Properties

Label 7569.2.a.bm.1.3
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.69494\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.694939 q^{2} -1.51706 q^{4} +2.01780 q^{5} -2.39488 q^{7} +2.44414 q^{8} -1.40225 q^{10} -0.957887 q^{11} +6.53321 q^{13} +1.66430 q^{14} +1.33559 q^{16} -3.81642 q^{17} +4.31846 q^{19} -3.06113 q^{20} +0.665673 q^{22} +5.38804 q^{23} -0.928470 q^{25} -4.54018 q^{26} +3.63318 q^{28} -2.73463 q^{31} -5.81644 q^{32} +2.65217 q^{34} -4.83240 q^{35} +1.86068 q^{37} -3.00106 q^{38} +4.93180 q^{40} +11.8282 q^{41} +3.70437 q^{43} +1.45317 q^{44} -3.74436 q^{46} -3.23270 q^{47} -1.26453 q^{49} +0.645230 q^{50} -9.91127 q^{52} -2.26772 q^{53} -1.93283 q^{55} -5.85343 q^{56} +9.30726 q^{59} -3.13852 q^{61} +1.90040 q^{62} +1.37088 q^{64} +13.1827 q^{65} +12.1012 q^{67} +5.78973 q^{68} +3.35822 q^{70} +4.60343 q^{71} -9.09135 q^{73} -1.29306 q^{74} -6.55136 q^{76} +2.29403 q^{77} -4.28781 q^{79} +2.69496 q^{80} -8.21984 q^{82} -16.1813 q^{83} -7.70078 q^{85} -2.57431 q^{86} -2.34121 q^{88} +15.4430 q^{89} -15.6463 q^{91} -8.17399 q^{92} +2.24653 q^{94} +8.71380 q^{95} -15.7632 q^{97} +0.878774 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{4} + 4 q^{5} + 5 q^{7} + 24 q^{8} - q^{11} + q^{13} + 9 q^{14} + 35 q^{16} + 2 q^{17} - 9 q^{19} + 18 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} - 8 q^{26} + 40 q^{28} - 8 q^{31} + 43 q^{32}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.694939 −0.491396 −0.245698 0.969346i \(-0.579017\pi\)
−0.245698 + 0.969346i \(0.579017\pi\)
\(3\) 0 0
\(4\) −1.51706 −0.758530
\(5\) 2.01780 0.902389 0.451195 0.892426i \(-0.350998\pi\)
0.451195 + 0.892426i \(0.350998\pi\)
\(6\) 0 0
\(7\) −2.39488 −0.905181 −0.452590 0.891719i \(-0.649500\pi\)
−0.452590 + 0.891719i \(0.649500\pi\)
\(8\) 2.44414 0.864134
\(9\) 0 0
\(10\) −1.40225 −0.443430
\(11\) −0.957887 −0.288814 −0.144407 0.989518i \(-0.546127\pi\)
−0.144407 + 0.989518i \(0.546127\pi\)
\(12\) 0 0
\(13\) 6.53321 1.81199 0.905993 0.423294i \(-0.139126\pi\)
0.905993 + 0.423294i \(0.139126\pi\)
\(14\) 1.66430 0.444802
\(15\) 0 0
\(16\) 1.33559 0.333898
\(17\) −3.81642 −0.925617 −0.462808 0.886458i \(-0.653158\pi\)
−0.462808 + 0.886458i \(0.653158\pi\)
\(18\) 0 0
\(19\) 4.31846 0.990722 0.495361 0.868687i \(-0.335036\pi\)
0.495361 + 0.868687i \(0.335036\pi\)
\(20\) −3.06113 −0.684489
\(21\) 0 0
\(22\) 0.665673 0.141922
\(23\) 5.38804 1.12348 0.561742 0.827312i \(-0.310131\pi\)
0.561742 + 0.827312i \(0.310131\pi\)
\(24\) 0 0
\(25\) −0.928470 −0.185694
\(26\) −4.54018 −0.890402
\(27\) 0 0
\(28\) 3.63318 0.686607
\(29\) 0 0
\(30\) 0 0
\(31\) −2.73463 −0.491155 −0.245577 0.969377i \(-0.578978\pi\)
−0.245577 + 0.969377i \(0.578978\pi\)
\(32\) −5.81644 −1.02821
\(33\) 0 0
\(34\) 2.65217 0.454844
\(35\) −4.83240 −0.816825
\(36\) 0 0
\(37\) 1.86068 0.305894 0.152947 0.988234i \(-0.451124\pi\)
0.152947 + 0.988234i \(0.451124\pi\)
\(38\) −3.00106 −0.486837
\(39\) 0 0
\(40\) 4.93180 0.779785
\(41\) 11.8282 1.84725 0.923624 0.383300i \(-0.125212\pi\)
0.923624 + 0.383300i \(0.125212\pi\)
\(42\) 0 0
\(43\) 3.70437 0.564911 0.282455 0.959280i \(-0.408851\pi\)
0.282455 + 0.959280i \(0.408851\pi\)
\(44\) 1.45317 0.219074
\(45\) 0 0
\(46\) −3.74436 −0.552075
\(47\) −3.23270 −0.471538 −0.235769 0.971809i \(-0.575761\pi\)
−0.235769 + 0.971809i \(0.575761\pi\)
\(48\) 0 0
\(49\) −1.26453 −0.180648
\(50\) 0.645230 0.0912493
\(51\) 0 0
\(52\) −9.91127 −1.37445
\(53\) −2.26772 −0.311495 −0.155748 0.987797i \(-0.549779\pi\)
−0.155748 + 0.987797i \(0.549779\pi\)
\(54\) 0 0
\(55\) −1.93283 −0.260622
\(56\) −5.85343 −0.782198
\(57\) 0 0
\(58\) 0 0
\(59\) 9.30726 1.21170 0.605851 0.795578i \(-0.292833\pi\)
0.605851 + 0.795578i \(0.292833\pi\)
\(60\) 0 0
\(61\) −3.13852 −0.401847 −0.200923 0.979607i \(-0.564394\pi\)
−0.200923 + 0.979607i \(0.564394\pi\)
\(62\) 1.90040 0.241351
\(63\) 0 0
\(64\) 1.37088 0.171360
\(65\) 13.1827 1.63512
\(66\) 0 0
\(67\) 12.1012 1.47840 0.739200 0.673487i \(-0.235204\pi\)
0.739200 + 0.673487i \(0.235204\pi\)
\(68\) 5.78973 0.702108
\(69\) 0 0
\(70\) 3.35822 0.401384
\(71\) 4.60343 0.546327 0.273163 0.961968i \(-0.411930\pi\)
0.273163 + 0.961968i \(0.411930\pi\)
\(72\) 0 0
\(73\) −9.09135 −1.06406 −0.532031 0.846725i \(-0.678571\pi\)
−0.532031 + 0.846725i \(0.678571\pi\)
\(74\) −1.29306 −0.150315
\(75\) 0 0
\(76\) −6.55136 −0.751492
\(77\) 2.29403 0.261429
\(78\) 0 0
\(79\) −4.28781 −0.482416 −0.241208 0.970473i \(-0.577544\pi\)
−0.241208 + 0.970473i \(0.577544\pi\)
\(80\) 2.69496 0.301306
\(81\) 0 0
\(82\) −8.21984 −0.907730
\(83\) −16.1813 −1.77612 −0.888062 0.459725i \(-0.847948\pi\)
−0.888062 + 0.459725i \(0.847948\pi\)
\(84\) 0 0
\(85\) −7.70078 −0.835266
\(86\) −2.57431 −0.277595
\(87\) 0 0
\(88\) −2.34121 −0.249574
\(89\) 15.4430 1.63696 0.818478 0.574538i \(-0.194818\pi\)
0.818478 + 0.574538i \(0.194818\pi\)
\(90\) 0 0
\(91\) −15.6463 −1.64017
\(92\) −8.17399 −0.852197
\(93\) 0 0
\(94\) 2.24653 0.231712
\(95\) 8.71380 0.894017
\(96\) 0 0
\(97\) −15.7632 −1.60051 −0.800253 0.599662i \(-0.795302\pi\)
−0.800253 + 0.599662i \(0.795302\pi\)
\(98\) 0.878774 0.0887696
\(99\) 0 0
\(100\) 1.40855 0.140855
\(101\) 9.25649 0.921055 0.460528 0.887645i \(-0.347660\pi\)
0.460528 + 0.887645i \(0.347660\pi\)
\(102\) 0 0
\(103\) 10.5946 1.04391 0.521956 0.852972i \(-0.325202\pi\)
0.521956 + 0.852972i \(0.325202\pi\)
\(104\) 15.9681 1.56580
\(105\) 0 0
\(106\) 1.57593 0.153068
\(107\) 0.125704 0.0121523 0.00607614 0.999982i \(-0.498066\pi\)
0.00607614 + 0.999982i \(0.498066\pi\)
\(108\) 0 0
\(109\) −9.64659 −0.923976 −0.461988 0.886886i \(-0.652864\pi\)
−0.461988 + 0.886886i \(0.652864\pi\)
\(110\) 1.34320 0.128069
\(111\) 0 0
\(112\) −3.19859 −0.302238
\(113\) 3.10847 0.292420 0.146210 0.989254i \(-0.453292\pi\)
0.146210 + 0.989254i \(0.453292\pi\)
\(114\) 0 0
\(115\) 10.8720 1.01382
\(116\) 0 0
\(117\) 0 0
\(118\) −6.46797 −0.595425
\(119\) 9.13987 0.837850
\(120\) 0 0
\(121\) −10.0825 −0.916587
\(122\) 2.18108 0.197466
\(123\) 0 0
\(124\) 4.14861 0.372556
\(125\) −11.9625 −1.06996
\(126\) 0 0
\(127\) 3.92002 0.347846 0.173923 0.984759i \(-0.444356\pi\)
0.173923 + 0.984759i \(0.444356\pi\)
\(128\) 10.6802 0.944005
\(129\) 0 0
\(130\) −9.16118 −0.803489
\(131\) −16.4949 −1.44117 −0.720585 0.693367i \(-0.756127\pi\)
−0.720585 + 0.693367i \(0.756127\pi\)
\(132\) 0 0
\(133\) −10.3422 −0.896782
\(134\) −8.40960 −0.726479
\(135\) 0 0
\(136\) −9.32786 −0.799857
\(137\) −3.04505 −0.260156 −0.130078 0.991504i \(-0.541523\pi\)
−0.130078 + 0.991504i \(0.541523\pi\)
\(138\) 0 0
\(139\) 11.2805 0.956803 0.478401 0.878141i \(-0.341216\pi\)
0.478401 + 0.878141i \(0.341216\pi\)
\(140\) 7.33105 0.619587
\(141\) 0 0
\(142\) −3.19910 −0.268463
\(143\) −6.25807 −0.523326
\(144\) 0 0
\(145\) 0 0
\(146\) 6.31793 0.522875
\(147\) 0 0
\(148\) −2.82277 −0.232030
\(149\) −4.89777 −0.401241 −0.200621 0.979669i \(-0.564296\pi\)
−0.200621 + 0.979669i \(0.564296\pi\)
\(150\) 0 0
\(151\) 17.0267 1.38561 0.692805 0.721125i \(-0.256375\pi\)
0.692805 + 0.721125i \(0.256375\pi\)
\(152\) 10.5549 0.856117
\(153\) 0 0
\(154\) −1.59421 −0.128465
\(155\) −5.51795 −0.443213
\(156\) 0 0
\(157\) −20.3897 −1.62728 −0.813639 0.581371i \(-0.802517\pi\)
−0.813639 + 0.581371i \(0.802517\pi\)
\(158\) 2.97976 0.237057
\(159\) 0 0
\(160\) −11.7364 −0.927846
\(161\) −12.9037 −1.01696
\(162\) 0 0
\(163\) −7.63026 −0.597648 −0.298824 0.954308i \(-0.596594\pi\)
−0.298824 + 0.954308i \(0.596594\pi\)
\(164\) −17.9440 −1.40119
\(165\) 0 0
\(166\) 11.2450 0.872779
\(167\) 21.7308 1.68158 0.840791 0.541360i \(-0.182090\pi\)
0.840791 + 0.541360i \(0.182090\pi\)
\(168\) 0 0
\(169\) 29.6828 2.28329
\(170\) 5.35157 0.410446
\(171\) 0 0
\(172\) −5.61975 −0.428502
\(173\) −4.01358 −0.305147 −0.152573 0.988292i \(-0.548756\pi\)
−0.152573 + 0.988292i \(0.548756\pi\)
\(174\) 0 0
\(175\) 2.22358 0.168087
\(176\) −1.27935 −0.0964344
\(177\) 0 0
\(178\) −10.7319 −0.804393
\(179\) 3.86773 0.289088 0.144544 0.989498i \(-0.453829\pi\)
0.144544 + 0.989498i \(0.453829\pi\)
\(180\) 0 0
\(181\) 16.6298 1.23608 0.618042 0.786145i \(-0.287926\pi\)
0.618042 + 0.786145i \(0.287926\pi\)
\(182\) 10.8732 0.805975
\(183\) 0 0
\(184\) 13.1691 0.970841
\(185\) 3.75449 0.276036
\(186\) 0 0
\(187\) 3.65569 0.267331
\(188\) 4.90421 0.357676
\(189\) 0 0
\(190\) −6.05555 −0.439316
\(191\) −2.64112 −0.191105 −0.0955525 0.995424i \(-0.530462\pi\)
−0.0955525 + 0.995424i \(0.530462\pi\)
\(192\) 0 0
\(193\) −6.54111 −0.470839 −0.235420 0.971894i \(-0.575646\pi\)
−0.235420 + 0.971894i \(0.575646\pi\)
\(194\) 10.9544 0.786482
\(195\) 0 0
\(196\) 1.91838 0.137027
\(197\) 9.82434 0.699956 0.349978 0.936758i \(-0.386189\pi\)
0.349978 + 0.936758i \(0.386189\pi\)
\(198\) 0 0
\(199\) 0.524712 0.0371958 0.0185979 0.999827i \(-0.494080\pi\)
0.0185979 + 0.999827i \(0.494080\pi\)
\(200\) −2.26931 −0.160465
\(201\) 0 0
\(202\) −6.43269 −0.452603
\(203\) 0 0
\(204\) 0 0
\(205\) 23.8669 1.66694
\(206\) −7.36256 −0.512974
\(207\) 0 0
\(208\) 8.72570 0.605019
\(209\) −4.13659 −0.286134
\(210\) 0 0
\(211\) −16.5476 −1.13919 −0.569593 0.821927i \(-0.692899\pi\)
−0.569593 + 0.821927i \(0.692899\pi\)
\(212\) 3.44027 0.236279
\(213\) 0 0
\(214\) −0.0873567 −0.00597158
\(215\) 7.47469 0.509769
\(216\) 0 0
\(217\) 6.54913 0.444584
\(218\) 6.70379 0.454038
\(219\) 0 0
\(220\) 2.93222 0.197690
\(221\) −24.9334 −1.67720
\(222\) 0 0
\(223\) −11.7450 −0.786504 −0.393252 0.919431i \(-0.628650\pi\)
−0.393252 + 0.919431i \(0.628650\pi\)
\(224\) 13.9297 0.930716
\(225\) 0 0
\(226\) −2.16019 −0.143694
\(227\) 21.3071 1.41420 0.707100 0.707114i \(-0.250003\pi\)
0.707100 + 0.707114i \(0.250003\pi\)
\(228\) 0 0
\(229\) −0.183313 −0.0121137 −0.00605683 0.999982i \(-0.501928\pi\)
−0.00605683 + 0.999982i \(0.501928\pi\)
\(230\) −7.55538 −0.498187
\(231\) 0 0
\(232\) 0 0
\(233\) 23.8810 1.56449 0.782247 0.622969i \(-0.214074\pi\)
0.782247 + 0.622969i \(0.214074\pi\)
\(234\) 0 0
\(235\) −6.52296 −0.425511
\(236\) −14.1197 −0.919113
\(237\) 0 0
\(238\) −6.35165 −0.411716
\(239\) 8.40937 0.543957 0.271979 0.962303i \(-0.412322\pi\)
0.271979 + 0.962303i \(0.412322\pi\)
\(240\) 0 0
\(241\) −0.538363 −0.0346790 −0.0173395 0.999850i \(-0.505520\pi\)
−0.0173395 + 0.999850i \(0.505520\pi\)
\(242\) 7.00668 0.450407
\(243\) 0 0
\(244\) 4.76133 0.304813
\(245\) −2.55158 −0.163015
\(246\) 0 0
\(247\) 28.2134 1.79517
\(248\) −6.68383 −0.424424
\(249\) 0 0
\(250\) 8.31319 0.525772
\(251\) −1.71008 −0.107939 −0.0539695 0.998543i \(-0.517187\pi\)
−0.0539695 + 0.998543i \(0.517187\pi\)
\(252\) 0 0
\(253\) −5.16114 −0.324478
\(254\) −2.72417 −0.170930
\(255\) 0 0
\(256\) −10.1638 −0.635240
\(257\) 18.0843 1.12807 0.564034 0.825752i \(-0.309249\pi\)
0.564034 + 0.825752i \(0.309249\pi\)
\(258\) 0 0
\(259\) −4.45612 −0.276890
\(260\) −19.9990 −1.24028
\(261\) 0 0
\(262\) 11.4630 0.708185
\(263\) 0.965486 0.0595344 0.0297672 0.999557i \(-0.490523\pi\)
0.0297672 + 0.999557i \(0.490523\pi\)
\(264\) 0 0
\(265\) −4.57581 −0.281090
\(266\) 7.18719 0.440675
\(267\) 0 0
\(268\) −18.3583 −1.12141
\(269\) 9.70803 0.591909 0.295955 0.955202i \(-0.404362\pi\)
0.295955 + 0.955202i \(0.404362\pi\)
\(270\) 0 0
\(271\) −16.9509 −1.02969 −0.514845 0.857283i \(-0.672151\pi\)
−0.514845 + 0.857283i \(0.672151\pi\)
\(272\) −5.09718 −0.309062
\(273\) 0 0
\(274\) 2.11612 0.127840
\(275\) 0.889370 0.0536310
\(276\) 0 0
\(277\) −22.0209 −1.32311 −0.661554 0.749897i \(-0.730103\pi\)
−0.661554 + 0.749897i \(0.730103\pi\)
\(278\) −7.83928 −0.470169
\(279\) 0 0
\(280\) −11.8111 −0.705847
\(281\) −10.7284 −0.640003 −0.320001 0.947417i \(-0.603683\pi\)
−0.320001 + 0.947417i \(0.603683\pi\)
\(282\) 0 0
\(283\) 15.2187 0.904656 0.452328 0.891852i \(-0.350594\pi\)
0.452328 + 0.891852i \(0.350594\pi\)
\(284\) −6.98368 −0.414405
\(285\) 0 0
\(286\) 4.34898 0.257160
\(287\) −28.3271 −1.67209
\(288\) 0 0
\(289\) −2.43497 −0.143234
\(290\) 0 0
\(291\) 0 0
\(292\) 13.7921 0.807123
\(293\) 23.1861 1.35455 0.677274 0.735731i \(-0.263161\pi\)
0.677274 + 0.735731i \(0.263161\pi\)
\(294\) 0 0
\(295\) 18.7802 1.09343
\(296\) 4.54777 0.264334
\(297\) 0 0
\(298\) 3.40365 0.197168
\(299\) 35.2012 2.03574
\(300\) 0 0
\(301\) −8.87153 −0.511346
\(302\) −11.8325 −0.680883
\(303\) 0 0
\(304\) 5.76770 0.330800
\(305\) −6.33292 −0.362622
\(306\) 0 0
\(307\) 18.8555 1.07614 0.538070 0.842900i \(-0.319154\pi\)
0.538070 + 0.842900i \(0.319154\pi\)
\(308\) −3.48018 −0.198302
\(309\) 0 0
\(310\) 3.83464 0.217793
\(311\) 27.1467 1.53935 0.769675 0.638436i \(-0.220418\pi\)
0.769675 + 0.638436i \(0.220418\pi\)
\(312\) 0 0
\(313\) 7.41189 0.418945 0.209472 0.977815i \(-0.432825\pi\)
0.209472 + 0.977815i \(0.432825\pi\)
\(314\) 14.1696 0.799637
\(315\) 0 0
\(316\) 6.50487 0.365927
\(317\) 2.23194 0.125358 0.0626790 0.998034i \(-0.480036\pi\)
0.0626790 + 0.998034i \(0.480036\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.76617 0.154633
\(321\) 0 0
\(322\) 8.96730 0.499728
\(323\) −16.4810 −0.917029
\(324\) 0 0
\(325\) −6.06589 −0.336475
\(326\) 5.30256 0.293682
\(327\) 0 0
\(328\) 28.9097 1.59627
\(329\) 7.74194 0.426827
\(330\) 0 0
\(331\) 23.2235 1.27648 0.638241 0.769837i \(-0.279663\pi\)
0.638241 + 0.769837i \(0.279663\pi\)
\(332\) 24.5479 1.34724
\(333\) 0 0
\(334\) −15.1016 −0.826322
\(335\) 24.4179 1.33409
\(336\) 0 0
\(337\) −27.0723 −1.47472 −0.737362 0.675498i \(-0.763929\pi\)
−0.737362 + 0.675498i \(0.763929\pi\)
\(338\) −20.6277 −1.12200
\(339\) 0 0
\(340\) 11.6825 0.633575
\(341\) 2.61947 0.141852
\(342\) 0 0
\(343\) 19.7926 1.06870
\(344\) 9.05400 0.488159
\(345\) 0 0
\(346\) 2.78919 0.149948
\(347\) 33.0378 1.77356 0.886780 0.462191i \(-0.152937\pi\)
0.886780 + 0.462191i \(0.152937\pi\)
\(348\) 0 0
\(349\) 6.36434 0.340675 0.170338 0.985386i \(-0.445514\pi\)
0.170338 + 0.985386i \(0.445514\pi\)
\(350\) −1.54525 −0.0825971
\(351\) 0 0
\(352\) 5.57149 0.296961
\(353\) −17.5725 −0.935292 −0.467646 0.883916i \(-0.654898\pi\)
−0.467646 + 0.883916i \(0.654898\pi\)
\(354\) 0 0
\(355\) 9.28882 0.492999
\(356\) −23.4280 −1.24168
\(357\) 0 0
\(358\) −2.68783 −0.142056
\(359\) 7.81990 0.412719 0.206359 0.978476i \(-0.433838\pi\)
0.206359 + 0.978476i \(0.433838\pi\)
\(360\) 0 0
\(361\) −0.350934 −0.0184702
\(362\) −11.5567 −0.607407
\(363\) 0 0
\(364\) 23.7363 1.24412
\(365\) −18.3446 −0.960198
\(366\) 0 0
\(367\) −29.1659 −1.52245 −0.761224 0.648489i \(-0.775401\pi\)
−0.761224 + 0.648489i \(0.775401\pi\)
\(368\) 7.19623 0.375130
\(369\) 0 0
\(370\) −2.60914 −0.135643
\(371\) 5.43093 0.281960
\(372\) 0 0
\(373\) −5.85615 −0.303220 −0.151610 0.988440i \(-0.548446\pi\)
−0.151610 + 0.988440i \(0.548446\pi\)
\(374\) −2.54048 −0.131365
\(375\) 0 0
\(376\) −7.90118 −0.407472
\(377\) 0 0
\(378\) 0 0
\(379\) 2.31759 0.119046 0.0595232 0.998227i \(-0.481042\pi\)
0.0595232 + 0.998227i \(0.481042\pi\)
\(380\) −13.2194 −0.678139
\(381\) 0 0
\(382\) 1.83542 0.0939082
\(383\) 18.2436 0.932206 0.466103 0.884730i \(-0.345658\pi\)
0.466103 + 0.884730i \(0.345658\pi\)
\(384\) 0 0
\(385\) 4.62890 0.235910
\(386\) 4.54567 0.231368
\(387\) 0 0
\(388\) 23.9137 1.21403
\(389\) 29.6576 1.50370 0.751850 0.659335i \(-0.229162\pi\)
0.751850 + 0.659335i \(0.229162\pi\)
\(390\) 0 0
\(391\) −20.5630 −1.03992
\(392\) −3.09070 −0.156104
\(393\) 0 0
\(394\) −6.82732 −0.343955
\(395\) −8.65195 −0.435327
\(396\) 0 0
\(397\) 2.03228 0.101997 0.0509985 0.998699i \(-0.483760\pi\)
0.0509985 + 0.998699i \(0.483760\pi\)
\(398\) −0.364643 −0.0182779
\(399\) 0 0
\(400\) −1.24006 −0.0620029
\(401\) 0.142599 0.00712106 0.00356053 0.999994i \(-0.498867\pi\)
0.00356053 + 0.999994i \(0.498867\pi\)
\(402\) 0 0
\(403\) −17.8659 −0.889965
\(404\) −14.0427 −0.698648
\(405\) 0 0
\(406\) 0 0
\(407\) −1.78232 −0.0883465
\(408\) 0 0
\(409\) 20.7433 1.02569 0.512845 0.858481i \(-0.328592\pi\)
0.512845 + 0.858481i \(0.328592\pi\)
\(410\) −16.5860 −0.819125
\(411\) 0 0
\(412\) −16.0726 −0.791839
\(413\) −22.2898 −1.09681
\(414\) 0 0
\(415\) −32.6506 −1.60275
\(416\) −38.0000 −1.86310
\(417\) 0 0
\(418\) 2.87468 0.140605
\(419\) −6.55154 −0.320064 −0.160032 0.987112i \(-0.551160\pi\)
−0.160032 + 0.987112i \(0.551160\pi\)
\(420\) 0 0
\(421\) −8.62850 −0.420527 −0.210264 0.977645i \(-0.567432\pi\)
−0.210264 + 0.977645i \(0.567432\pi\)
\(422\) 11.4996 0.559791
\(423\) 0 0
\(424\) −5.54263 −0.269174
\(425\) 3.54343 0.171882
\(426\) 0 0
\(427\) 7.51640 0.363744
\(428\) −0.190701 −0.00921788
\(429\) 0 0
\(430\) −5.19445 −0.250499
\(431\) −31.5733 −1.52083 −0.760417 0.649435i \(-0.775006\pi\)
−0.760417 + 0.649435i \(0.775006\pi\)
\(432\) 0 0
\(433\) 3.15030 0.151394 0.0756969 0.997131i \(-0.475882\pi\)
0.0756969 + 0.997131i \(0.475882\pi\)
\(434\) −4.55124 −0.218467
\(435\) 0 0
\(436\) 14.6345 0.700863
\(437\) 23.2680 1.11306
\(438\) 0 0
\(439\) 22.8086 1.08859 0.544296 0.838893i \(-0.316797\pi\)
0.544296 + 0.838893i \(0.316797\pi\)
\(440\) −4.72410 −0.225213
\(441\) 0 0
\(442\) 17.3272 0.824171
\(443\) 19.1260 0.908705 0.454353 0.890822i \(-0.349871\pi\)
0.454353 + 0.890822i \(0.349871\pi\)
\(444\) 0 0
\(445\) 31.1610 1.47717
\(446\) 8.16206 0.386485
\(447\) 0 0
\(448\) −3.28310 −0.155112
\(449\) −39.7898 −1.87780 −0.938898 0.344196i \(-0.888152\pi\)
−0.938898 + 0.344196i \(0.888152\pi\)
\(450\) 0 0
\(451\) −11.3300 −0.533511
\(452\) −4.71573 −0.221809
\(453\) 0 0
\(454\) −14.8071 −0.694932
\(455\) −31.5711 −1.48008
\(456\) 0 0
\(457\) 29.2169 1.36671 0.683355 0.730086i \(-0.260520\pi\)
0.683355 + 0.730086i \(0.260520\pi\)
\(458\) 0.127391 0.00595260
\(459\) 0 0
\(460\) −16.4935 −0.769013
\(461\) 0.982645 0.0457663 0.0228832 0.999738i \(-0.492715\pi\)
0.0228832 + 0.999738i \(0.492715\pi\)
\(462\) 0 0
\(463\) −10.1420 −0.471340 −0.235670 0.971833i \(-0.575728\pi\)
−0.235670 + 0.971833i \(0.575728\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −16.5958 −0.768785
\(467\) 17.9779 0.831917 0.415959 0.909384i \(-0.363446\pi\)
0.415959 + 0.909384i \(0.363446\pi\)
\(468\) 0 0
\(469\) −28.9810 −1.33822
\(470\) 4.53305 0.209094
\(471\) 0 0
\(472\) 22.7483 1.04707
\(473\) −3.54837 −0.163154
\(474\) 0 0
\(475\) −4.00956 −0.183971
\(476\) −13.8657 −0.635535
\(477\) 0 0
\(478\) −5.84400 −0.267298
\(479\) 20.5926 0.940902 0.470451 0.882426i \(-0.344091\pi\)
0.470451 + 0.882426i \(0.344091\pi\)
\(480\) 0 0
\(481\) 12.1562 0.554276
\(482\) 0.374129 0.0170411
\(483\) 0 0
\(484\) 15.2957 0.695259
\(485\) −31.8070 −1.44428
\(486\) 0 0
\(487\) 15.9915 0.724643 0.362321 0.932053i \(-0.381984\pi\)
0.362321 + 0.932053i \(0.381984\pi\)
\(488\) −7.67099 −0.347250
\(489\) 0 0
\(490\) 1.77319 0.0801047
\(491\) −10.2005 −0.460341 −0.230171 0.973150i \(-0.573928\pi\)
−0.230171 + 0.973150i \(0.573928\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −19.6066 −0.882141
\(495\) 0 0
\(496\) −3.65236 −0.163996
\(497\) −11.0247 −0.494525
\(498\) 0 0
\(499\) −6.15200 −0.275401 −0.137701 0.990474i \(-0.543971\pi\)
−0.137701 + 0.990474i \(0.543971\pi\)
\(500\) 18.1478 0.811595
\(501\) 0 0
\(502\) 1.18840 0.0530408
\(503\) −20.2354 −0.902253 −0.451126 0.892460i \(-0.648978\pi\)
−0.451126 + 0.892460i \(0.648978\pi\)
\(504\) 0 0
\(505\) 18.6778 0.831150
\(506\) 3.58667 0.159447
\(507\) 0 0
\(508\) −5.94691 −0.263851
\(509\) 4.05922 0.179922 0.0899608 0.995945i \(-0.471326\pi\)
0.0899608 + 0.995945i \(0.471326\pi\)
\(510\) 0 0
\(511\) 21.7727 0.963168
\(512\) −14.2971 −0.631851
\(513\) 0 0
\(514\) −12.5675 −0.554328
\(515\) 21.3777 0.942015
\(516\) 0 0
\(517\) 3.09656 0.136187
\(518\) 3.09673 0.136062
\(519\) 0 0
\(520\) 32.2204 1.41296
\(521\) −10.9066 −0.477828 −0.238914 0.971041i \(-0.576791\pi\)
−0.238914 + 0.971041i \(0.576791\pi\)
\(522\) 0 0
\(523\) 3.65147 0.159668 0.0798339 0.996808i \(-0.474561\pi\)
0.0798339 + 0.996808i \(0.474561\pi\)
\(524\) 25.0238 1.09317
\(525\) 0 0
\(526\) −0.670954 −0.0292550
\(527\) 10.4365 0.454621
\(528\) 0 0
\(529\) 6.03100 0.262217
\(530\) 3.17991 0.138126
\(531\) 0 0
\(532\) 15.6897 0.680237
\(533\) 77.2758 3.34719
\(534\) 0 0
\(535\) 0.253646 0.0109661
\(536\) 29.5771 1.27754
\(537\) 0 0
\(538\) −6.74649 −0.290862
\(539\) 1.21128 0.0521736
\(540\) 0 0
\(541\) 33.9307 1.45879 0.729397 0.684091i \(-0.239801\pi\)
0.729397 + 0.684091i \(0.239801\pi\)
\(542\) 11.7798 0.505986
\(543\) 0 0
\(544\) 22.1979 0.951729
\(545\) −19.4649 −0.833785
\(546\) 0 0
\(547\) 19.6642 0.840779 0.420389 0.907344i \(-0.361893\pi\)
0.420389 + 0.907344i \(0.361893\pi\)
\(548\) 4.61953 0.197336
\(549\) 0 0
\(550\) −0.618057 −0.0263541
\(551\) 0 0
\(552\) 0 0
\(553\) 10.2688 0.436674
\(554\) 15.3032 0.650170
\(555\) 0 0
\(556\) −17.1133 −0.725764
\(557\) 38.2463 1.62055 0.810275 0.586050i \(-0.199318\pi\)
0.810275 + 0.586050i \(0.199318\pi\)
\(558\) 0 0
\(559\) 24.2014 1.02361
\(560\) −6.45412 −0.272737
\(561\) 0 0
\(562\) 7.45558 0.314495
\(563\) −23.4745 −0.989330 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(564\) 0 0
\(565\) 6.27228 0.263877
\(566\) −10.5760 −0.444544
\(567\) 0 0
\(568\) 11.2514 0.472100
\(569\) −3.40949 −0.142933 −0.0714665 0.997443i \(-0.522768\pi\)
−0.0714665 + 0.997443i \(0.522768\pi\)
\(570\) 0 0
\(571\) 23.2044 0.971073 0.485536 0.874216i \(-0.338624\pi\)
0.485536 + 0.874216i \(0.338624\pi\)
\(572\) 9.49387 0.396959
\(573\) 0 0
\(574\) 19.6856 0.821660
\(575\) −5.00264 −0.208624
\(576\) 0 0
\(577\) 0.293784 0.0122304 0.00611519 0.999981i \(-0.498053\pi\)
0.00611519 + 0.999981i \(0.498053\pi\)
\(578\) 1.69216 0.0703844
\(579\) 0 0
\(580\) 0 0
\(581\) 38.7522 1.60771
\(582\) 0 0
\(583\) 2.17222 0.0899642
\(584\) −22.2205 −0.919492
\(585\) 0 0
\(586\) −16.1129 −0.665619
\(587\) 2.75456 0.113693 0.0568465 0.998383i \(-0.481895\pi\)
0.0568465 + 0.998383i \(0.481895\pi\)
\(588\) 0 0
\(589\) −11.8094 −0.486598
\(590\) −13.0511 −0.537305
\(591\) 0 0
\(592\) 2.48512 0.102138
\(593\) 20.7991 0.854116 0.427058 0.904224i \(-0.359550\pi\)
0.427058 + 0.904224i \(0.359550\pi\)
\(594\) 0 0
\(595\) 18.4425 0.756067
\(596\) 7.43022 0.304354
\(597\) 0 0
\(598\) −24.4627 −1.00035
\(599\) 34.9339 1.42736 0.713681 0.700471i \(-0.247027\pi\)
0.713681 + 0.700471i \(0.247027\pi\)
\(600\) 0 0
\(601\) −2.88126 −0.117529 −0.0587646 0.998272i \(-0.518716\pi\)
−0.0587646 + 0.998272i \(0.518716\pi\)
\(602\) 6.16517 0.251273
\(603\) 0 0
\(604\) −25.8305 −1.05103
\(605\) −20.3444 −0.827118
\(606\) 0 0
\(607\) −22.2741 −0.904076 −0.452038 0.891999i \(-0.649303\pi\)
−0.452038 + 0.891999i \(0.649303\pi\)
\(608\) −25.1180 −1.01867
\(609\) 0 0
\(610\) 4.40099 0.178191
\(611\) −21.1199 −0.854420
\(612\) 0 0
\(613\) 1.67163 0.0675166 0.0337583 0.999430i \(-0.489252\pi\)
0.0337583 + 0.999430i \(0.489252\pi\)
\(614\) −13.1034 −0.528810
\(615\) 0 0
\(616\) 5.60693 0.225909
\(617\) 14.4007 0.579752 0.289876 0.957064i \(-0.406386\pi\)
0.289876 + 0.957064i \(0.406386\pi\)
\(618\) 0 0
\(619\) 2.74833 0.110465 0.0552324 0.998474i \(-0.482410\pi\)
0.0552324 + 0.998474i \(0.482410\pi\)
\(620\) 8.37107 0.336190
\(621\) 0 0
\(622\) −18.8653 −0.756430
\(623\) −36.9842 −1.48174
\(624\) 0 0
\(625\) −19.4956 −0.779824
\(626\) −5.15081 −0.205868
\(627\) 0 0
\(628\) 30.9324 1.23434
\(629\) −7.10114 −0.283141
\(630\) 0 0
\(631\) −9.07172 −0.361139 −0.180570 0.983562i \(-0.557794\pi\)
−0.180570 + 0.983562i \(0.557794\pi\)
\(632\) −10.4800 −0.416872
\(633\) 0 0
\(634\) −1.55106 −0.0616004
\(635\) 7.90983 0.313892
\(636\) 0 0
\(637\) −8.26146 −0.327331
\(638\) 0 0
\(639\) 0 0
\(640\) 21.5505 0.851860
\(641\) −11.3851 −0.449686 −0.224843 0.974395i \(-0.572187\pi\)
−0.224843 + 0.974395i \(0.572187\pi\)
\(642\) 0 0
\(643\) −10.8211 −0.426742 −0.213371 0.976971i \(-0.568444\pi\)
−0.213371 + 0.976971i \(0.568444\pi\)
\(644\) 19.5757 0.771392
\(645\) 0 0
\(646\) 11.4533 0.450624
\(647\) 22.0900 0.868448 0.434224 0.900805i \(-0.357023\pi\)
0.434224 + 0.900805i \(0.357023\pi\)
\(648\) 0 0
\(649\) −8.91530 −0.349956
\(650\) 4.21542 0.165342
\(651\) 0 0
\(652\) 11.5756 0.453334
\(653\) 19.3795 0.758377 0.379189 0.925319i \(-0.376203\pi\)
0.379189 + 0.925319i \(0.376203\pi\)
\(654\) 0 0
\(655\) −33.2836 −1.30050
\(656\) 15.7976 0.616793
\(657\) 0 0
\(658\) −5.38018 −0.209741
\(659\) 6.69003 0.260607 0.130303 0.991474i \(-0.458405\pi\)
0.130303 + 0.991474i \(0.458405\pi\)
\(660\) 0 0
\(661\) −44.4774 −1.72997 −0.864985 0.501798i \(-0.832672\pi\)
−0.864985 + 0.501798i \(0.832672\pi\)
\(662\) −16.1389 −0.627257
\(663\) 0 0
\(664\) −39.5493 −1.53481
\(665\) −20.8685 −0.809247
\(666\) 0 0
\(667\) 0 0
\(668\) −32.9670 −1.27553
\(669\) 0 0
\(670\) −16.9689 −0.655567
\(671\) 3.00635 0.116059
\(672\) 0 0
\(673\) 21.0755 0.812402 0.406201 0.913784i \(-0.366853\pi\)
0.406201 + 0.913784i \(0.366853\pi\)
\(674\) 18.8136 0.724673
\(675\) 0 0
\(676\) −45.0306 −1.73194
\(677\) 3.58338 0.137720 0.0688602 0.997626i \(-0.478064\pi\)
0.0688602 + 0.997626i \(0.478064\pi\)
\(678\) 0 0
\(679\) 37.7509 1.44875
\(680\) −18.8218 −0.721782
\(681\) 0 0
\(682\) −1.82037 −0.0697056
\(683\) 13.4710 0.515454 0.257727 0.966218i \(-0.417027\pi\)
0.257727 + 0.966218i \(0.417027\pi\)
\(684\) 0 0
\(685\) −6.14432 −0.234762
\(686\) −13.7546 −0.525154
\(687\) 0 0
\(688\) 4.94753 0.188623
\(689\) −14.8155 −0.564425
\(690\) 0 0
\(691\) 17.4813 0.665021 0.332511 0.943100i \(-0.392104\pi\)
0.332511 + 0.943100i \(0.392104\pi\)
\(692\) 6.08884 0.231463
\(693\) 0 0
\(694\) −22.9592 −0.871520
\(695\) 22.7619 0.863408
\(696\) 0 0
\(697\) −45.1412 −1.70984
\(698\) −4.42283 −0.167406
\(699\) 0 0
\(700\) −3.37330 −0.127499
\(701\) 29.5015 1.11426 0.557128 0.830427i \(-0.311903\pi\)
0.557128 + 0.830427i \(0.311903\pi\)
\(702\) 0 0
\(703\) 8.03528 0.303056
\(704\) −1.31315 −0.0494911
\(705\) 0 0
\(706\) 12.2118 0.459598
\(707\) −22.1682 −0.833722
\(708\) 0 0
\(709\) 24.6468 0.925630 0.462815 0.886455i \(-0.346839\pi\)
0.462815 + 0.886455i \(0.346839\pi\)
\(710\) −6.45516 −0.242258
\(711\) 0 0
\(712\) 37.7449 1.41455
\(713\) −14.7343 −0.551805
\(714\) 0 0
\(715\) −12.6276 −0.472244
\(716\) −5.86758 −0.219282
\(717\) 0 0
\(718\) −5.43435 −0.202808
\(719\) 1.38271 0.0515665 0.0257833 0.999668i \(-0.491792\pi\)
0.0257833 + 0.999668i \(0.491792\pi\)
\(720\) 0 0
\(721\) −25.3727 −0.944929
\(722\) 0.243877 0.00907617
\(723\) 0 0
\(724\) −25.2284 −0.937607
\(725\) 0 0
\(726\) 0 0
\(727\) −37.7570 −1.40033 −0.700164 0.713982i \(-0.746890\pi\)
−0.700164 + 0.713982i \(0.746890\pi\)
\(728\) −38.2417 −1.41733
\(729\) 0 0
\(730\) 12.7483 0.471837
\(731\) −14.1374 −0.522891
\(732\) 0 0
\(733\) 32.5735 1.20313 0.601564 0.798824i \(-0.294544\pi\)
0.601564 + 0.798824i \(0.294544\pi\)
\(734\) 20.2685 0.748125
\(735\) 0 0
\(736\) −31.3392 −1.15518
\(737\) −11.5916 −0.426982
\(738\) 0 0
\(739\) 37.9628 1.39648 0.698241 0.715863i \(-0.253966\pi\)
0.698241 + 0.715863i \(0.253966\pi\)
\(740\) −5.69579 −0.209381
\(741\) 0 0
\(742\) −3.77416 −0.138554
\(743\) −13.1194 −0.481306 −0.240653 0.970611i \(-0.577362\pi\)
−0.240653 + 0.970611i \(0.577362\pi\)
\(744\) 0 0
\(745\) −9.88275 −0.362076
\(746\) 4.06966 0.149001
\(747\) 0 0
\(748\) −5.54591 −0.202779
\(749\) −0.301047 −0.0110000
\(750\) 0 0
\(751\) 28.1170 1.02601 0.513003 0.858387i \(-0.328533\pi\)
0.513003 + 0.858387i \(0.328533\pi\)
\(752\) −4.31758 −0.157446
\(753\) 0 0
\(754\) 0 0
\(755\) 34.3565 1.25036
\(756\) 0 0
\(757\) 19.0677 0.693028 0.346514 0.938045i \(-0.387365\pi\)
0.346514 + 0.938045i \(0.387365\pi\)
\(758\) −1.61058 −0.0584989
\(759\) 0 0
\(760\) 21.2977 0.772550
\(761\) −8.84457 −0.320615 −0.160308 0.987067i \(-0.551249\pi\)
−0.160308 + 0.987067i \(0.551249\pi\)
\(762\) 0 0
\(763\) 23.1025 0.836365
\(764\) 4.00674 0.144959
\(765\) 0 0
\(766\) −12.6782 −0.458082
\(767\) 60.8062 2.19559
\(768\) 0 0
\(769\) 14.4007 0.519303 0.259651 0.965702i \(-0.416392\pi\)
0.259651 + 0.965702i \(0.416392\pi\)
\(770\) −3.21680 −0.115925
\(771\) 0 0
\(772\) 9.92326 0.357146
\(773\) −5.71792 −0.205659 −0.102830 0.994699i \(-0.532790\pi\)
−0.102830 + 0.994699i \(0.532790\pi\)
\(774\) 0 0
\(775\) 2.53903 0.0912045
\(776\) −38.5274 −1.38305
\(777\) 0 0
\(778\) −20.6102 −0.738911
\(779\) 51.0794 1.83011
\(780\) 0 0
\(781\) −4.40957 −0.157787
\(782\) 14.2900 0.511010
\(783\) 0 0
\(784\) −1.68890 −0.0603180
\(785\) −41.1425 −1.46844
\(786\) 0 0
\(787\) 38.7631 1.38176 0.690878 0.722972i \(-0.257224\pi\)
0.690878 + 0.722972i \(0.257224\pi\)
\(788\) −14.9041 −0.530937
\(789\) 0 0
\(790\) 6.01258 0.213918
\(791\) −7.44442 −0.264693
\(792\) 0 0
\(793\) −20.5046 −0.728140
\(794\) −1.41231 −0.0501209
\(795\) 0 0
\(796\) −0.796020 −0.0282142
\(797\) 3.16247 0.112021 0.0560103 0.998430i \(-0.482162\pi\)
0.0560103 + 0.998430i \(0.482162\pi\)
\(798\) 0 0
\(799\) 12.3373 0.436464
\(800\) 5.40039 0.190933
\(801\) 0 0
\(802\) −0.0990976 −0.00349926
\(803\) 8.70848 0.307316
\(804\) 0 0
\(805\) −26.0372 −0.917690
\(806\) 12.4157 0.437325
\(807\) 0 0
\(808\) 22.6242 0.795916
\(809\) 11.8313 0.415965 0.207983 0.978133i \(-0.433310\pi\)
0.207983 + 0.978133i \(0.433310\pi\)
\(810\) 0 0
\(811\) −11.2027 −0.393381 −0.196691 0.980466i \(-0.563019\pi\)
−0.196691 + 0.980466i \(0.563019\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.23861 0.0434131
\(815\) −15.3964 −0.539311
\(816\) 0 0
\(817\) 15.9972 0.559670
\(818\) −14.4153 −0.504020
\(819\) 0 0
\(820\) −36.2075 −1.26442
\(821\) −14.8331 −0.517678 −0.258839 0.965920i \(-0.583340\pi\)
−0.258839 + 0.965920i \(0.583340\pi\)
\(822\) 0 0
\(823\) −43.8191 −1.52744 −0.763719 0.645548i \(-0.776629\pi\)
−0.763719 + 0.645548i \(0.776629\pi\)
\(824\) 25.8946 0.902080
\(825\) 0 0
\(826\) 15.4900 0.538967
\(827\) −7.62477 −0.265139 −0.132570 0.991174i \(-0.542323\pi\)
−0.132570 + 0.991174i \(0.542323\pi\)
\(828\) 0 0
\(829\) 20.4341 0.709707 0.354854 0.934922i \(-0.384531\pi\)
0.354854 + 0.934922i \(0.384531\pi\)
\(830\) 22.6901 0.787587
\(831\) 0 0
\(832\) 8.95624 0.310502
\(833\) 4.82599 0.167211
\(834\) 0 0
\(835\) 43.8485 1.51744
\(836\) 6.27546 0.217041
\(837\) 0 0
\(838\) 4.55292 0.157278
\(839\) 16.9391 0.584802 0.292401 0.956296i \(-0.405546\pi\)
0.292401 + 0.956296i \(0.405546\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 5.99628 0.206645
\(843\) 0 0
\(844\) 25.1038 0.864107
\(845\) 59.8940 2.06042
\(846\) 0 0
\(847\) 24.1463 0.829677
\(848\) −3.02875 −0.104008
\(849\) 0 0
\(850\) −2.46247 −0.0844619
\(851\) 10.0254 0.343668
\(852\) 0 0
\(853\) 9.95085 0.340711 0.170355 0.985383i \(-0.445508\pi\)
0.170355 + 0.985383i \(0.445508\pi\)
\(854\) −5.22343 −0.178742
\(855\) 0 0
\(856\) 0.307239 0.0105012
\(857\) −32.4424 −1.10821 −0.554106 0.832446i \(-0.686940\pi\)
−0.554106 + 0.832446i \(0.686940\pi\)
\(858\) 0 0
\(859\) 51.9501 1.77252 0.886258 0.463192i \(-0.153296\pi\)
0.886258 + 0.463192i \(0.153296\pi\)
\(860\) −11.3396 −0.386675
\(861\) 0 0
\(862\) 21.9415 0.747332
\(863\) −20.8719 −0.710489 −0.355245 0.934773i \(-0.615602\pi\)
−0.355245 + 0.934773i \(0.615602\pi\)
\(864\) 0 0
\(865\) −8.09862 −0.275361
\(866\) −2.18926 −0.0743942
\(867\) 0 0
\(868\) −9.93543 −0.337230
\(869\) 4.10724 0.139328
\(870\) 0 0
\(871\) 79.0597 2.67884
\(872\) −23.5776 −0.798439
\(873\) 0 0
\(874\) −16.1698 −0.546953
\(875\) 28.6488 0.968505
\(876\) 0 0
\(877\) −15.0698 −0.508873 −0.254436 0.967090i \(-0.581890\pi\)
−0.254436 + 0.967090i \(0.581890\pi\)
\(878\) −15.8505 −0.534930
\(879\) 0 0
\(880\) −2.58147 −0.0870214
\(881\) −15.0028 −0.505456 −0.252728 0.967537i \(-0.581328\pi\)
−0.252728 + 0.967537i \(0.581328\pi\)
\(882\) 0 0
\(883\) −4.09571 −0.137832 −0.0689158 0.997622i \(-0.521954\pi\)
−0.0689158 + 0.997622i \(0.521954\pi\)
\(884\) 37.8255 1.27221
\(885\) 0 0
\(886\) −13.2914 −0.446534
\(887\) 16.1647 0.542756 0.271378 0.962473i \(-0.412521\pi\)
0.271378 + 0.962473i \(0.412521\pi\)
\(888\) 0 0
\(889\) −9.38799 −0.314863
\(890\) −21.6549 −0.725875
\(891\) 0 0
\(892\) 17.8179 0.596587
\(893\) −13.9603 −0.467163
\(894\) 0 0
\(895\) 7.80431 0.260869
\(896\) −25.5778 −0.854495
\(897\) 0 0
\(898\) 27.6514 0.922741
\(899\) 0 0
\(900\) 0 0
\(901\) 8.65457 0.288325
\(902\) 7.87368 0.262165
\(903\) 0 0
\(904\) 7.59753 0.252690
\(905\) 33.5557 1.11543
\(906\) 0 0
\(907\) −41.3224 −1.37209 −0.686044 0.727560i \(-0.740654\pi\)
−0.686044 + 0.727560i \(0.740654\pi\)
\(908\) −32.3241 −1.07271
\(909\) 0 0
\(910\) 21.9400 0.727303
\(911\) 31.3566 1.03889 0.519446 0.854504i \(-0.326138\pi\)
0.519446 + 0.854504i \(0.326138\pi\)
\(912\) 0 0
\(913\) 15.4998 0.512969
\(914\) −20.3040 −0.671596
\(915\) 0 0
\(916\) 0.278097 0.00918858
\(917\) 39.5035 1.30452
\(918\) 0 0
\(919\) 29.9401 0.987633 0.493817 0.869566i \(-0.335601\pi\)
0.493817 + 0.869566i \(0.335601\pi\)
\(920\) 26.5727 0.876077
\(921\) 0 0
\(922\) −0.682878 −0.0224894
\(923\) 30.0752 0.989936
\(924\) 0 0
\(925\) −1.72759 −0.0568028
\(926\) 7.04809 0.231615
\(927\) 0 0
\(928\) 0 0
\(929\) 1.38920 0.0455781 0.0227891 0.999740i \(-0.492745\pi\)
0.0227891 + 0.999740i \(0.492745\pi\)
\(930\) 0 0
\(931\) −5.46084 −0.178972
\(932\) −36.2289 −1.18672
\(933\) 0 0
\(934\) −12.4935 −0.408801
\(935\) 7.37647 0.241236
\(936\) 0 0
\(937\) −7.08484 −0.231451 −0.115726 0.993281i \(-0.536919\pi\)
−0.115726 + 0.993281i \(0.536919\pi\)
\(938\) 20.1400 0.657595
\(939\) 0 0
\(940\) 9.89572 0.322763
\(941\) −56.3655 −1.83746 −0.918731 0.394883i \(-0.870785\pi\)
−0.918731 + 0.394883i \(0.870785\pi\)
\(942\) 0 0
\(943\) 63.7306 2.07535
\(944\) 12.4307 0.404585
\(945\) 0 0
\(946\) 2.46590 0.0801732
\(947\) 23.7926 0.773155 0.386578 0.922257i \(-0.373657\pi\)
0.386578 + 0.922257i \(0.373657\pi\)
\(948\) 0 0
\(949\) −59.3956 −1.92806
\(950\) 2.78640 0.0904027
\(951\) 0 0
\(952\) 22.3391 0.724015
\(953\) −21.7614 −0.704920 −0.352460 0.935827i \(-0.614655\pi\)
−0.352460 + 0.935827i \(0.614655\pi\)
\(954\) 0 0
\(955\) −5.32927 −0.172451
\(956\) −12.7575 −0.412608
\(957\) 0 0
\(958\) −14.3106 −0.462355
\(959\) 7.29255 0.235489
\(960\) 0 0
\(961\) −23.5218 −0.758767
\(962\) −8.44783 −0.272369
\(963\) 0 0
\(964\) 0.816729 0.0263051
\(965\) −13.1987 −0.424880
\(966\) 0 0
\(967\) −24.8725 −0.799846 −0.399923 0.916549i \(-0.630963\pi\)
−0.399923 + 0.916549i \(0.630963\pi\)
\(968\) −24.6429 −0.792054
\(969\) 0 0
\(970\) 22.1039 0.709713
\(971\) 59.9657 1.92439 0.962196 0.272358i \(-0.0878036\pi\)
0.962196 + 0.272358i \(0.0878036\pi\)
\(972\) 0 0
\(973\) −27.0156 −0.866080
\(974\) −11.1131 −0.356086
\(975\) 0 0
\(976\) −4.19179 −0.134176
\(977\) 46.1910 1.47778 0.738891 0.673825i \(-0.235350\pi\)
0.738891 + 0.673825i \(0.235350\pi\)
\(978\) 0 0
\(979\) −14.7927 −0.472775
\(980\) 3.87090 0.123651
\(981\) 0 0
\(982\) 7.08871 0.226210
\(983\) −0.667578 −0.0212924 −0.0106462 0.999943i \(-0.503389\pi\)
−0.0106462 + 0.999943i \(0.503389\pi\)
\(984\) 0 0
\(985\) 19.8236 0.631632
\(986\) 0 0
\(987\) 0 0
\(988\) −42.8014 −1.36169
\(989\) 19.9593 0.634669
\(990\) 0 0
\(991\) −44.8159 −1.42362 −0.711811 0.702371i \(-0.752125\pi\)
−0.711811 + 0.702371i \(0.752125\pi\)
\(992\) 15.9058 0.505011
\(993\) 0 0
\(994\) 7.66148 0.243007
\(995\) 1.05877 0.0335651
\(996\) 0 0
\(997\) 11.1717 0.353812 0.176906 0.984228i \(-0.443391\pi\)
0.176906 + 0.984228i \(0.443391\pi\)
\(998\) 4.27526 0.135331
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bm.1.3 9
3.2 odd 2 2523.2.a.o.1.7 9
29.4 even 14 261.2.k.c.190.1 18
29.22 even 14 261.2.k.c.136.1 18
29.28 even 2 7569.2.a.bj.1.7 9
87.62 odd 14 87.2.g.a.16.3 18
87.80 odd 14 87.2.g.a.49.3 yes 18
87.86 odd 2 2523.2.a.r.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.16.3 18 87.62 odd 14
87.2.g.a.49.3 yes 18 87.80 odd 14
261.2.k.c.136.1 18 29.22 even 14
261.2.k.c.190.1 18 29.4 even 14
2523.2.a.o.1.7 9 3.2 odd 2
2523.2.a.r.1.3 9 87.86 odd 2
7569.2.a.bj.1.7 9 29.28 even 2
7569.2.a.bm.1.3 9 1.1 even 1 trivial