.982371i \(-0.440143\pi\)
0.186939 + 0.982371i \(0.440143\pi\)
\(312\) 0 0
\(313\) 3.41458i 0.193004i −0.995333 0.0965018i \(-0.969235\pi\)
0.995333 0.0965018i \(-0.0307654\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.1010i 1.80297i −0.432810 0.901485i \(-0.642478\pi\)
0.432810 0.901485i \(-0.357522\pi\)
\(318\) 0 0
\(319\) 11.3567 0.635854
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.9890i 1.16786i
\(324\) 0 0
\(325\) 0.686498 0.396350i 0.0380801 0.0219855i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.7963 + 29.2084i −0.870877 + 1.61031i
\(330\) 0 0
\(331\) −28.8833 −1.58757 −0.793784 0.608199i \(-0.791892\pi\)
−0.793784 + 0.608199i \(0.791892\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.37501 11.0418i −0.348304 0.603280i
\(336\) 0 0
\(337\) 4.82568 8.35833i 0.262872 0.455307i −0.704132 0.710069i \(-0.748664\pi\)
0.967004 + 0.254762i \(0.0819971\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.517919 0.897063i 0.0280469 0.0485787i
\(342\) 0 0
\(343\) 18.4557 1.54481i 0.996515 0.0834117i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.3273i 0.661766i −0.943672 0.330883i \(-0.892653\pi\)
0.943672 0.330883i \(-0.107347\pi\)
\(348\) 0 0
\(349\) −10.2211 + 5.90115i −0.547123 + 0.315881i −0.747961 0.663743i \(-0.768967\pi\)
0.200838 + 0.979624i \(0.435634\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.59855 + 11.4290i −0.351205 + 0.608305i −0.986461 0.163997i \(-0.947561\pi\)
0.635256 + 0.772302i \(0.280895\pi\)
\(354\) 0 0
\(355\) 22.0916 12.7546i 1.17250 0.676943i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.22483 + 3.01656i 0.275756 + 0.159208i 0.631501 0.775375i \(-0.282439\pi\)
−0.355745 + 0.934583i \(0.615773\pi\)
\(360\) 0 0
\(361\) 22.0394 + 38.1733i 1.15997 + 2.00912i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.64304 + 4.99006i 0.452397 + 0.261192i
\(366\) 0 0
\(367\) 14.8755 + 8.58836i 0.776494 + 0.448309i 0.835186 0.549967i \(-0.185360\pi\)
−0.0586924 + 0.998276i \(0.518693\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.205496 + 7.38043i 0.0106688 + 0.383173i
\(372\) 0 0
\(373\) −2.35902 4.08595i −0.122146 0.211562i 0.798468 0.602037i \(-0.205644\pi\)
−0.920614 + 0.390475i \(0.872311\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 26.2017 1.34946
\(378\) 0 0
\(379\) 9.34015 0.479771 0.239886 0.970801i \(-0.422890\pi\)
0.239886 + 0.970801i \(0.422890\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.85036 4.93696i −0.145646 0.252267i 0.783968 0.620802i \(-0.213193\pi\)
−0.929614 + 0.368535i \(0.879860\pi\)
\(384\) 0 0
\(385\) 7.44361 + 4.02560i 0.379362 + 0.205164i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.63671 3.83171i −0.336495 0.194275i 0.322226 0.946663i \(-0.395569\pi\)
−0.658721 + 0.752387i \(0.728902\pi\)
\(390\) 0 0
\(391\) −9.17668 5.29816i −0.464085 0.267939i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.2424 17.7404i −0.515351 0.892615i
\(396\) 0 0
\(397\) −1.12810 0.651310i −0.0566178 0.0326883i 0.471424 0.881907i \(-0.343740\pi\)
−0.528042 + 0.849218i \(0.677074\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.18778 4.72722i 0.408878 0.236066i −0.281429 0.959582i \(-0.590809\pi\)
0.690308 + 0.723516i \(0.257475\pi\)
\(402\) 0 0
\(403\) 1.19492 2.06966i 0.0595233 0.103097i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.59700 2.07673i 0.178296 0.102940i
\(408\) 0 0
\(409\) 19.0736i 0.943126i 0.881832 + 0.471563i \(0.156310\pi\)
−0.881832 + 0.471563i \(0.843690\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.9067 31.2615i 0.831922 1.53828i
\(414\) 0 0
\(415\) −3.72961 + 6.45987i −0.183079 + 0.317102i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.20003 7.27466i 0.205185 0.355390i −0.745007 0.667057i \(-0.767554\pi\)
0.950192 + 0.311666i \(0.100887\pi\)
\(420\) 0 0
\(421\) 19.7178 + 34.1522i 0.960985 + 1.66448i 0.720035 + 0.693938i \(0.244126\pi\)
0.240951 + 0.970537i \(0.422541\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.619711 −0.0300604
\(426\) 0 0
\(427\) −18.1405 9.81063i −0.877881 0.474770i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.3340 + 5.96634i −0.497772 + 0.287389i −0.727793 0.685797i \(-0.759454\pi\)
0.230021 + 0.973186i \(0.426120\pi\)
\(432\) 0 0
\(433\) 12.2121i 0.586875i 0.955978 + 0.293437i \(0.0947992\pi\)
−0.955978 + 0.293437i \(0.905201\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 31.8454 1.52337
\(438\) 0 0
\(439\) 16.7015i 0.797120i 0.917142 + 0.398560i \(0.130490\pi\)
−0.917142 + 0.398560i \(0.869510\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.2997i 1.43958i 0.694190 + 0.719791i \(0.255763\pi\)
−0.694190 + 0.719791i \(0.744237\pi\)
\(444\) 0 0
\(445\) 20.1682 0.956065
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.1253i 1.42170i −0.703343 0.710851i \(-0.748310\pi\)
0.703343 0.710851i \(-0.251690\pi\)
\(450\) 0 0
\(451\) −9.49566 + 5.48232i −0.447133 + 0.258152i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 17.1736 + 9.28770i 0.805110 + 0.435414i
\(456\) 0 0
\(457\) 25.2318 1.18029 0.590146 0.807297i \(-0.299070\pi\)
0.590146 + 0.807297i \(0.299070\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.3174 + 21.3344i 0.573680 + 0.993643i 0.996184 + 0.0872820i \(0.0278181\pi\)
−0.422503 + 0.906361i \(0.638849\pi\)
\(462\) 0 0
\(463\) −6.33215 + 10.9676i −0.294280 + 0.509708i −0.974817 0.223006i \(-0.928413\pi\)
0.680537 + 0.732713i \(0.261746\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.4723 + 18.1385i −0.484599 + 0.839350i −0.999843 0.0176932i \(-0.994368\pi\)
0.515245 + 0.857043i \(0.327701\pi\)
\(468\) 0 0
\(469\) −7.35090 + 13.5923i −0.339433 + 0.627635i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.72485i 0.171269i
\(474\) 0 0
\(475\) 1.61291 0.931217i 0.0740056 0.0427271i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.8852 + 27.5141i −0.725816 + 1.25715i 0.232822 + 0.972519i \(0.425204\pi\)
−0.958637 + 0.284630i \(0.908129\pi\)
\(480\) 0 0
\(481\) 8.29884 4.79134i 0.378394 0.218466i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.9362 8.04605i −0.632809 0.365352i
\(486\) 0 0
\(487\) −17.7821 30.7995i −0.805784 1.39566i −0.915761 0.401724i \(-0.868411\pi\)
0.109977 0.993934i \(-0.464922\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.75734 1.59195i −0.124437 0.0718437i 0.436490 0.899709i \(-0.356222\pi\)
−0.560926 + 0.827866i \(0.689555\pi\)
\(492\) 0 0
\(493\) −17.7395 10.2419i −0.798947 0.461272i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.1944 14.7071i −1.21983 0.659703i
\(498\) 0 0
\(499\) −16.0214 27.7498i −0.717215 1.24225i −0.962099 0.272700i \(-0.912083\pi\)
0.244884 0.969552i \(-0.421250\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.6608 −0.519930 −0.259965 0.965618i \(-0.583711\pi\)
−0.259965 + 0.965618i \(0.583711\pi\)
\(504\) 0 0
\(505\) 17.3050 0.770061
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.4427 + 23.2834i 0.595836 + 1.03202i 0.993428 + 0.114457i \(0.0365127\pi\)
−0.397592 + 0.917562i \(0.630154\pi\)
\(510\) 0 0
\(511\) −0.336655 12.0910i −0.0148927 0.534875i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.13461 + 4.11917i 0.314388 + 0.181512i
\(516\) 0 0
\(517\) 15.9255 + 9.19459i 0.700402 + 0.404378i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.0385 29.5116i −0.746471 1.29293i −0.949504 0.313754i \(-0.898413\pi\)
0.203033 0.979172i \(-0.434920\pi\)
\(522\) 0 0
\(523\) 4.71003 + 2.71933i 0.205955 + 0.118908i 0.599430 0.800427i \(-0.295394\pi\)
−0.393475 + 0.919335i \(0.628727\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.61801 + 0.934157i −0.0704815 + 0.0406925i
\(528\) 0 0
\(529\) −3.46140 + 5.99532i −0.150496 + 0.260666i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −21.9080 + 12.6486i −0.948940 + 0.547871i
\(534\) 0 0
\(535\) 17.3486i 0.750045i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.570698 10.2404i −0.0245817 0.441085i
\(540\) 0 0
\(541\) 11.8329 20.4952i 0.508737 0.881158i −0.491212 0.871040i \(-0.663446\pi\)
0.999949 0.0101183i \(-0.00322080\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.10273 1.90998i 0.0472356 0.0818145i
\(546\) 0 0
\(547\) −12.0824 20.9273i −0.516606 0.894788i −0.999814 0.0192822i \(-0.993862\pi\)
0.483208 0.875505i \(-0.339471\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 61.5605 2.62257
\(552\) 0 0
\(553\) −11.8103 + 21.8381i −0.502226 + 0.928650i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.36315 4.25111i 0.311987 0.180126i −0.335829 0.941923i \(-0.609016\pi\)
0.647815 + 0.761798i \(0.275683\pi\)
\(558\) 0 0
\(559\) 8.59381i 0.363480i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.947553 −0.0399346 −0.0199673 0.999801i \(-0.506356\pi\)
−0.0199673 + 0.999801i \(0.506356\pi\)
\(564\) 0 0
\(565\) 26.6078i 1.11940i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.2280i 0.764158i −0.924130 0.382079i \(-0.875208\pi\)
0.924130 0.382079i \(-0.124792\pi\)
\(570\) 0 0
\(571\) −12.2424 −0.512330 −0.256165 0.966633i \(-0.582459\pi\)
−0.256165 + 0.966633i \(0.582459\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.940253i 0.0392112i
\(576\) 0 0
\(577\) −10.2500 + 5.91784i −0.426713 + 0.246363i −0.697945 0.716151i \(-0.745902\pi\)
0.271232 + 0.962514i \(0.412569\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.03690 0.251618i 0.374914 0.0104389i
\(582\) 0 0
\(583\) 4.08878 0.169340
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.57681 6.19521i −0.147631 0.255704i 0.782721 0.622373i \(-0.213831\pi\)
−0.930351 + 0.366669i \(0.880498\pi\)
\(588\) 0 0
\(589\) 2.80745 4.86264i 0.115679 0.200362i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.4811 + 23.3500i −0.553603 + 0.958869i 0.444408 + 0.895825i \(0.353414\pi\)
−0.998011 + 0.0630442i \(0.979919\pi\)
\(594\) 0 0
\(595\) −7.99668 13.0010i −0.327832 0.532990i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.2441i 1.44004i 0.693955 + 0.720018i \(0.255867\pi\)
−0.693955 + 0.720018i \(0.744133\pi\)
\(600\) 0 0
\(601\) 3.39266 1.95875i 0.138389 0.0798991i −0.429207 0.903206i \(-0.641207\pi\)
0.567596 + 0.823307i \(0.307874\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.66332 + 16.7374i −0.392870 + 0.680470i
\(606\) 0 0
\(607\) −12.5377 + 7.23862i −0.508888 + 0.293807i −0.732376 0.680900i \(-0.761589\pi\)
0.223488 + 0.974707i \(0.428256\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.7426 + 21.2134i 1.48645 + 0.858201i
\(612\) 0 0
\(613\) −6.51761 11.2888i −0.263244 0.455952i 0.703858 0.710341i \(-0.251459\pi\)
−0.967102 + 0.254389i \(0.918126\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.14491 + 1.81571i 0.126609 + 0.0730979i 0.561967 0.827160i \(-0.310045\pi\)
−0.435358 + 0.900258i \(0.643378\pi\)
\(618\) 0 0
\(619\) −14.2737 8.24091i −0.573708 0.331230i 0.184921 0.982753i \(-0.440797\pi\)
−0.758629 + 0.651523i \(0.774130\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.8062 20.8203i −0.513068 0.834147i
\(624\) 0 0
\(625\) 11.8863 + 20.5876i 0.475450 + 0.823504i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.49147 −0.298704
\(630\) 0 0
\(631\) −34.8383 −1.38689 −0.693446 0.720508i \(-0.743909\pi\)
−0.693446 + 0.720508i \(0.743909\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.41512 12.8434i −0.294260 0.509673i
\(636\) 0 0
\(637\) −1.31669 23.6262i −0.0521692 0.936105i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.25538 4.18889i −0.286570 0.165451i 0.349824 0.936815i \(-0.386241\pi\)
−0.636394 + 0.771364i \(0.719575\pi\)
\(642\) 0 0
\(643\) −18.0021 10.3935i −0.709934 0.409881i 0.101103 0.994876i \(-0.467763\pi\)
−0.811037 + 0.584995i \(0.801096\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.74770 8.22325i −0.186651 0.323289i 0.757480 0.652858i \(-0.226430\pi\)
−0.944132 + 0.329568i \(0.893097\pi\)
\(648\) 0 0
\(649\) −17.0450 9.84091i −0.669073 0.386290i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.64747 3.83792i 0.260136 0.150189i −0.364261 0.931297i \(-0.618678\pi\)
0.624396 + 0.781108i \(0.285345\pi\)
\(654\) 0 0
\(655\) −14.9927 + 25.9680i −0.585811 + 1.01465i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −38.0493 + 21.9678i −1.48219 + 0.855743i −0.999796 0.0202102i \(-0.993566\pi\)
−0.482395 + 0.875954i \(0.660233\pi\)
\(660\) 0 0
\(661\) 25.5938i 0.995484i 0.867325 + 0.497742i \(0.165837\pi\)
−0.867325 + 0.497742i \(0.834163\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 40.3490 + 21.8213i 1.56467 + 0.846193i
\(666\) 0 0
\(667\) 15.5395 26.9151i 0.601691 1.04216i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.71051 + 9.89089i −0.220452 + 0.381834i
\(672\) 0 0
\(673\) −7.64671 13.2445i −0.294759 0.510538i 0.680170 0.733055i \(-0.261906\pi\)
−0.974929 + 0.222517i \(0.928573\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −45.2918 −1.74070 −0.870352 0.492430i \(-0.836109\pi\)
−0.870352 + 0.492430i \(0.836109\pi\)
\(678\) 0 0
\(679\) 0.542827 + 19.4957i 0.0208318 + 0.748177i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0891 + 13.9079i −0.921744 + 0.532169i −0.884191 0.467126i \(-0.845290\pi\)
−0.0375529 + 0.999295i \(0.511956\pi\)
\(684\) 0 0
\(685\) 43.8674i 1.67609i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.43345 0.359386
\(690\) 0 0
\(691\) 16.2946i 0.619875i 0.950757 + 0.309938i \(0.100308\pi\)
−0.950757 + 0.309938i \(0.899692\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.4614i 0.814079i
\(696\) 0 0
\(697\) 19.7766 0.749093
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.393403i 0.0148586i 0.999972 + 0.00742932i \(0.00236485\pi\)
−0.999972 + 0.00742932i \(0.997635\pi\)
\(702\) 0 0
\(703\) 19.4980 11.2572i 0.735379 0.424572i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.9881 17.8644i −0.413250 0.671862i
\(708\) 0 0
\(709\) −32.6366 −1.22569 −0.612846 0.790202i \(-0.709975\pi\)
−0.612846 + 0.790202i \(0.709975\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.41734 2.45491i −0.0530799 0.0919372i
\(714\) 0 0
\(715\) 5.40612 9.36368i 0.202178 0.350182i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.106604 + 0.184643i −0.00397565 + 0.00688602i −0.868006 0.496553i \(-0.834599\pi\)
0.864031 + 0.503439i \(0.167932\pi\)
\(720\) 0 0
\(721\) −0.277900 9.98081i −0.0103495 0.371705i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.81761i 0.0675042i
\(726\) 0 0
\(727\) 31.8208 18.3717i 1.18017 0.681370i 0.224114 0.974563i \(-0.428051\pi\)
0.956053 + 0.293193i \(0.0947180\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.35920 + 5.81831i −0.124245 + 0.215198i
\(732\) 0 0
\(733\) 9.41829 5.43765i 0.347873 0.200844i −0.315875 0.948801i \(-0.602298\pi\)
0.663748 + 0.747956i \(0.268965\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.41104 + 4.27877i 0.272989 + 0.157610i
\(738\) 0 0
\(739\) 6.91282 + 11.9734i 0.254292 + 0.440447i 0.964703 0.263340i \(-0.0848242\pi\)
−0.710411 + 0.703787i \(0.751491\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.8751 + 9.16552i 0.582403 + 0.336250i 0.762088 0.647474i \(-0.224175\pi\)
−0.179685 + 0.983724i \(0.557508\pi\)
\(744\) 0 0
\(745\) 37.8776 + 21.8687i 1.38773 + 0.801206i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −17.9095 + 11.0158i −0.654398 + 0.402508i
\(750\) 0 0
\(751\) 9.97084 + 17.2700i 0.363841 + 0.630191i 0.988589 0.150635i \(-0.0481318\pi\)
−0.624748 + 0.780826i \(0.714798\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −48.5362 −1.76641
\(756\) 0 0
\(757\) −46.9292 −1.70567 −0.852836 0.522178i \(-0.825119\pi\)
−0.852836 + 0.522178i \(0.825119\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.7769 46.3789i −0.970661 1.68123i −0.693568 0.720391i \(-0.743962\pi\)
−0.277093 0.960843i \(-0.589371\pi\)
\(762\) 0 0
\(763\) −2.67193 + 0.0743955i −0.0967302 + 0.00269330i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −39.3254 22.7045i −1.41996 0.819813i
\(768\) 0 0
\(769\) −34.7306 20.0517i −1.25242 0.723085i −0.280830 0.959758i \(-0.590610\pi\)
−0.971589 + 0.236673i \(0.923943\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.82375 + 13.5511i 0.281401 + 0.487400i 0.971730 0.236095i \(-0.0758677\pi\)
−0.690329 + 0.723495i \(0.742534\pi\)
\(774\) 0 0
\(775\) −0.143572 0.0828913i −0.00515726 0.00297755i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −51.4724 + 29.7176i −1.84419 + 1.06474i
\(780\) 0 0
\(781\) −8.56060 + 14.8274i −0.306322 + 0.530566i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.1785 + 8.76333i −0.541745 + 0.312777i
\(786\) 0 0
\(787\) 46.1788i 1.64610i 0.567972 + 0.823048i \(0.307728\pi\)
−0.567972 + 0.823048i \(0.692272\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −27.4680 + 16.8951i −0.976651 + 0.600720i
\(792\) 0 0
\(793\) −13.1750 + 22.8198i −0.467859 + 0.810356i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.9388 29.3388i 0.600002 1.03923i −0.392818 0.919616i \(-0.628500\pi\)
0.992820 0.119618i \(-0.0381669\pi\)
\(798\) 0 0
\(799\) −16.5840 28.7244i −0.586701 1.01620i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.69844 −0.236383
\(804\) 0 0
\(805\) 19.7257 12.1329i 0.695240 0.427629i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 33.7873 19.5071i 1.18790 0.685834i 0.230070 0.973174i \(-0.426104\pi\)
0.957829 + 0.287340i \(0.0927711\pi\)
\(810\) 0 0
\(811\) 7.73397i 0.271577i −0.990738 0.135788i \(-0.956643\pi\)
0.990738 0.135788i \(-0.0433567\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27.1829 0.952177
\(816\) 0 0
\(817\) 20.1910i 0.706394i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.512269i 0.0178783i −0.999960 0.00893915i \(-0.997155\pi\)
0.999960 0.00893915i \(-0.00284546\pi\)
\(822\) 0 0
\(823\) −48.3506 −1.68540 −0.842698 0.538387i \(-0.819034\pi\)
−0.842698 + 0.538387i \(0.819034\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17.3086i 0.601879i 0.953643 + 0.300940i \(0.0973003\pi\)
−0.953643 + 0.300940i \(0.902700\pi\)
\(828\) 0 0
\(829\) 33.0205 19.0644i 1.14685 0.662134i 0.198733 0.980054i \(-0.436317\pi\)
0.948118 + 0.317919i \(0.102984\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.34372 + 16.5104i −0.289093 + 0.572053i
\(834\) 0 0
\(835\) −43.0481 −1.48974
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.2026 + 26.3317i 0.524852 + 0.909071i 0.999581 + 0.0289389i \(0.00921281\pi\)
−0.474729 + 0.880132i \(0.657454\pi\)
\(840\) 0 0
\(841\) 15.5394 26.9151i 0.535842 0.928106i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.71674 + 2.97348i −0.0590577 + 0.102291i
\(846\) 0 0
\(847\) 23.4144 0.651937i 0.804528 0.0224008i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.3664i 0.389635i
\(852\) 0 0
\(853\) 27.7143 16.0008i 0.948919 0.547858i 0.0561738 0.998421i \(-0.482110\pi\)
0.892745 + 0.450563i \(0.148777\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.5774 39.1053i 0.771230 1.33581i −0.165659 0.986183i \(-0.552975\pi\)
0.936889 0.349627i \(-0.113692\pi\)
\(858\) 0 0
\(859\) −15.7911 + 9.11701i −0.538786 + 0.311068i −0.744587 0.667526i \(-0.767353\pi\)
0.205801 + 0.978594i \(0.434020\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.61966 + 3.82186i 0.225336 + 0.130098i 0.608419 0.793616i \(-0.291804\pi\)
−0.383083 + 0.923714i \(0.625138\pi\)
\(864\) 0 0
\(865\) 1.99468 + 3.45489i 0.0678213 + 0.117470i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.9069 + 6.87448i 0.403915 + 0.233201i
\(870\) 0 0
\(871\) 17.0984 + 9.87179i 0.579358 + 0.334493i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14.3818 26.5930i 0.486194 0.899006i
\(876\) 0 0
\(877\) −8.01581 13.8838i −0.270675 0.468822i 0.698360 0.715747i \(-0.253913\pi\)
−0.969035 + 0.246924i \(0.920580\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −24.7532 −0.833958 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(882\) 0 0
\(883\) −11.6958 −0.393595 −0.196798 0.980444i \(-0.563054\pi\)
−0.196798 + 0.980444i \(0.563054\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27.5429 47.7058i −0.924801 1.60180i −0.791880 0.610676i \(-0.790898\pi\)
−0.132921 0.991127i \(-0.542436\pi\)
\(888\) 0 0
\(889\) −8.55024 + 15.8100i −0.286766 + 0.530249i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 86.3261 + 49.8404i 2.88879 + 1.66785i
\(894\) 0 0
\(895\) 26.4541 + 15.2733i 0.884262 + 0.510529i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.73987 4.74560i −0.0913799 0.158275i
\(900\) 0 0
\(901\) −6.38677 3.68741i −0.212774 0.122845i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −30.9281 + 17.8563i −1.02808 + 0.593565i
\(906\) 0 0
\(907\) 12.9383 22.4098i 0.429610 0.744107i −0.567228 0.823560i \(-0.691984\pi\)
0.996839 + 0.0794540i \(0.0253177\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.86306 2.23034i 0.127989 0.0738944i −0.434639 0.900605i \(-0.643124\pi\)
0.562627 + 0.826711i \(0.309791\pi\)
\(912\) 0 0
\(913\) 5.00646i 0.165690i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.3274 1.01148i 1.19964 0.0334020i
\(918\) 0 0
\(919\) −21.2352 + 36.7805i −0.700485 + 1.21328i 0.267811 + 0.963471i \(0.413700\pi\)
−0.968296 + 0.249804i \(0.919634\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −19.7507 + 34.2091i −0.650101 + 1.12601i
\(924\) 0 0
\(925\) −0.332373 0.575688i −0.0109284 0.0189285i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.4502 0.506903 0.253452 0.967348i \(-0.418434\pi\)
0.253452 + 0.967348i \(0.418434\pi\)
\(930\) 0 0
\(931\) −3.09354 55.5093i −0.101387 1.81925i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.32027 + 4.22636i −0.239398 + 0.138217i
\(936\) 0 0
\(937\) 46.1410i 1.50736i −0.657241 0.753680i \(-0.728277\pi\)
0.657241 0.753680i \(-0.271723\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41.0104 1.33690 0.668451 0.743756i \(-0.266958\pi\)
0.668451 + 0.743756i \(0.266958\pi\)
\(942\) 0 0
\(943\) 30.0060i 0.977128i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.82254i 0.319190i −0.987183 0.159595i \(-0.948981\pi\)
0.987183 0.159595i \(-0.0510188\pi\)
\(948\) 0 0
\(949\) −15.4544 −0.501670
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.0826i 0.553359i 0.960962 + 0.276679i \(0.0892340\pi\)
−0.960962 + 0.276679i \(0.910766\pi\)
\(954\) 0 0
\(955\) −25.8305 + 14.9132i −0.835855 + 0.482581i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 45.2857 27.8544i 1.46235 0.899466i
\(960\) 0 0
\(961\) 30.5002 0.983877
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.77826 + 8.27619i 0.153818 + 0.266420i
\(966\) 0 0
\(967\) 21.3240 36.9343i 0.685735 1.18773i −0.287471 0.957789i \(-0.592814\pi\)
0.973205 0.229938i \(-0.0738523\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.7562 + 20.3623i −0.377275 + 0.653459i −0.990665 0.136321i \(-0.956472\pi\)
0.613390 + 0.789780i \(0.289805\pi\)
\(972\) 0 0
\(973\) −22.1553 + 13.6273i −0.710267 + 0.436872i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34.8654i 1.11544i 0.830028 + 0.557722i \(0.188325\pi\)
−0.830028 + 0.557722i \(0.811675\pi\)
\(978\) 0 0
\(979\) −11.7229 + 6.76824i −0.374666 + 0.216314i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.1804 22.8292i 0.420390 0.728137i −0.575587 0.817740i \(-0.695227\pi\)
0.995978 + 0.0896033i \(0.0285599\pi\)
\(984\) 0 0
\(985\) −1.90194 + 1.09808i −0.0606008 + 0.0349879i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.82780 5.09673i −0.280708 0.162067i
\(990\) 0 0
\(991\) 0.0805213 + 0.139467i 0.00255784 + 0.00443031i 0.867301 0.497783i \(-0.165852\pi\)
−0.864744 + 0.502214i \(0.832519\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.3916 + 7.15427i 0.392839 + 0.226806i
\(996\) 0 0
\(997\) 14.5820 + 8.41890i 0.461816 + 0.266629i 0.712807 0.701360i \(-0.247423\pi\)
−0.250992 + 0.967989i \(0.580757\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.w.a.341.3 16
3.2 odd 2 252.2.w.a.5.2 16
4.3 odd 2 3024.2.ca.d.2609.3 16
7.2 even 3 5292.2.x.a.881.3 16
7.3 odd 6 756.2.bm.a.17.3 16
7.4 even 3 5292.2.bm.a.2285.6 16
7.5 odd 6 5292.2.x.b.881.6 16
7.6 odd 2 5292.2.w.b.1097.6 16
9.2 odd 6 756.2.bm.a.89.3 16
9.4 even 3 2268.2.t.a.2105.3 16
9.5 odd 6 2268.2.t.b.2105.6 16
9.7 even 3 252.2.bm.a.173.4 yes 16
12.11 even 2 1008.2.ca.d.257.7 16
21.2 odd 6 1764.2.x.a.293.7 16
21.5 even 6 1764.2.x.b.293.2 16
21.11 odd 6 1764.2.bm.a.1697.5 16
21.17 even 6 252.2.bm.a.185.4 yes 16
21.20 even 2 1764.2.w.b.509.7 16
28.3 even 6 3024.2.df.d.17.3 16
36.7 odd 6 1008.2.df.d.929.5 16
36.11 even 6 3024.2.df.d.1601.3 16
63.2 odd 6 5292.2.x.b.4409.6 16
63.11 odd 6 5292.2.w.b.521.6 16
63.16 even 3 1764.2.x.b.1469.2 16
63.20 even 6 5292.2.bm.a.4625.6 16
63.25 even 3 1764.2.w.b.1109.7 16
63.31 odd 6 2268.2.t.b.1781.6 16
63.34 odd 6 1764.2.bm.a.1685.5 16
63.38 even 6 inner 756.2.w.a.521.3 16
63.47 even 6 5292.2.x.a.4409.3 16
63.52 odd 6 252.2.w.a.101.2 yes 16
63.59 even 6 2268.2.t.a.1781.3 16
63.61 odd 6 1764.2.x.a.1469.7 16
84.59 odd 6 1008.2.df.d.689.5 16
252.115 even 6 1008.2.ca.d.353.7 16
252.227 odd 6 3024.2.ca.d.2033.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.2 16 3.2 odd 2
252.2.w.a.101.2 yes 16 63.52 odd 6
252.2.bm.a.173.4 yes 16 9.7 even 3
252.2.bm.a.185.4 yes 16 21.17 even 6
756.2.w.a.341.3 16 1.1 even 1 trivial
756.2.w.a.521.3 16 63.38 even 6 inner
756.2.bm.a.17.3 16 7.3 odd 6
756.2.bm.a.89.3 16 9.2 odd 6
1008.2.ca.d.257.7 16 12.11 even 2
1008.2.ca.d.353.7 16 252.115 even 6
1008.2.df.d.689.5 16 84.59 odd 6
1008.2.df.d.929.5 16 36.7 odd 6
1764.2.w.b.509.7 16 21.20 even 2
1764.2.w.b.1109.7 16 63.25 even 3
1764.2.x.a.293.7 16 21.2 odd 6
1764.2.x.a.1469.7 16 63.61 odd 6
1764.2.x.b.293.2 16 21.5 even 6
1764.2.x.b.1469.2 16 63.16 even 3
1764.2.bm.a.1685.5 16 63.34 odd 6
1764.2.bm.a.1697.5 16 21.11 odd 6
2268.2.t.a.1781.3 16 63.59 even 6
2268.2.t.a.2105.3 16 9.4 even 3
2268.2.t.b.1781.6 16 63.31 odd 6
2268.2.t.b.2105.6 16 9.5 odd 6
3024.2.ca.d.2033.3 16 252.227 odd 6
3024.2.ca.d.2609.3 16 4.3 odd 2
3024.2.df.d.17.3 16 28.3 even 6
3024.2.df.d.1601.3 16 36.11 even 6
5292.2.w.b.521.6 16 63.11 odd 6
5292.2.w.b.1097.6 16 7.6 odd 2
5292.2.x.a.881.3 16 7.2 even 3
5292.2.x.a.4409.3 16 63.47 even 6
5292.2.x.b.881.6 16 7.5 odd 6
5292.2.x.b.4409.6 16 63.2 odd 6
5292.2.bm.a.2285.6 16 7.4 even 3
5292.2.bm.a.4625.6 16 63.20 even 6