Properties

Label 7569.2.a.bf.1.7
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.14884000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.08529\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.08529 q^{2} +2.34841 q^{4} +0.992398 q^{5} +2.45140 q^{7} +0.726543 q^{8} +2.06943 q^{10} +0.745407 q^{11} +0.730380 q^{13} +5.11187 q^{14} -3.18178 q^{16} -4.76333 q^{17} +1.38197 q^{19} +2.33056 q^{20} +1.55439 q^{22} +5.31562 q^{23} -4.01515 q^{25} +1.52305 q^{26} +5.75690 q^{28} -0.563746 q^{31} -8.08800 q^{32} -9.93290 q^{34} +2.43277 q^{35} +9.49664 q^{37} +2.88179 q^{38} +0.721020 q^{40} +5.63637 q^{41} +11.0117 q^{43} +1.75052 q^{44} +11.0846 q^{46} +11.3183 q^{47} -0.990640 q^{49} -8.37272 q^{50} +1.71523 q^{52} +4.53691 q^{53} +0.739740 q^{55} +1.78105 q^{56} +8.54697 q^{59} +8.56375 q^{61} -1.17557 q^{62} -10.5022 q^{64} +0.724828 q^{65} +11.0939 q^{67} -11.1863 q^{68} +5.07301 q^{70} -6.10935 q^{71} +5.41226 q^{73} +19.8032 q^{74} +3.24543 q^{76} +1.82729 q^{77} -7.67465 q^{79} -3.15759 q^{80} +11.7534 q^{82} -15.9212 q^{83} -4.72712 q^{85} +22.9625 q^{86} +0.541570 q^{88} -9.90572 q^{89} +1.79045 q^{91} +12.4833 q^{92} +23.6020 q^{94} +1.37146 q^{95} +13.5775 q^{97} -2.06577 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} - 12 q^{10} + 2 q^{13} - 2 q^{16} + 20 q^{19} - 14 q^{22} + 2 q^{25} - 20 q^{28} + 10 q^{31} - 36 q^{34} + 18 q^{37} - 10 q^{40} + 28 q^{43} + 26 q^{46} + 4 q^{49} + 44 q^{52} + 14 q^{55}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.08529 1.47452 0.737260 0.675610i \(-0.236119\pi\)
0.737260 + 0.675610i \(0.236119\pi\)
\(3\) 0 0
\(4\) 2.34841 1.17421
\(5\) 0.992398 0.443814 0.221907 0.975068i \(-0.428772\pi\)
0.221907 + 0.975068i \(0.428772\pi\)
\(6\) 0 0
\(7\) 2.45140 0.926542 0.463271 0.886217i \(-0.346676\pi\)
0.463271 + 0.886217i \(0.346676\pi\)
\(8\) 0.726543 0.256872
\(9\) 0 0
\(10\) 2.06943 0.654412
\(11\) 0.745407 0.224749 0.112374 0.993666i \(-0.464154\pi\)
0.112374 + 0.993666i \(0.464154\pi\)
\(12\) 0 0
\(13\) 0.730380 0.202571 0.101285 0.994857i \(-0.467704\pi\)
0.101285 + 0.994857i \(0.467704\pi\)
\(14\) 5.11187 1.36620
\(15\) 0 0
\(16\) −3.18178 −0.795445
\(17\) −4.76333 −1.15528 −0.577638 0.816293i \(-0.696026\pi\)
−0.577638 + 0.816293i \(0.696026\pi\)
\(18\) 0 0
\(19\) 1.38197 0.317045 0.158522 0.987355i \(-0.449327\pi\)
0.158522 + 0.987355i \(0.449327\pi\)
\(20\) 2.33056 0.521130
\(21\) 0 0
\(22\) 1.55439 0.331396
\(23\) 5.31562 1.10838 0.554191 0.832389i \(-0.313028\pi\)
0.554191 + 0.832389i \(0.313028\pi\)
\(24\) 0 0
\(25\) −4.01515 −0.803029
\(26\) 1.52305 0.298695
\(27\) 0 0
\(28\) 5.75690 1.08795
\(29\) 0 0
\(30\) 0 0
\(31\) −0.563746 −0.101252 −0.0506259 0.998718i \(-0.516122\pi\)
−0.0506259 + 0.998718i \(0.516122\pi\)
\(32\) −8.08800 −1.42977
\(33\) 0 0
\(34\) −9.93290 −1.70348
\(35\) 2.43277 0.411212
\(36\) 0 0
\(37\) 9.49664 1.56124 0.780619 0.625007i \(-0.214904\pi\)
0.780619 + 0.625007i \(0.214904\pi\)
\(38\) 2.88179 0.467489
\(39\) 0 0
\(40\) 0.721020 0.114003
\(41\) 5.63637 0.880254 0.440127 0.897936i \(-0.354933\pi\)
0.440127 + 0.897936i \(0.354933\pi\)
\(42\) 0 0
\(43\) 11.0117 1.67927 0.839633 0.543153i \(-0.182770\pi\)
0.839633 + 0.543153i \(0.182770\pi\)
\(44\) 1.75052 0.263901
\(45\) 0 0
\(46\) 11.0846 1.63433
\(47\) 11.3183 1.65095 0.825474 0.564439i \(-0.190908\pi\)
0.825474 + 0.564439i \(0.190908\pi\)
\(48\) 0 0
\(49\) −0.990640 −0.141520
\(50\) −8.37272 −1.18408
\(51\) 0 0
\(52\) 1.71523 0.237860
\(53\) 4.53691 0.623193 0.311597 0.950214i \(-0.399136\pi\)
0.311597 + 0.950214i \(0.399136\pi\)
\(54\) 0 0
\(55\) 0.739740 0.0997466
\(56\) 1.78105 0.238002
\(57\) 0 0
\(58\) 0 0
\(59\) 8.54697 1.11272 0.556361 0.830941i \(-0.312197\pi\)
0.556361 + 0.830941i \(0.312197\pi\)
\(60\) 0 0
\(61\) 8.56375 1.09648 0.548238 0.836323i \(-0.315299\pi\)
0.548238 + 0.836323i \(0.315299\pi\)
\(62\) −1.17557 −0.149298
\(63\) 0 0
\(64\) −10.5022 −1.31278
\(65\) 0.724828 0.0899038
\(66\) 0 0
\(67\) 11.0939 1.35534 0.677670 0.735366i \(-0.262990\pi\)
0.677670 + 0.735366i \(0.262990\pi\)
\(68\) −11.1863 −1.35653
\(69\) 0 0
\(70\) 5.07301 0.606341
\(71\) −6.10935 −0.725047 −0.362523 0.931975i \(-0.618085\pi\)
−0.362523 + 0.931975i \(0.618085\pi\)
\(72\) 0 0
\(73\) 5.41226 0.633457 0.316728 0.948516i \(-0.397416\pi\)
0.316728 + 0.948516i \(0.397416\pi\)
\(74\) 19.8032 2.30208
\(75\) 0 0
\(76\) 3.24543 0.372276
\(77\) 1.82729 0.208239
\(78\) 0 0
\(79\) −7.67465 −0.863466 −0.431733 0.902001i \(-0.642098\pi\)
−0.431733 + 0.902001i \(0.642098\pi\)
\(80\) −3.15759 −0.353030
\(81\) 0 0
\(82\) 11.7534 1.29795
\(83\) −15.9212 −1.74757 −0.873787 0.486309i \(-0.838343\pi\)
−0.873787 + 0.486309i \(0.838343\pi\)
\(84\) 0 0
\(85\) −4.72712 −0.512728
\(86\) 22.9625 2.47611
\(87\) 0 0
\(88\) 0.541570 0.0577315
\(89\) −9.90572 −1.05000 −0.525002 0.851101i \(-0.675935\pi\)
−0.525002 + 0.851101i \(0.675935\pi\)
\(90\) 0 0
\(91\) 1.79045 0.187691
\(92\) 12.4833 1.30147
\(93\) 0 0
\(94\) 23.6020 2.43436
\(95\) 1.37146 0.140709
\(96\) 0 0
\(97\) 13.5775 1.37858 0.689291 0.724485i \(-0.257922\pi\)
0.689291 + 0.724485i \(0.257922\pi\)
\(98\) −2.06577 −0.208674
\(99\) 0 0
\(100\) −9.42922 −0.942922
\(101\) 13.0106 1.29460 0.647299 0.762236i \(-0.275898\pi\)
0.647299 + 0.762236i \(0.275898\pi\)
\(102\) 0 0
\(103\) −6.23048 −0.613907 −0.306954 0.951724i \(-0.599310\pi\)
−0.306954 + 0.951724i \(0.599310\pi\)
\(104\) 0.530652 0.0520347
\(105\) 0 0
\(106\) 9.46076 0.918910
\(107\) −4.83435 −0.467355 −0.233677 0.972314i \(-0.575076\pi\)
−0.233677 + 0.972314i \(0.575076\pi\)
\(108\) 0 0
\(109\) 1.10299 0.105647 0.0528234 0.998604i \(-0.483178\pi\)
0.0528234 + 0.998604i \(0.483178\pi\)
\(110\) 1.54257 0.147078
\(111\) 0 0
\(112\) −7.79981 −0.737013
\(113\) 17.8067 1.67512 0.837559 0.546347i \(-0.183982\pi\)
0.837559 + 0.546347i \(0.183982\pi\)
\(114\) 0 0
\(115\) 5.27521 0.491916
\(116\) 0 0
\(117\) 0 0
\(118\) 17.8229 1.64073
\(119\) −11.6768 −1.07041
\(120\) 0 0
\(121\) −10.4444 −0.949488
\(122\) 17.8579 1.61677
\(123\) 0 0
\(124\) −1.32391 −0.118890
\(125\) −8.94662 −0.800210
\(126\) 0 0
\(127\) 4.24166 0.376386 0.188193 0.982132i \(-0.439737\pi\)
0.188193 + 0.982132i \(0.439737\pi\)
\(128\) −5.72414 −0.505948
\(129\) 0 0
\(130\) 1.51147 0.132565
\(131\) −8.64644 −0.755443 −0.377721 0.925919i \(-0.623292\pi\)
−0.377721 + 0.925919i \(0.623292\pi\)
\(132\) 0 0
\(133\) 3.38775 0.293755
\(134\) 23.1340 1.99848
\(135\) 0 0
\(136\) −3.46076 −0.296758
\(137\) −14.2650 −1.21874 −0.609369 0.792886i \(-0.708577\pi\)
−0.609369 + 0.792886i \(0.708577\pi\)
\(138\) 0 0
\(139\) −14.3624 −1.21821 −0.609103 0.793091i \(-0.708470\pi\)
−0.609103 + 0.793091i \(0.708470\pi\)
\(140\) 5.71314 0.482848
\(141\) 0 0
\(142\) −12.7397 −1.06910
\(143\) 0.544430 0.0455275
\(144\) 0 0
\(145\) 0 0
\(146\) 11.2861 0.934044
\(147\) 0 0
\(148\) 22.3020 1.83322
\(149\) −20.8910 −1.71146 −0.855729 0.517424i \(-0.826891\pi\)
−0.855729 + 0.517424i \(0.826891\pi\)
\(150\) 0 0
\(151\) −2.14213 −0.174324 −0.0871620 0.996194i \(-0.527780\pi\)
−0.0871620 + 0.996194i \(0.527780\pi\)
\(152\) 1.00406 0.0814398
\(153\) 0 0
\(154\) 3.81042 0.307052
\(155\) −0.559460 −0.0449369
\(156\) 0 0
\(157\) 14.3784 1.14752 0.573760 0.819023i \(-0.305484\pi\)
0.573760 + 0.819023i \(0.305484\pi\)
\(158\) −16.0038 −1.27320
\(159\) 0 0
\(160\) −8.02652 −0.634552
\(161\) 13.0307 1.02696
\(162\) 0 0
\(163\) 7.01860 0.549739 0.274870 0.961482i \(-0.411365\pi\)
0.274870 + 0.961482i \(0.411365\pi\)
\(164\) 13.2365 1.03360
\(165\) 0 0
\(166\) −33.2001 −2.57683
\(167\) −23.3159 −1.80424 −0.902120 0.431486i \(-0.857989\pi\)
−0.902120 + 0.431486i \(0.857989\pi\)
\(168\) 0 0
\(169\) −12.4665 −0.958965
\(170\) −9.85739 −0.756027
\(171\) 0 0
\(172\) 25.8600 1.97181
\(173\) 11.7018 0.889674 0.444837 0.895612i \(-0.353262\pi\)
0.444837 + 0.895612i \(0.353262\pi\)
\(174\) 0 0
\(175\) −9.84273 −0.744040
\(176\) −2.37172 −0.178775
\(177\) 0 0
\(178\) −20.6562 −1.54825
\(179\) 1.11218 0.0831281 0.0415640 0.999136i \(-0.486766\pi\)
0.0415640 + 0.999136i \(0.486766\pi\)
\(180\) 0 0
\(181\) 2.68281 0.199412 0.0997058 0.995017i \(-0.468210\pi\)
0.0997058 + 0.995017i \(0.468210\pi\)
\(182\) 3.73361 0.276753
\(183\) 0 0
\(184\) 3.86202 0.284712
\(185\) 9.42445 0.692900
\(186\) 0 0
\(187\) −3.55062 −0.259647
\(188\) 26.5801 1.93856
\(189\) 0 0
\(190\) 2.85989 0.207478
\(191\) −22.2037 −1.60661 −0.803303 0.595571i \(-0.796926\pi\)
−0.803303 + 0.595571i \(0.796926\pi\)
\(192\) 0 0
\(193\) −5.48383 −0.394734 −0.197367 0.980330i \(-0.563239\pi\)
−0.197367 + 0.980330i \(0.563239\pi\)
\(194\) 28.3129 2.03274
\(195\) 0 0
\(196\) −2.32643 −0.166174
\(197\) 17.3694 1.23752 0.618759 0.785581i \(-0.287636\pi\)
0.618759 + 0.785581i \(0.287636\pi\)
\(198\) 0 0
\(199\) 11.6747 0.827594 0.413797 0.910369i \(-0.364202\pi\)
0.413797 + 0.910369i \(0.364202\pi\)
\(200\) −2.91717 −0.206275
\(201\) 0 0
\(202\) 27.1307 1.90891
\(203\) 0 0
\(204\) 0 0
\(205\) 5.59353 0.390669
\(206\) −12.9923 −0.905218
\(207\) 0 0
\(208\) −2.32391 −0.161134
\(209\) 1.03013 0.0712553
\(210\) 0 0
\(211\) −7.66906 −0.527960 −0.263980 0.964528i \(-0.585035\pi\)
−0.263980 + 0.964528i \(0.585035\pi\)
\(212\) 10.6546 0.731758
\(213\) 0 0
\(214\) −10.0810 −0.689123
\(215\) 10.9280 0.745282
\(216\) 0 0
\(217\) −1.38197 −0.0938140
\(218\) 2.30004 0.155778
\(219\) 0 0
\(220\) 1.73722 0.117123
\(221\) −3.47904 −0.234026
\(222\) 0 0
\(223\) −13.7010 −0.917485 −0.458743 0.888569i \(-0.651700\pi\)
−0.458743 + 0.888569i \(0.651700\pi\)
\(224\) −19.8269 −1.32474
\(225\) 0 0
\(226\) 37.1322 2.46999
\(227\) −4.83709 −0.321049 −0.160525 0.987032i \(-0.551319\pi\)
−0.160525 + 0.987032i \(0.551319\pi\)
\(228\) 0 0
\(229\) −11.9291 −0.788299 −0.394149 0.919046i \(-0.628961\pi\)
−0.394149 + 0.919046i \(0.628961\pi\)
\(230\) 11.0003 0.725340
\(231\) 0 0
\(232\) 0 0
\(233\) 25.9346 1.69903 0.849517 0.527562i \(-0.176894\pi\)
0.849517 + 0.527562i \(0.176894\pi\)
\(234\) 0 0
\(235\) 11.2323 0.732714
\(236\) 20.0718 1.30657
\(237\) 0 0
\(238\) −24.3495 −1.57834
\(239\) −3.50336 −0.226613 −0.113307 0.993560i \(-0.536144\pi\)
−0.113307 + 0.993560i \(0.536144\pi\)
\(240\) 0 0
\(241\) −1.32077 −0.0850781 −0.0425390 0.999095i \(-0.513545\pi\)
−0.0425390 + 0.999095i \(0.513545\pi\)
\(242\) −21.7795 −1.40004
\(243\) 0 0
\(244\) 20.1112 1.28749
\(245\) −0.983109 −0.0628085
\(246\) 0 0
\(247\) 1.00936 0.0642241
\(248\) −0.409585 −0.0260087
\(249\) 0 0
\(250\) −18.6562 −1.17992
\(251\) −2.64346 −0.166854 −0.0834268 0.996514i \(-0.526586\pi\)
−0.0834268 + 0.996514i \(0.526586\pi\)
\(252\) 0 0
\(253\) 3.96230 0.249107
\(254\) 8.84507 0.554989
\(255\) 0 0
\(256\) 9.06799 0.566750
\(257\) −4.76819 −0.297431 −0.148716 0.988880i \(-0.547514\pi\)
−0.148716 + 0.988880i \(0.547514\pi\)
\(258\) 0 0
\(259\) 23.2801 1.44655
\(260\) 1.70220 0.105566
\(261\) 0 0
\(262\) −18.0303 −1.11392
\(263\) 14.5370 0.896388 0.448194 0.893936i \(-0.352067\pi\)
0.448194 + 0.893936i \(0.352067\pi\)
\(264\) 0 0
\(265\) 4.50243 0.276582
\(266\) 7.06443 0.433148
\(267\) 0 0
\(268\) 26.0532 1.59145
\(269\) 10.8477 0.661394 0.330697 0.943737i \(-0.392716\pi\)
0.330697 + 0.943737i \(0.392716\pi\)
\(270\) 0 0
\(271\) 0.956894 0.0581271 0.0290636 0.999578i \(-0.490747\pi\)
0.0290636 + 0.999578i \(0.490747\pi\)
\(272\) 15.1559 0.918959
\(273\) 0 0
\(274\) −29.7465 −1.79705
\(275\) −2.99292 −0.180480
\(276\) 0 0
\(277\) 18.5533 1.11476 0.557379 0.830258i \(-0.311807\pi\)
0.557379 + 0.830258i \(0.311807\pi\)
\(278\) −29.9498 −1.79627
\(279\) 0 0
\(280\) 1.76751 0.105629
\(281\) 7.34600 0.438226 0.219113 0.975700i \(-0.429684\pi\)
0.219113 + 0.975700i \(0.429684\pi\)
\(282\) 0 0
\(283\) 9.15413 0.544157 0.272078 0.962275i \(-0.412289\pi\)
0.272078 + 0.962275i \(0.412289\pi\)
\(284\) −14.3473 −0.851355
\(285\) 0 0
\(286\) 1.13529 0.0671312
\(287\) 13.8170 0.815592
\(288\) 0 0
\(289\) 5.68929 0.334664
\(290\) 0 0
\(291\) 0 0
\(292\) 12.7102 0.743809
\(293\) −19.0582 −1.11339 −0.556695 0.830717i \(-0.687931\pi\)
−0.556695 + 0.830717i \(0.687931\pi\)
\(294\) 0 0
\(295\) 8.48200 0.493841
\(296\) 6.89971 0.401038
\(297\) 0 0
\(298\) −43.5637 −2.52358
\(299\) 3.88242 0.224526
\(300\) 0 0
\(301\) 26.9941 1.55591
\(302\) −4.46695 −0.257044
\(303\) 0 0
\(304\) −4.39711 −0.252192
\(305\) 8.49865 0.486631
\(306\) 0 0
\(307\) −26.3761 −1.50537 −0.752683 0.658383i \(-0.771241\pi\)
−0.752683 + 0.658383i \(0.771241\pi\)
\(308\) 4.29123 0.244516
\(309\) 0 0
\(310\) −1.16663 −0.0662604
\(311\) −8.19847 −0.464893 −0.232446 0.972609i \(-0.574673\pi\)
−0.232446 + 0.972609i \(0.574673\pi\)
\(312\) 0 0
\(313\) 11.4853 0.649186 0.324593 0.945854i \(-0.394773\pi\)
0.324593 + 0.945854i \(0.394773\pi\)
\(314\) 29.9830 1.69204
\(315\) 0 0
\(316\) −18.0233 −1.01389
\(317\) −26.7178 −1.50062 −0.750309 0.661087i \(-0.770095\pi\)
−0.750309 + 0.661087i \(0.770095\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −10.4224 −0.582630
\(321\) 0 0
\(322\) 27.1727 1.51428
\(323\) −6.58276 −0.366274
\(324\) 0 0
\(325\) −2.93258 −0.162670
\(326\) 14.6358 0.810601
\(327\) 0 0
\(328\) 4.09507 0.226112
\(329\) 27.7458 1.52967
\(330\) 0 0
\(331\) −10.1135 −0.555891 −0.277945 0.960597i \(-0.589653\pi\)
−0.277945 + 0.960597i \(0.589653\pi\)
\(332\) −37.3895 −2.05201
\(333\) 0 0
\(334\) −48.6203 −2.66039
\(335\) 11.0096 0.601519
\(336\) 0 0
\(337\) −0.987184 −0.0537754 −0.0268877 0.999638i \(-0.508560\pi\)
−0.0268877 + 0.999638i \(0.508560\pi\)
\(338\) −25.9963 −1.41401
\(339\) 0 0
\(340\) −11.1012 −0.602049
\(341\) −0.420220 −0.0227562
\(342\) 0 0
\(343\) −19.5883 −1.05767
\(344\) 8.00046 0.431356
\(345\) 0 0
\(346\) 24.4017 1.31184
\(347\) 11.7941 0.633138 0.316569 0.948569i \(-0.397469\pi\)
0.316569 + 0.948569i \(0.397469\pi\)
\(348\) 0 0
\(349\) 24.5011 1.31151 0.655757 0.754972i \(-0.272350\pi\)
0.655757 + 0.754972i \(0.272350\pi\)
\(350\) −20.5249 −1.09710
\(351\) 0 0
\(352\) −6.02885 −0.321339
\(353\) 2.52368 0.134322 0.0671609 0.997742i \(-0.478606\pi\)
0.0671609 + 0.997742i \(0.478606\pi\)
\(354\) 0 0
\(355\) −6.06291 −0.321786
\(356\) −23.2627 −1.23292
\(357\) 0 0
\(358\) 2.31921 0.122574
\(359\) −1.67121 −0.0882031 −0.0441016 0.999027i \(-0.514043\pi\)
−0.0441016 + 0.999027i \(0.514043\pi\)
\(360\) 0 0
\(361\) −17.0902 −0.899483
\(362\) 5.59442 0.294036
\(363\) 0 0
\(364\) 4.20473 0.220388
\(365\) 5.37112 0.281137
\(366\) 0 0
\(367\) 27.7998 1.45114 0.725569 0.688149i \(-0.241577\pi\)
0.725569 + 0.688149i \(0.241577\pi\)
\(368\) −16.9131 −0.881658
\(369\) 0 0
\(370\) 19.6527 1.02169
\(371\) 11.1218 0.577415
\(372\) 0 0
\(373\) 16.3437 0.846245 0.423123 0.906072i \(-0.360934\pi\)
0.423123 + 0.906072i \(0.360934\pi\)
\(374\) −7.40405 −0.382854
\(375\) 0 0
\(376\) 8.22325 0.424082
\(377\) 0 0
\(378\) 0 0
\(379\) 11.0324 0.566698 0.283349 0.959017i \(-0.408555\pi\)
0.283349 + 0.959017i \(0.408555\pi\)
\(380\) 3.22076 0.165221
\(381\) 0 0
\(382\) −46.3011 −2.36897
\(383\) −17.0153 −0.869443 −0.434721 0.900565i \(-0.643153\pi\)
−0.434721 + 0.900565i \(0.643153\pi\)
\(384\) 0 0
\(385\) 1.81340 0.0924194
\(386\) −11.4353 −0.582044
\(387\) 0 0
\(388\) 31.8855 1.61874
\(389\) 1.93366 0.0980404 0.0490202 0.998798i \(-0.484390\pi\)
0.0490202 + 0.998798i \(0.484390\pi\)
\(390\) 0 0
\(391\) −25.3200 −1.28049
\(392\) −0.719742 −0.0363525
\(393\) 0 0
\(394\) 36.2201 1.82474
\(395\) −7.61631 −0.383218
\(396\) 0 0
\(397\) −20.5396 −1.03085 −0.515425 0.856934i \(-0.672366\pi\)
−0.515425 + 0.856934i \(0.672366\pi\)
\(398\) 24.3450 1.22030
\(399\) 0 0
\(400\) 12.7753 0.638765
\(401\) −21.3490 −1.06612 −0.533058 0.846079i \(-0.678957\pi\)
−0.533058 + 0.846079i \(0.678957\pi\)
\(402\) 0 0
\(403\) −0.411749 −0.0205107
\(404\) 30.5542 1.52013
\(405\) 0 0
\(406\) 0 0
\(407\) 7.07886 0.350886
\(408\) 0 0
\(409\) −22.0616 −1.09088 −0.545438 0.838151i \(-0.683637\pi\)
−0.545438 + 0.838151i \(0.683637\pi\)
\(410\) 11.6641 0.576049
\(411\) 0 0
\(412\) −14.6317 −0.720854
\(413\) 20.9521 1.03098
\(414\) 0 0
\(415\) −15.8001 −0.775598
\(416\) −5.90732 −0.289630
\(417\) 0 0
\(418\) 2.14811 0.105067
\(419\) 37.0004 1.80759 0.903794 0.427967i \(-0.140770\pi\)
0.903794 + 0.427967i \(0.140770\pi\)
\(420\) 0 0
\(421\) −20.0872 −0.978991 −0.489496 0.872006i \(-0.662819\pi\)
−0.489496 + 0.872006i \(0.662819\pi\)
\(422\) −15.9922 −0.778487
\(423\) 0 0
\(424\) 3.29626 0.160081
\(425\) 19.1255 0.927721
\(426\) 0 0
\(427\) 20.9932 1.01593
\(428\) −11.3531 −0.548771
\(429\) 0 0
\(430\) 22.7880 1.09893
\(431\) −28.4380 −1.36981 −0.684905 0.728633i \(-0.740156\pi\)
−0.684905 + 0.728633i \(0.740156\pi\)
\(432\) 0 0
\(433\) 38.0368 1.82793 0.913965 0.405792i \(-0.133004\pi\)
0.913965 + 0.405792i \(0.133004\pi\)
\(434\) −2.88179 −0.138330
\(435\) 0 0
\(436\) 2.59027 0.124051
\(437\) 7.34600 0.351407
\(438\) 0 0
\(439\) −16.6576 −0.795022 −0.397511 0.917597i \(-0.630126\pi\)
−0.397511 + 0.917597i \(0.630126\pi\)
\(440\) 0.537453 0.0256221
\(441\) 0 0
\(442\) −7.25479 −0.345075
\(443\) 1.37489 0.0653230 0.0326615 0.999466i \(-0.489602\pi\)
0.0326615 + 0.999466i \(0.489602\pi\)
\(444\) 0 0
\(445\) −9.83042 −0.466007
\(446\) −28.5704 −1.35285
\(447\) 0 0
\(448\) −25.7452 −1.21634
\(449\) −39.1073 −1.84559 −0.922794 0.385294i \(-0.874100\pi\)
−0.922794 + 0.385294i \(0.874100\pi\)
\(450\) 0 0
\(451\) 4.20139 0.197836
\(452\) 41.8176 1.96694
\(453\) 0 0
\(454\) −10.0867 −0.473393
\(455\) 1.77684 0.0832997
\(456\) 0 0
\(457\) −27.4493 −1.28403 −0.642013 0.766694i \(-0.721901\pi\)
−0.642013 + 0.766694i \(0.721901\pi\)
\(458\) −24.8756 −1.16236
\(459\) 0 0
\(460\) 12.3884 0.577611
\(461\) 4.54620 0.211738 0.105869 0.994380i \(-0.466238\pi\)
0.105869 + 0.994380i \(0.466238\pi\)
\(462\) 0 0
\(463\) 35.1190 1.63212 0.816060 0.577968i \(-0.196154\pi\)
0.816060 + 0.577968i \(0.196154\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 54.0811 2.50526
\(467\) 34.4640 1.59480 0.797402 0.603448i \(-0.206207\pi\)
0.797402 + 0.603448i \(0.206207\pi\)
\(468\) 0 0
\(469\) 27.1957 1.25578
\(470\) 23.4225 1.08040
\(471\) 0 0
\(472\) 6.20974 0.285826
\(473\) 8.20819 0.377413
\(474\) 0 0
\(475\) −5.54879 −0.254596
\(476\) −27.4220 −1.25689
\(477\) 0 0
\(478\) −7.30550 −0.334146
\(479\) −30.4715 −1.39228 −0.696140 0.717906i \(-0.745101\pi\)
−0.696140 + 0.717906i \(0.745101\pi\)
\(480\) 0 0
\(481\) 6.93616 0.316262
\(482\) −2.75418 −0.125449
\(483\) 0 0
\(484\) −24.5277 −1.11490
\(485\) 13.4742 0.611834
\(486\) 0 0
\(487\) 25.0119 1.13340 0.566698 0.823925i \(-0.308221\pi\)
0.566698 + 0.823925i \(0.308221\pi\)
\(488\) 6.22193 0.281653
\(489\) 0 0
\(490\) −2.05006 −0.0926124
\(491\) −26.3863 −1.19080 −0.595399 0.803430i \(-0.703006\pi\)
−0.595399 + 0.803430i \(0.703006\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 2.10480 0.0946996
\(495\) 0 0
\(496\) 1.79371 0.0805402
\(497\) −14.9765 −0.671786
\(498\) 0 0
\(499\) −17.2139 −0.770600 −0.385300 0.922791i \(-0.625902\pi\)
−0.385300 + 0.922791i \(0.625902\pi\)
\(500\) −21.0104 −0.939612
\(501\) 0 0
\(502\) −5.51236 −0.246029
\(503\) 2.51651 0.112206 0.0561028 0.998425i \(-0.482133\pi\)
0.0561028 + 0.998425i \(0.482133\pi\)
\(504\) 0 0
\(505\) 12.9117 0.574561
\(506\) 8.26252 0.367314
\(507\) 0 0
\(508\) 9.96117 0.441956
\(509\) 24.6901 1.09437 0.547185 0.837012i \(-0.315699\pi\)
0.547185 + 0.837012i \(0.315699\pi\)
\(510\) 0 0
\(511\) 13.2676 0.586924
\(512\) 30.3576 1.34163
\(513\) 0 0
\(514\) −9.94303 −0.438568
\(515\) −6.18312 −0.272461
\(516\) 0 0
\(517\) 8.43676 0.371048
\(518\) 48.5456 2.13297
\(519\) 0 0
\(520\) 0.526618 0.0230937
\(521\) −40.0205 −1.75333 −0.876664 0.481103i \(-0.840236\pi\)
−0.876664 + 0.481103i \(0.840236\pi\)
\(522\) 0 0
\(523\) 6.67862 0.292035 0.146018 0.989282i \(-0.453354\pi\)
0.146018 + 0.989282i \(0.453354\pi\)
\(524\) −20.3054 −0.887046
\(525\) 0 0
\(526\) 30.3137 1.32174
\(527\) 2.68531 0.116974
\(528\) 0 0
\(529\) 5.25579 0.228513
\(530\) 9.38884 0.407825
\(531\) 0 0
\(532\) 7.95584 0.344929
\(533\) 4.11669 0.178314
\(534\) 0 0
\(535\) −4.79760 −0.207419
\(536\) 8.06022 0.348148
\(537\) 0 0
\(538\) 22.6205 0.975238
\(539\) −0.738429 −0.0318064
\(540\) 0 0
\(541\) −2.72906 −0.117331 −0.0586657 0.998278i \(-0.518685\pi\)
−0.0586657 + 0.998278i \(0.518685\pi\)
\(542\) 1.99540 0.0857096
\(543\) 0 0
\(544\) 38.5258 1.65178
\(545\) 1.09460 0.0468876
\(546\) 0 0
\(547\) 41.6350 1.78018 0.890091 0.455783i \(-0.150641\pi\)
0.890091 + 0.455783i \(0.150641\pi\)
\(548\) −33.5001 −1.43105
\(549\) 0 0
\(550\) −6.24108 −0.266121
\(551\) 0 0
\(552\) 0 0
\(553\) −18.8136 −0.800037
\(554\) 38.6888 1.64373
\(555\) 0 0
\(556\) −33.7289 −1.43043
\(557\) −38.8044 −1.64419 −0.822097 0.569347i \(-0.807196\pi\)
−0.822097 + 0.569347i \(0.807196\pi\)
\(558\) 0 0
\(559\) 8.04272 0.340171
\(560\) −7.74052 −0.327097
\(561\) 0 0
\(562\) 15.3185 0.646172
\(563\) 17.6548 0.744061 0.372030 0.928221i \(-0.378662\pi\)
0.372030 + 0.928221i \(0.378662\pi\)
\(564\) 0 0
\(565\) 17.6714 0.743441
\(566\) 19.0890 0.802370
\(567\) 0 0
\(568\) −4.43870 −0.186244
\(569\) −12.0256 −0.504139 −0.252069 0.967709i \(-0.581111\pi\)
−0.252069 + 0.967709i \(0.581111\pi\)
\(570\) 0 0
\(571\) −3.70261 −0.154950 −0.0774748 0.996994i \(-0.524686\pi\)
−0.0774748 + 0.996994i \(0.524686\pi\)
\(572\) 1.27855 0.0534587
\(573\) 0 0
\(574\) 28.8124 1.20261
\(575\) −21.3430 −0.890064
\(576\) 0 0
\(577\) −44.4757 −1.85155 −0.925773 0.378079i \(-0.876585\pi\)
−0.925773 + 0.378079i \(0.876585\pi\)
\(578\) 11.8638 0.493469
\(579\) 0 0
\(580\) 0 0
\(581\) −39.0291 −1.61920
\(582\) 0 0
\(583\) 3.38185 0.140062
\(584\) 3.93223 0.162717
\(585\) 0 0
\(586\) −39.7417 −1.64172
\(587\) −23.1650 −0.956120 −0.478060 0.878327i \(-0.658660\pi\)
−0.478060 + 0.878327i \(0.658660\pi\)
\(588\) 0 0
\(589\) −0.779077 −0.0321013
\(590\) 17.6874 0.728179
\(591\) 0 0
\(592\) −30.2162 −1.24188
\(593\) 31.9010 1.31002 0.655009 0.755621i \(-0.272665\pi\)
0.655009 + 0.755621i \(0.272665\pi\)
\(594\) 0 0
\(595\) −11.5881 −0.475064
\(596\) −49.0607 −2.00961
\(597\) 0 0
\(598\) 8.09595 0.331068
\(599\) −4.65253 −0.190097 −0.0950485 0.995473i \(-0.530301\pi\)
−0.0950485 + 0.995473i \(0.530301\pi\)
\(600\) 0 0
\(601\) 23.4167 0.955188 0.477594 0.878581i \(-0.341509\pi\)
0.477594 + 0.878581i \(0.341509\pi\)
\(602\) 56.2903 2.29422
\(603\) 0 0
\(604\) −5.03060 −0.204692
\(605\) −10.3650 −0.421396
\(606\) 0 0
\(607\) −37.3093 −1.51434 −0.757170 0.653218i \(-0.773419\pi\)
−0.757170 + 0.653218i \(0.773419\pi\)
\(608\) −11.1773 −0.453301
\(609\) 0 0
\(610\) 17.7221 0.717547
\(611\) 8.26669 0.334434
\(612\) 0 0
\(613\) 6.83915 0.276231 0.138115 0.990416i \(-0.455896\pi\)
0.138115 + 0.990416i \(0.455896\pi\)
\(614\) −55.0018 −2.21969
\(615\) 0 0
\(616\) 1.32760 0.0534907
\(617\) −13.4967 −0.543356 −0.271678 0.962388i \(-0.587579\pi\)
−0.271678 + 0.962388i \(0.587579\pi\)
\(618\) 0 0
\(619\) 34.3963 1.38250 0.691252 0.722614i \(-0.257059\pi\)
0.691252 + 0.722614i \(0.257059\pi\)
\(620\) −1.31384 −0.0527653
\(621\) 0 0
\(622\) −17.0961 −0.685493
\(623\) −24.2829 −0.972873
\(624\) 0 0
\(625\) 11.1971 0.447885
\(626\) 23.9501 0.957237
\(627\) 0 0
\(628\) 33.7664 1.34743
\(629\) −45.2356 −1.80366
\(630\) 0 0
\(631\) −14.6283 −0.582343 −0.291171 0.956671i \(-0.594045\pi\)
−0.291171 + 0.956671i \(0.594045\pi\)
\(632\) −5.57596 −0.221800
\(633\) 0 0
\(634\) −55.7141 −2.21269
\(635\) 4.20942 0.167046
\(636\) 0 0
\(637\) −0.723543 −0.0286678
\(638\) 0 0
\(639\) 0 0
\(640\) −5.68063 −0.224547
\(641\) −2.49007 −0.0983518 −0.0491759 0.998790i \(-0.515659\pi\)
−0.0491759 + 0.998790i \(0.515659\pi\)
\(642\) 0 0
\(643\) −17.5372 −0.691599 −0.345799 0.938308i \(-0.612392\pi\)
−0.345799 + 0.938308i \(0.612392\pi\)
\(644\) 30.6015 1.20587
\(645\) 0 0
\(646\) −13.7269 −0.540079
\(647\) −34.0582 −1.33897 −0.669483 0.742827i \(-0.733484\pi\)
−0.669483 + 0.742827i \(0.733484\pi\)
\(648\) 0 0
\(649\) 6.37097 0.250083
\(650\) −6.11527 −0.239861
\(651\) 0 0
\(652\) 16.4826 0.645508
\(653\) −4.91571 −0.192367 −0.0961834 0.995364i \(-0.530664\pi\)
−0.0961834 + 0.995364i \(0.530664\pi\)
\(654\) 0 0
\(655\) −8.58071 −0.335276
\(656\) −17.9337 −0.700193
\(657\) 0 0
\(658\) 57.8578 2.25553
\(659\) 29.2987 1.14132 0.570658 0.821188i \(-0.306688\pi\)
0.570658 + 0.821188i \(0.306688\pi\)
\(660\) 0 0
\(661\) −45.1181 −1.75489 −0.877445 0.479677i \(-0.840754\pi\)
−0.877445 + 0.479677i \(0.840754\pi\)
\(662\) −21.0896 −0.819672
\(663\) 0 0
\(664\) −11.5674 −0.448902
\(665\) 3.36200 0.130373
\(666\) 0 0
\(667\) 0 0
\(668\) −54.7554 −2.11855
\(669\) 0 0
\(670\) 22.9582 0.886952
\(671\) 6.38347 0.246431
\(672\) 0 0
\(673\) 17.3306 0.668045 0.334022 0.942565i \(-0.391594\pi\)
0.334022 + 0.942565i \(0.391594\pi\)
\(674\) −2.05856 −0.0792928
\(675\) 0 0
\(676\) −29.2766 −1.12602
\(677\) 15.9644 0.613560 0.306780 0.951780i \(-0.400748\pi\)
0.306780 + 0.951780i \(0.400748\pi\)
\(678\) 0 0
\(679\) 33.2838 1.27731
\(680\) −3.43445 −0.131705
\(681\) 0 0
\(682\) −0.876278 −0.0335544
\(683\) −51.9292 −1.98701 −0.993507 0.113768i \(-0.963708\pi\)
−0.993507 + 0.113768i \(0.963708\pi\)
\(684\) 0 0
\(685\) −14.1565 −0.540893
\(686\) −40.8471 −1.55955
\(687\) 0 0
\(688\) −35.0368 −1.33576
\(689\) 3.31367 0.126241
\(690\) 0 0
\(691\) −5.92354 −0.225342 −0.112671 0.993632i \(-0.535941\pi\)
−0.112671 + 0.993632i \(0.535941\pi\)
\(692\) 27.4807 1.04466
\(693\) 0 0
\(694\) 24.5940 0.933574
\(695\) −14.2533 −0.540657
\(696\) 0 0
\(697\) −26.8479 −1.01694
\(698\) 51.0918 1.93385
\(699\) 0 0
\(700\) −23.1148 −0.873657
\(701\) −23.4563 −0.885931 −0.442966 0.896539i \(-0.646074\pi\)
−0.442966 + 0.896539i \(0.646074\pi\)
\(702\) 0 0
\(703\) 13.1240 0.494982
\(704\) −7.82843 −0.295045
\(705\) 0 0
\(706\) 5.26259 0.198060
\(707\) 31.8941 1.19950
\(708\) 0 0
\(709\) 1.14986 0.0431840 0.0215920 0.999767i \(-0.493127\pi\)
0.0215920 + 0.999767i \(0.493127\pi\)
\(710\) −12.6429 −0.474480
\(711\) 0 0
\(712\) −7.19693 −0.269716
\(713\) −2.99666 −0.112226
\(714\) 0 0
\(715\) 0.540292 0.0202058
\(716\) 2.61185 0.0976095
\(717\) 0 0
\(718\) −3.48495 −0.130057
\(719\) −8.56227 −0.319319 −0.159659 0.987172i \(-0.551040\pi\)
−0.159659 + 0.987172i \(0.551040\pi\)
\(720\) 0 0
\(721\) −15.2734 −0.568811
\(722\) −35.6379 −1.32630
\(723\) 0 0
\(724\) 6.30034 0.234150
\(725\) 0 0
\(726\) 0 0
\(727\) −8.30010 −0.307834 −0.153917 0.988084i \(-0.549189\pi\)
−0.153917 + 0.988084i \(0.549189\pi\)
\(728\) 1.30084 0.0482124
\(729\) 0 0
\(730\) 11.2003 0.414542
\(731\) −52.4523 −1.94002
\(732\) 0 0
\(733\) 3.63299 0.134187 0.0670937 0.997747i \(-0.478627\pi\)
0.0670937 + 0.997747i \(0.478627\pi\)
\(734\) 57.9705 2.13973
\(735\) 0 0
\(736\) −42.9927 −1.58473
\(737\) 8.26950 0.304611
\(738\) 0 0
\(739\) −14.5044 −0.533555 −0.266777 0.963758i \(-0.585959\pi\)
−0.266777 + 0.963758i \(0.585959\pi\)
\(740\) 22.1325 0.813607
\(741\) 0 0
\(742\) 23.1921 0.851409
\(743\) −33.9157 −1.24425 −0.622124 0.782919i \(-0.713730\pi\)
−0.622124 + 0.782919i \(0.713730\pi\)
\(744\) 0 0
\(745\) −20.7322 −0.759569
\(746\) 34.0813 1.24781
\(747\) 0 0
\(748\) −8.33832 −0.304879
\(749\) −11.8509 −0.433024
\(750\) 0 0
\(751\) 11.7583 0.429068 0.214534 0.976717i \(-0.431177\pi\)
0.214534 + 0.976717i \(0.431177\pi\)
\(752\) −36.0125 −1.31324
\(753\) 0 0
\(754\) 0 0
\(755\) −2.12585 −0.0773674
\(756\) 0 0
\(757\) −0.654727 −0.0237965 −0.0118982 0.999929i \(-0.503787\pi\)
−0.0118982 + 0.999929i \(0.503787\pi\)
\(758\) 23.0058 0.835607
\(759\) 0 0
\(760\) 0.996425 0.0361441
\(761\) −0.209264 −0.00758580 −0.00379290 0.999993i \(-0.501207\pi\)
−0.00379290 + 0.999993i \(0.501207\pi\)
\(762\) 0 0
\(763\) 2.70386 0.0978863
\(764\) −52.1436 −1.88649
\(765\) 0 0
\(766\) −35.4818 −1.28201
\(767\) 6.24254 0.225405
\(768\) 0 0
\(769\) 53.1893 1.91805 0.959027 0.283314i \(-0.0914339\pi\)
0.959027 + 0.283314i \(0.0914339\pi\)
\(770\) 3.78145 0.136274
\(771\) 0 0
\(772\) −12.8783 −0.463500
\(773\) −40.0741 −1.44136 −0.720682 0.693266i \(-0.756171\pi\)
−0.720682 + 0.693266i \(0.756171\pi\)
\(774\) 0 0
\(775\) 2.26352 0.0813081
\(776\) 9.86460 0.354118
\(777\) 0 0
\(778\) 4.03223 0.144563
\(779\) 7.78928 0.279080
\(780\) 0 0
\(781\) −4.55395 −0.162953
\(782\) −52.7995 −1.88811
\(783\) 0 0
\(784\) 3.15200 0.112571
\(785\) 14.2691 0.509286
\(786\) 0 0
\(787\) 11.3024 0.402886 0.201443 0.979500i \(-0.435437\pi\)
0.201443 + 0.979500i \(0.435437\pi\)
\(788\) 40.7905 1.45310
\(789\) 0 0
\(790\) −15.8822 −0.565063
\(791\) 43.6515 1.55207
\(792\) 0 0
\(793\) 6.25479 0.222114
\(794\) −42.8308 −1.52001
\(795\) 0 0
\(796\) 27.4169 0.971767
\(797\) −39.8500 −1.41156 −0.705779 0.708432i \(-0.749403\pi\)
−0.705779 + 0.708432i \(0.749403\pi\)
\(798\) 0 0
\(799\) −53.9129 −1.90730
\(800\) 32.4745 1.14815
\(801\) 0 0
\(802\) −44.5187 −1.57201
\(803\) 4.03433 0.142368
\(804\) 0 0
\(805\) 12.9317 0.455781
\(806\) −0.858613 −0.0302434
\(807\) 0 0
\(808\) 9.45272 0.332546
\(809\) −6.93364 −0.243774 −0.121887 0.992544i \(-0.538895\pi\)
−0.121887 + 0.992544i \(0.538895\pi\)
\(810\) 0 0
\(811\) 34.2757 1.20358 0.601792 0.798653i \(-0.294454\pi\)
0.601792 + 0.798653i \(0.294454\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 14.7614 0.517388
\(815\) 6.96525 0.243982
\(816\) 0 0
\(817\) 15.2178 0.532403
\(818\) −46.0047 −1.60852
\(819\) 0 0
\(820\) 13.1359 0.458726
\(821\) −7.47322 −0.260817 −0.130409 0.991460i \(-0.541629\pi\)
−0.130409 + 0.991460i \(0.541629\pi\)
\(822\) 0 0
\(823\) −7.85554 −0.273827 −0.136913 0.990583i \(-0.543718\pi\)
−0.136913 + 0.990583i \(0.543718\pi\)
\(824\) −4.52671 −0.157695
\(825\) 0 0
\(826\) 43.6910 1.52020
\(827\) 51.8242 1.80211 0.901053 0.433710i \(-0.142796\pi\)
0.901053 + 0.433710i \(0.142796\pi\)
\(828\) 0 0
\(829\) 28.1574 0.977945 0.488973 0.872299i \(-0.337372\pi\)
0.488973 + 0.872299i \(0.337372\pi\)
\(830\) −32.9478 −1.14363
\(831\) 0 0
\(832\) −7.67062 −0.265931
\(833\) 4.71874 0.163495
\(834\) 0 0
\(835\) −23.1387 −0.800747
\(836\) 2.41916 0.0836685
\(837\) 0 0
\(838\) 77.1564 2.66532
\(839\) 0.155652 0.00537369 0.00268685 0.999996i \(-0.499145\pi\)
0.00268685 + 0.999996i \(0.499145\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −41.8876 −1.44354
\(843\) 0 0
\(844\) −18.0101 −0.619934
\(845\) −12.3718 −0.425602
\(846\) 0 0
\(847\) −25.6033 −0.879741
\(848\) −14.4355 −0.495716
\(849\) 0 0
\(850\) 39.8820 1.36794
\(851\) 50.4805 1.73045
\(852\) 0 0
\(853\) 45.4412 1.55588 0.777939 0.628340i \(-0.216265\pi\)
0.777939 + 0.628340i \(0.216265\pi\)
\(854\) 43.7767 1.49801
\(855\) 0 0
\(856\) −3.51236 −0.120050
\(857\) −43.7310 −1.49382 −0.746911 0.664924i \(-0.768464\pi\)
−0.746911 + 0.664924i \(0.768464\pi\)
\(858\) 0 0
\(859\) 34.9206 1.19148 0.595738 0.803179i \(-0.296860\pi\)
0.595738 + 0.803179i \(0.296860\pi\)
\(860\) 25.6634 0.875116
\(861\) 0 0
\(862\) −59.3013 −2.01981
\(863\) 34.4638 1.17316 0.586580 0.809891i \(-0.300474\pi\)
0.586580 + 0.809891i \(0.300474\pi\)
\(864\) 0 0
\(865\) 11.6129 0.394850
\(866\) 79.3175 2.69532
\(867\) 0 0
\(868\) −3.24543 −0.110157
\(869\) −5.72074 −0.194063
\(870\) 0 0
\(871\) 8.10279 0.274553
\(872\) 0.801366 0.0271377
\(873\) 0 0
\(874\) 15.3185 0.518156
\(875\) −21.9317 −0.741428
\(876\) 0 0
\(877\) 36.0203 1.21632 0.608160 0.793815i \(-0.291908\pi\)
0.608160 + 0.793815i \(0.291908\pi\)
\(878\) −34.7358 −1.17228
\(879\) 0 0
\(880\) −2.35369 −0.0793429
\(881\) −20.4125 −0.687714 −0.343857 0.939022i \(-0.611734\pi\)
−0.343857 + 0.939022i \(0.611734\pi\)
\(882\) 0 0
\(883\) 42.2458 1.42168 0.710842 0.703352i \(-0.248314\pi\)
0.710842 + 0.703352i \(0.248314\pi\)
\(884\) −8.17022 −0.274794
\(885\) 0 0
\(886\) 2.86704 0.0963200
\(887\) 29.9288 1.00491 0.502455 0.864603i \(-0.332430\pi\)
0.502455 + 0.864603i \(0.332430\pi\)
\(888\) 0 0
\(889\) 10.3980 0.348738
\(890\) −20.4992 −0.687136
\(891\) 0 0
\(892\) −32.1756 −1.07732
\(893\) 15.6416 0.523425
\(894\) 0 0
\(895\) 1.10372 0.0368934
\(896\) −14.0322 −0.468782
\(897\) 0 0
\(898\) −81.5499 −2.72135
\(899\) 0 0
\(900\) 0 0
\(901\) −21.6108 −0.719960
\(902\) 8.76110 0.291713
\(903\) 0 0
\(904\) 12.9374 0.430290
\(905\) 2.66241 0.0885017
\(906\) 0 0
\(907\) 42.5943 1.41432 0.707160 0.707053i \(-0.249976\pi\)
0.707160 + 0.707053i \(0.249976\pi\)
\(908\) −11.3595 −0.376978
\(909\) 0 0
\(910\) 3.70522 0.122827
\(911\) 37.3420 1.23720 0.618598 0.785708i \(-0.287701\pi\)
0.618598 + 0.785708i \(0.287701\pi\)
\(912\) 0 0
\(913\) −11.8677 −0.392765
\(914\) −57.2397 −1.89332
\(915\) 0 0
\(916\) −28.0145 −0.925626
\(917\) −21.1959 −0.699950
\(918\) 0 0
\(919\) 9.86001 0.325252 0.162626 0.986688i \(-0.448004\pi\)
0.162626 + 0.986688i \(0.448004\pi\)
\(920\) 3.83267 0.126359
\(921\) 0 0
\(922\) 9.48013 0.312211
\(923\) −4.46215 −0.146873
\(924\) 0 0
\(925\) −38.1304 −1.25372
\(926\) 73.2332 2.40659
\(927\) 0 0
\(928\) 0 0
\(929\) 28.6956 0.941471 0.470736 0.882274i \(-0.343989\pi\)
0.470736 + 0.882274i \(0.343989\pi\)
\(930\) 0 0
\(931\) −1.36903 −0.0448682
\(932\) 60.9052 1.99502
\(933\) 0 0
\(934\) 71.8673 2.35157
\(935\) −3.52363 −0.115235
\(936\) 0 0
\(937\) 36.9075 1.20572 0.602858 0.797848i \(-0.294028\pi\)
0.602858 + 0.797848i \(0.294028\pi\)
\(938\) 56.7107 1.85167
\(939\) 0 0
\(940\) 26.3781 0.860358
\(941\) 31.1116 1.01421 0.507104 0.861885i \(-0.330716\pi\)
0.507104 + 0.861885i \(0.330716\pi\)
\(942\) 0 0
\(943\) 29.9608 0.975658
\(944\) −27.1946 −0.885109
\(945\) 0 0
\(946\) 17.1164 0.556502
\(947\) −28.3337 −0.920720 −0.460360 0.887732i \(-0.652280\pi\)
−0.460360 + 0.887732i \(0.652280\pi\)
\(948\) 0 0
\(949\) 3.95300 0.128320
\(950\) −11.5708 −0.375407
\(951\) 0 0
\(952\) −8.48371 −0.274958
\(953\) 8.84041 0.286369 0.143184 0.989696i \(-0.454266\pi\)
0.143184 + 0.989696i \(0.454266\pi\)
\(954\) 0 0
\(955\) −22.0350 −0.713034
\(956\) −8.22734 −0.266091
\(957\) 0 0
\(958\) −63.5418 −2.05294
\(959\) −34.9691 −1.12921
\(960\) 0 0
\(961\) −30.6822 −0.989748
\(962\) 14.4639 0.466334
\(963\) 0 0
\(964\) −3.10171 −0.0998993
\(965\) −5.44214 −0.175189
\(966\) 0 0
\(967\) −49.4538 −1.59033 −0.795164 0.606395i \(-0.792615\pi\)
−0.795164 + 0.606395i \(0.792615\pi\)
\(968\) −7.58828 −0.243896
\(969\) 0 0
\(970\) 28.0976 0.902161
\(971\) −41.4194 −1.32921 −0.664606 0.747194i \(-0.731401\pi\)
−0.664606 + 0.747194i \(0.731401\pi\)
\(972\) 0 0
\(973\) −35.2081 −1.12872
\(974\) 52.1569 1.67122
\(975\) 0 0
\(976\) −27.2480 −0.872186
\(977\) −24.5426 −0.785187 −0.392593 0.919712i \(-0.628422\pi\)
−0.392593 + 0.919712i \(0.628422\pi\)
\(978\) 0 0
\(979\) −7.38379 −0.235987
\(980\) −2.30875 −0.0737502
\(981\) 0 0
\(982\) −55.0230 −1.75586
\(983\) 29.5289 0.941825 0.470913 0.882180i \(-0.343925\pi\)
0.470913 + 0.882180i \(0.343925\pi\)
\(984\) 0 0
\(985\) 17.2373 0.549228
\(986\) 0 0
\(987\) 0 0
\(988\) 2.37040 0.0754123
\(989\) 58.5339 1.86127
\(990\) 0 0
\(991\) 2.23362 0.0709532 0.0354766 0.999371i \(-0.488705\pi\)
0.0354766 + 0.999371i \(0.488705\pi\)
\(992\) 4.55958 0.144767
\(993\) 0 0
\(994\) −31.2302 −0.990562
\(995\) 11.5859 0.367298
\(996\) 0 0
\(997\) −25.3556 −0.803021 −0.401511 0.915854i \(-0.631515\pi\)
−0.401511 + 0.915854i \(0.631515\pi\)
\(998\) −35.8959 −1.13626
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bf.1.7 yes 8
3.2 odd 2 inner 7569.2.a.bf.1.2 8
29.28 even 2 7569.2.a.bg.1.2 yes 8
87.86 odd 2 7569.2.a.bg.1.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.bf.1.2 8 3.2 odd 2 inner
7569.2.a.bf.1.7 yes 8 1.1 even 1 trivial
7569.2.a.bg.1.2 yes 8 29.28 even 2
7569.2.a.bg.1.7 yes 8 87.86 odd 2