Properties

Label 7569.2.a.ba.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $6$
CM discriminant -87
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.160016229.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} + 36x^{2} - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 261)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(-1.66024\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.66024 q^{2} +0.756389 q^{4} +5.20982 q^{7} +2.06469 q^{8} +4.92462 q^{11} +2.72260 q^{13} -8.64954 q^{14} -4.94065 q^{16} -8.24509 q^{17} -8.17603 q^{22} -5.00000 q^{25} -4.52016 q^{26} +3.94065 q^{28} +4.07328 q^{32} +13.6888 q^{34} -10.7703 q^{41} +3.72493 q^{44} -1.71634 q^{47} +20.1422 q^{49} +8.30119 q^{50} +2.05935 q^{52} +10.7567 q^{56} +3.11869 q^{64} +10.6550 q^{67} -6.23650 q^{68} +25.6564 q^{77} +17.8813 q^{82} +10.1678 q^{88} -5.03681 q^{89} +14.1843 q^{91} +2.84952 q^{94} -33.4409 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{4} + 24 q^{16} + 6 q^{22} - 30 q^{25} - 30 q^{28} + 42 q^{34} + 42 q^{49} + 66 q^{52} + 126 q^{64} + 12 q^{88} + 24 q^{91} + 102 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.66024 −1.17397 −0.586983 0.809599i \(-0.699684\pi\)
−0.586983 + 0.809599i \(0.699684\pi\)
\(3\) 0 0
\(4\) 0.756389 0.378195
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 5.20982 1.96913 0.984564 0.175026i \(-0.0560010\pi\)
0.984564 + 0.175026i \(0.0560010\pi\)
\(8\) 2.06469 0.729978
\(9\) 0 0
\(10\) 0 0
\(11\) 4.92462 1.48483 0.742414 0.669942i \(-0.233681\pi\)
0.742414 + 0.669942i \(0.233681\pi\)
\(12\) 0 0
\(13\) 2.72260 0.755114 0.377557 0.925986i \(-0.376764\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(14\) −8.64954 −2.31169
\(15\) 0 0
\(16\) −4.94065 −1.23516
\(17\) −8.24509 −1.99973 −0.999864 0.0164799i \(-0.994754\pi\)
−0.999864 + 0.0164799i \(0.994754\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −8.17603 −1.74314
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −4.52016 −0.886477
\(27\) 0 0
\(28\) 3.94065 0.744714
\(29\) 0 0
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 4.07328 0.720061
\(33\) 0 0
\(34\) 13.6888 2.34761
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.7703 −1.68204 −0.841021 0.541002i \(-0.818045\pi\)
−0.841021 + 0.541002i \(0.818045\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 3.72493 0.561554
\(45\) 0 0
\(46\) 0 0
\(47\) −1.71634 −0.250353 −0.125177 0.992134i \(-0.539950\pi\)
−0.125177 + 0.992134i \(0.539950\pi\)
\(48\) 0 0
\(49\) 20.1422 2.87746
\(50\) 8.30119 1.17397
\(51\) 0 0
\(52\) 2.05935 0.285580
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 10.7567 1.43742
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 3.11869 0.389837
\(65\) 0 0
\(66\) 0 0
\(67\) 10.6550 1.30172 0.650859 0.759199i \(-0.274409\pi\)
0.650859 + 0.759199i \(0.274409\pi\)
\(68\) −6.23650 −0.756287
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 25.6564 2.92381
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 17.8813 1.97466
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 10.1678 1.08389
\(89\) −5.03681 −0.533901 −0.266950 0.963710i \(-0.586016\pi\)
−0.266950 + 0.963710i \(0.586016\pi\)
\(90\) 0 0
\(91\) 14.1843 1.48691
\(92\) 0 0
\(93\) 0 0
\(94\) 2.84952 0.293906
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −33.4409 −3.37804
\(99\) 0 0
\(100\) −3.78195 −0.378195
\(101\) 18.0943 1.80045 0.900226 0.435422i \(-0.143401\pi\)
0.900226 + 0.435422i \(0.143401\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 5.62132 0.551216
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 18.1167 1.73526 0.867632 0.497207i \(-0.165641\pi\)
0.867632 + 0.497207i \(0.165641\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −25.7399 −2.43219
\(113\) 11.4534 1.07744 0.538721 0.842484i \(-0.318908\pi\)
0.538721 + 0.842484i \(0.318908\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −42.9555 −3.93772
\(120\) 0 0
\(121\) 13.2518 1.20471
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −13.3243 −1.17772
\(129\) 0 0
\(130\) 0 0
\(131\) 18.2065 1.59071 0.795355 0.606143i \(-0.207284\pi\)
0.795355 + 0.606143i \(0.207284\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −17.6899 −1.52817
\(135\) 0 0
\(136\) −17.0236 −1.45976
\(137\) 10.7703 0.920171 0.460086 0.887875i \(-0.347819\pi\)
0.460086 + 0.887875i \(0.347819\pi\)
\(138\) 0 0
\(139\) 21.0747 1.78753 0.893765 0.448536i \(-0.148054\pi\)
0.893765 + 0.448536i \(0.148054\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 13.4078 1.12121
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −42.5957 −3.43246
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) −8.14656 −0.636140
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −5.58745 −0.429804
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −26.0491 −1.96913
\(176\) −24.3308 −1.83400
\(177\) 0 0
\(178\) 8.36230 0.626781
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 12.6715 0.941864 0.470932 0.882169i \(-0.343918\pi\)
0.470932 + 0.882169i \(0.343918\pi\)
\(182\) −23.5493 −1.74559
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −40.6039 −2.96925
\(188\) −1.29822 −0.0946822
\(189\) 0 0
\(190\) 0 0
\(191\) −21.5407 −1.55863 −0.779314 0.626634i \(-0.784432\pi\)
−0.779314 + 0.626634i \(0.784432\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 15.2354 1.08824
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 5.68058 0.402686 0.201343 0.979521i \(-0.435469\pi\)
0.201343 + 0.979521i \(0.435469\pi\)
\(200\) −10.3234 −0.729978
\(201\) 0 0
\(202\) −30.0409 −2.11367
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −13.2819 −0.925394
\(207\) 0 0
\(208\) −13.4514 −0.932689
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −30.0780 −2.03714
\(219\) 0 0
\(220\) 0 0
\(221\) −22.4481 −1.51002
\(222\) 0 0
\(223\) 4.73906 0.317351 0.158676 0.987331i \(-0.449278\pi\)
0.158676 + 0.987331i \(0.449278\pi\)
\(224\) 21.2211 1.41789
\(225\) 0 0
\(226\) −19.0153 −1.26488
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 71.3163 4.62275
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −28.5363 −1.83819 −0.919093 0.394040i \(-0.871077\pi\)
−0.919093 + 0.394040i \(0.871077\pi\)
\(242\) −22.0012 −1.41429
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.49195 −0.0941708 −0.0470854 0.998891i \(-0.514993\pi\)
−0.0470854 + 0.998891i \(0.514993\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 15.8842 0.992761
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −30.2271 −1.86744
\(263\) −21.5407 −1.32825 −0.664127 0.747620i \(-0.731197\pi\)
−0.664127 + 0.747620i \(0.731197\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 8.05935 0.492303
\(269\) 31.3762 1.91304 0.956521 0.291663i \(-0.0942086\pi\)
0.956521 + 0.291663i \(0.0942086\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 40.7361 2.46999
\(273\) 0 0
\(274\) −17.8813 −1.08025
\(275\) −24.6231 −1.48483
\(276\) 0 0
\(277\) 29.0071 1.74287 0.871434 0.490514i \(-0.163191\pi\)
0.871434 + 0.490514i \(0.163191\pi\)
\(278\) −34.9890 −2.09850
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −22.2601 −1.31627
\(287\) −56.1115 −3.31216
\(288\) 0 0
\(289\) 50.9815 2.99891
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 21.3026 1.24451 0.622256 0.782814i \(-0.286216\pi\)
0.622256 + 0.782814i \(0.286216\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −26.5638 −1.52858
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 19.4062 1.10577
\(309\) 0 0
\(310\) 0 0
\(311\) −14.9982 −0.850472 −0.425236 0.905083i \(-0.639809\pi\)
−0.425236 + 0.905083i \(0.639809\pi\)
\(312\) 0 0
\(313\) −3.19336 −0.180499 −0.0902497 0.995919i \(-0.528767\pi\)
−0.0902497 + 0.995919i \(0.528767\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 34.5845 1.94246 0.971230 0.238145i \(-0.0765392\pi\)
0.971230 + 0.238145i \(0.0765392\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −13.6130 −0.755114
\(326\) 0 0
\(327\) 0 0
\(328\) −22.2374 −1.22785
\(329\) −8.94180 −0.492977
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 9.27649 0.504574
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 68.4688 3.69697
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 43.2477 2.31169
\(351\) 0 0
\(352\) 20.0593 1.06917
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.80979 −0.201918
\(357\) 0 0
\(358\) 0 0
\(359\) −21.5407 −1.13687 −0.568436 0.822727i \(-0.692451\pi\)
−0.568436 + 0.822727i \(0.692451\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −21.0377 −1.10572
\(363\) 0 0
\(364\) 10.7288 0.562343
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 67.4121 3.48580
\(375\) 0 0
\(376\) −3.54370 −0.182752
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 35.7626 1.82977
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.1679 1.42817 0.714086 0.700058i \(-0.246843\pi\)
0.714086 + 0.700058i \(0.246843\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 41.5875 2.10048
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −9.43111 −0.472739
\(399\) 0 0
\(400\) 24.7033 1.23516
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 13.6864 0.680922
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.05111 0.298117
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 11.0899 0.543728
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 41.2255 1.99973
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13.7033 0.656268
\(437\) 0 0
\(438\) 0 0
\(439\) 25.5784 1.22079 0.610394 0.792098i \(-0.291011\pi\)
0.610394 + 0.792098i \(0.291011\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 37.2692 1.77271
\(443\) −11.3412 −0.538836 −0.269418 0.963023i \(-0.586831\pi\)
−0.269418 + 0.963023i \(0.586831\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −7.86797 −0.372559
\(447\) 0 0
\(448\) 16.2478 0.767638
\(449\) 38.0172 1.79414 0.897071 0.441887i \(-0.145691\pi\)
0.897071 + 0.441887i \(0.145691\pi\)
\(450\) 0 0
\(451\) −53.0397 −2.49754
\(452\) 8.66321 0.407483
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.6459 0.825442 0.412721 0.910858i \(-0.364579\pi\)
0.412721 + 0.910858i \(0.364579\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.7703 −0.501624 −0.250812 0.968036i \(-0.580698\pi\)
−0.250812 + 0.968036i \(0.580698\pi\)
\(462\) 0 0
\(463\) −36.9395 −1.71672 −0.858362 0.513044i \(-0.828518\pi\)
−0.858362 + 0.513044i \(0.828518\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 43.0813 1.99357 0.996783 0.0801498i \(-0.0255399\pi\)
0.996783 + 0.0801498i \(0.0255399\pi\)
\(468\) 0 0
\(469\) 55.5108 2.56325
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −32.4911 −1.48922
\(477\) 0 0
\(478\) 0 0
\(479\) 21.5407 0.984218 0.492109 0.870534i \(-0.336226\pi\)
0.492109 + 0.870534i \(0.336226\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 47.3771 2.15797
\(483\) 0 0
\(484\) 10.0236 0.455616
\(485\) 0 0
\(486\) 0 0
\(487\) −40.0000 −1.81257 −0.906287 0.422664i \(-0.861095\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −43.0813 −1.94423 −0.972116 0.234499i \(-0.924655\pi\)
−0.972116 + 0.234499i \(0.924655\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −21.5454 −0.964506 −0.482253 0.876032i \(-0.660181\pi\)
−0.482253 + 0.876032i \(0.660181\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.47698 0.110553
\(503\) 44.5459 1.98620 0.993102 0.117250i \(-0.0374077\pi\)
0.993102 + 0.117250i \(0.0374077\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.277157 0.0122487
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −8.45229 −0.371731
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −9.71351 −0.424742 −0.212371 0.977189i \(-0.568119\pi\)
−0.212371 + 0.977189i \(0.568119\pi\)
\(524\) 13.7712 0.601598
\(525\) 0 0
\(526\) 35.7626 1.55932
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −29.3233 −1.27013
\(534\) 0 0
\(535\) 0 0
\(536\) 21.9993 0.950226
\(537\) 0 0
\(538\) −52.0920 −2.24585
\(539\) 99.1928 4.27254
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −33.5846 −1.43993
\(545\) 0 0
\(546\) 0 0
\(547\) −41.4432 −1.77198 −0.885992 0.463701i \(-0.846521\pi\)
−0.885992 + 0.463701i \(0.846521\pi\)
\(548\) 8.14656 0.348004
\(549\) 0 0
\(550\) 40.8802 1.74314
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −48.1587 −2.04607
\(555\) 0 0
\(556\) 15.9407 0.676034
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.3377 1.74217 0.871087 0.491128i \(-0.163415\pi\)
0.871087 + 0.491128i \(0.163415\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −46.4867 −1.95398
\(567\) 0 0
\(568\) 0 0
\(569\) −44.4337 −1.86276 −0.931380 0.364050i \(-0.881394\pi\)
−0.931380 + 0.364050i \(0.881394\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 10.1415 0.424037
\(573\) 0 0
\(574\) 93.1584 3.88836
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −84.6415 −3.52062
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −35.3674 −1.46101
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.8314 −1.13716 −0.568579 0.822628i \(-0.692507\pi\)
−0.568579 + 0.822628i \(0.692507\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.1022 0.492433
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.67289 −0.189045
\(612\) 0 0
\(613\) −28.0656 −1.13356 −0.566779 0.823870i \(-0.691811\pi\)
−0.566779 + 0.823870i \(0.691811\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 52.9724 2.13432
\(617\) −10.7703 −0.433597 −0.216799 0.976216i \(-0.569561\pi\)
−0.216799 + 0.976216i \(0.569561\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.9006 0.998425
\(623\) −26.2409 −1.05132
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 5.30174 0.211900
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −35.9980 −1.43306 −0.716529 0.697558i \(-0.754270\pi\)
−0.716529 + 0.697558i \(0.754270\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −57.4185 −2.28038
\(635\) 0 0
\(636\) 0 0
\(637\) 54.8393 2.17281
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.8089 1.37487 0.687434 0.726247i \(-0.258737\pi\)
0.687434 + 0.726247i \(0.258737\pi\)
\(642\) 0 0
\(643\) −20.1331 −0.793974 −0.396987 0.917824i \(-0.629944\pi\)
−0.396987 + 0.917824i \(0.629944\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 22.6008 0.886477
\(651\) 0 0
\(652\) 0 0
\(653\) −24.5109 −0.959185 −0.479593 0.877491i \(-0.659216\pi\)
−0.479593 + 0.877491i \(0.659216\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 53.2125 2.07760
\(657\) 0 0
\(658\) 14.8455 0.578738
\(659\) −11.7900 −0.459271 −0.229636 0.973277i \(-0.573753\pi\)
−0.229636 + 0.973277i \(0.573753\pi\)
\(660\) 0 0
\(661\) −49.8464 −1.93880 −0.969400 0.245488i \(-0.921052\pi\)
−0.969400 + 0.245488i \(0.921052\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 49.3756 1.90329 0.951645 0.307200i \(-0.0993919\pi\)
0.951645 + 0.307200i \(0.0993919\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −4.22628 −0.162549
\(677\) 24.9597 0.959278 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −113.674 −4.34011
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 52.3336 1.99086 0.995432 0.0954736i \(-0.0304366\pi\)
0.995432 + 0.0954736i \(0.0304366\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 88.8024 3.36363
\(698\) −3.32048 −0.125682
\(699\) 0 0
\(700\) −19.7033 −0.744714
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 15.3584 0.578840
\(705\) 0 0
\(706\) 0 0
\(707\) 94.2682 3.54532
\(708\) 0 0
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −10.3994 −0.389736
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 35.7626 1.33465
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 41.6786 1.55219
\(722\) 31.5445 1.17397
\(723\) 0 0
\(724\) 9.58458 0.356208
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 29.2861 1.08542
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 52.4719 1.93283
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −54.3952 −1.99557 −0.997783 0.0665586i \(-0.978798\pi\)
−0.997783 + 0.0665586i \(0.978798\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 16.6024 0.607856
\(747\) 0 0
\(748\) −30.7124 −1.12296
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 8.47982 0.309227
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 94.3847 3.41696
\(764\) −16.2931 −0.589465
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −53.8516 −1.93691 −0.968455 0.249190i \(-0.919836\pi\)
−0.968455 + 0.249190i \(0.919836\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −46.7655 −1.67662
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −99.5159 −3.55414
\(785\) 0 0
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 59.6700 2.12162
\(792\) 0 0
\(793\) 0 0
\(794\) −23.2433 −0.824875
\(795\) 0 0
\(796\) 4.29673 0.152294
\(797\) 10.7703 0.381505 0.190752 0.981638i \(-0.438907\pi\)
0.190752 + 0.981638i \(0.438907\pi\)
\(798\) 0 0
\(799\) 14.1513 0.500638
\(800\) −20.3664 −0.720061
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 37.3592 1.31429
\(809\) 17.8699 0.628273 0.314137 0.949378i \(-0.398285\pi\)
0.314137 + 0.949378i \(0.398285\pi\)
\(810\) 0 0
\(811\) −51.8628 −1.82115 −0.910575 0.413343i \(-0.864361\pi\)
−0.910575 + 0.413343i \(0.864361\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 16.5175 0.575415
\(825\) 0 0
\(826\) 0 0
\(827\) −43.0813 −1.49808 −0.749042 0.662522i \(-0.769486\pi\)
−0.749042 + 0.662522i \(0.769486\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.49095 0.294371
\(833\) −166.075 −5.75415
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −47.9786 −1.65641 −0.828203 0.560429i \(-0.810636\pi\)
−0.828203 + 0.560429i \(0.810636\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 69.0397 2.37223
\(848\) 0 0
\(849\) 0 0
\(850\) −68.4441 −2.34761
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 29.0094 0.982945
\(872\) 37.4053 1.26670
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −46.0000 −1.55331 −0.776655 0.629926i \(-0.783085\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(878\) −42.4661 −1.43316
\(879\) 0 0
\(880\) 0 0
\(881\) 47.6420 1.60510 0.802550 0.596585i \(-0.203476\pi\)
0.802550 + 0.596585i \(0.203476\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) −16.9795 −0.571082
\(885\) 0 0
\(886\) 18.8291 0.632574
\(887\) −50.9625 −1.71115 −0.855577 0.517676i \(-0.826797\pi\)
−0.855577 + 0.517676i \(0.826797\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 3.58458 0.120021
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −69.4174 −2.31907
\(897\) 0 0
\(898\) −63.1176 −2.10626
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 88.0586 2.93203
\(903\) 0 0
\(904\) 23.6477 0.786509
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −14.5495 −0.482045 −0.241023 0.970520i \(-0.577483\pi\)
−0.241023 + 0.970520i \(0.577483\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −29.2964 −0.969040
\(915\) 0 0
\(916\) 0 0
\(917\) 94.8527 3.13231
\(918\) 0 0
\(919\) −57.7788 −1.90595 −0.952973 0.303054i \(-0.901994\pi\)
−0.952973 + 0.303054i \(0.901994\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.8813 0.588890
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 61.3284 2.01538
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −71.5252 −2.34038
\(935\) 0 0
\(936\) 0 0
\(937\) −60.2660 −1.96881 −0.984403 0.175931i \(-0.943707\pi\)
−0.984403 + 0.175931i \(0.943707\pi\)
\(938\) −92.1611 −3.00917
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 57.6034 1.87186 0.935930 0.352185i \(-0.114561\pi\)
0.935930 + 0.352185i \(0.114561\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −88.6897 −2.87445
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −35.7626 −1.15544
\(959\) 56.1115 1.81193
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −21.5846 −0.695192
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 27.3609 0.879414
\(969\) 0 0
\(970\) 0 0
\(971\) 43.0813 1.38255 0.691273 0.722594i \(-0.257050\pi\)
0.691273 + 0.722594i \(0.257050\pi\)
\(972\) 0 0
\(973\) 109.795 3.51987
\(974\) 66.4095 2.12790
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) −24.8044 −0.792751
\(980\) 0 0
\(981\) 0 0
\(982\) 71.5252 2.28246
\(983\) 21.5407 0.687040 0.343520 0.939145i \(-0.388381\pi\)
0.343520 + 0.939145i \(0.388381\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −37.4103 −1.18838 −0.594188 0.804326i \(-0.702527\pi\)
−0.594188 + 0.804326i \(0.702527\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 35.7705 1.13230
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.ba.1.2 6
3.2 odd 2 inner 7569.2.a.ba.1.5 6
29.12 odd 4 261.2.c.c.28.2 6
29.17 odd 4 261.2.c.c.28.5 yes 6
29.28 even 2 inner 7569.2.a.ba.1.5 6
87.17 even 4 261.2.c.c.28.2 6
87.41 even 4 261.2.c.c.28.5 yes 6
87.86 odd 2 CM 7569.2.a.ba.1.2 6
116.75 even 4 4176.2.o.p.289.2 6
116.99 even 4 4176.2.o.p.289.1 6
348.191 odd 4 4176.2.o.p.289.1 6
348.215 odd 4 4176.2.o.p.289.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.c.c.28.2 6 29.12 odd 4
261.2.c.c.28.2 6 87.17 even 4
261.2.c.c.28.5 yes 6 29.17 odd 4
261.2.c.c.28.5 yes 6 87.41 even 4
4176.2.o.p.289.1 6 116.99 even 4
4176.2.o.p.289.1 6 348.191 odd 4
4176.2.o.p.289.2 6 116.75 even 4
4176.2.o.p.289.2 6 348.215 odd 4
7569.2.a.ba.1.2 6 1.1 even 1 trivial
7569.2.a.ba.1.2 6 87.86 odd 2 CM
7569.2.a.ba.1.5 6 3.2 odd 2 inner
7569.2.a.ba.1.5 6 29.28 even 2 inner