Properties

Label 7569.2.a.bm.1.5
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.822927\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.177073 q^{2} -1.96865 q^{4} +3.45143 q^{5} -3.79521 q^{7} -0.702739 q^{8} +0.611154 q^{10} -4.26673 q^{11} -4.64311 q^{13} -0.672028 q^{14} +3.81285 q^{16} -3.07208 q^{17} +3.59269 q^{19} -6.79464 q^{20} -0.755521 q^{22} +0.433603 q^{23} +6.91237 q^{25} -0.822167 q^{26} +7.47142 q^{28} +4.52230 q^{31} +2.08063 q^{32} -0.543981 q^{34} -13.0989 q^{35} -6.32794 q^{37} +0.636166 q^{38} -2.42545 q^{40} -1.97128 q^{41} +0.251178 q^{43} +8.39968 q^{44} +0.0767793 q^{46} -4.81629 q^{47} +7.40363 q^{49} +1.22399 q^{50} +9.14063 q^{52} -10.9694 q^{53} -14.7263 q^{55} +2.66704 q^{56} +6.06991 q^{59} -3.79174 q^{61} +0.800776 q^{62} -7.25729 q^{64} -16.0254 q^{65} -5.26714 q^{67} +6.04783 q^{68} -2.31946 q^{70} +5.83609 q^{71} +10.5495 q^{73} -1.12051 q^{74} -7.07272 q^{76} +16.1931 q^{77} -10.0367 q^{79} +13.1598 q^{80} -0.349059 q^{82} +7.09816 q^{83} -10.6031 q^{85} +0.0444768 q^{86} +2.99840 q^{88} -13.9762 q^{89} +17.6216 q^{91} -0.853611 q^{92} -0.852834 q^{94} +12.3999 q^{95} +14.3224 q^{97} +1.31098 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{4} + 4 q^{5} + 5 q^{7} + 24 q^{8} - q^{11} + q^{13} + 9 q^{14} + 35 q^{16} + 2 q^{17} - 9 q^{19} + 18 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} - 8 q^{26} + 40 q^{28} - 8 q^{31} + 43 q^{32}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.177073 0.125209 0.0626046 0.998038i \(-0.480059\pi\)
0.0626046 + 0.998038i \(0.480059\pi\)
\(3\) 0 0
\(4\) −1.96865 −0.984323
\(5\) 3.45143 1.54353 0.771763 0.635910i \(-0.219375\pi\)
0.771763 + 0.635910i \(0.219375\pi\)
\(6\) 0 0
\(7\) −3.79521 −1.43445 −0.717227 0.696839i \(-0.754589\pi\)
−0.717227 + 0.696839i \(0.754589\pi\)
\(8\) −0.702739 −0.248456
\(9\) 0 0
\(10\) 0.611154 0.193264
\(11\) −4.26673 −1.28647 −0.643234 0.765670i \(-0.722408\pi\)
−0.643234 + 0.765670i \(0.722408\pi\)
\(12\) 0 0
\(13\) −4.64311 −1.28777 −0.643883 0.765124i \(-0.722678\pi\)
−0.643883 + 0.765124i \(0.722678\pi\)
\(14\) −0.672028 −0.179607
\(15\) 0 0
\(16\) 3.81285 0.953214
\(17\) −3.07208 −0.745088 −0.372544 0.928014i \(-0.621514\pi\)
−0.372544 + 0.928014i \(0.621514\pi\)
\(18\) 0 0
\(19\) 3.59269 0.824219 0.412109 0.911134i \(-0.364792\pi\)
0.412109 + 0.911134i \(0.364792\pi\)
\(20\) −6.79464 −1.51933
\(21\) 0 0
\(22\) −0.755521 −0.161078
\(23\) 0.433603 0.0904125 0.0452063 0.998978i \(-0.485605\pi\)
0.0452063 + 0.998978i \(0.485605\pi\)
\(24\) 0 0
\(25\) 6.91237 1.38247
\(26\) −0.822167 −0.161240
\(27\) 0 0
\(28\) 7.47142 1.41197
\(29\) 0 0
\(30\) 0 0
\(31\) 4.52230 0.812230 0.406115 0.913822i \(-0.366883\pi\)
0.406115 + 0.913822i \(0.366883\pi\)
\(32\) 2.08063 0.367807
\(33\) 0 0
\(34\) −0.543981 −0.0932920
\(35\) −13.0989 −2.21412
\(36\) 0 0
\(37\) −6.32794 −1.04031 −0.520153 0.854073i \(-0.674125\pi\)
−0.520153 + 0.854073i \(0.674125\pi\)
\(38\) 0.636166 0.103200
\(39\) 0 0
\(40\) −2.42545 −0.383498
\(41\) −1.97128 −0.307862 −0.153931 0.988082i \(-0.549193\pi\)
−0.153931 + 0.988082i \(0.549193\pi\)
\(42\) 0 0
\(43\) 0.251178 0.0383043 0.0191522 0.999817i \(-0.493903\pi\)
0.0191522 + 0.999817i \(0.493903\pi\)
\(44\) 8.39968 1.26630
\(45\) 0 0
\(46\) 0.0767793 0.0113205
\(47\) −4.81629 −0.702529 −0.351264 0.936276i \(-0.614248\pi\)
−0.351264 + 0.936276i \(0.614248\pi\)
\(48\) 0 0
\(49\) 7.40363 1.05766
\(50\) 1.22399 0.173099
\(51\) 0 0
\(52\) 9.14063 1.26758
\(53\) −10.9694 −1.50676 −0.753382 0.657583i \(-0.771579\pi\)
−0.753382 + 0.657583i \(0.771579\pi\)
\(54\) 0 0
\(55\) −14.7263 −1.98570
\(56\) 2.66704 0.356398
\(57\) 0 0
\(58\) 0 0
\(59\) 6.06991 0.790234 0.395117 0.918631i \(-0.370704\pi\)
0.395117 + 0.918631i \(0.370704\pi\)
\(60\) 0 0
\(61\) −3.79174 −0.485483 −0.242741 0.970091i \(-0.578047\pi\)
−0.242741 + 0.970091i \(0.578047\pi\)
\(62\) 0.800776 0.101699
\(63\) 0 0
\(64\) −7.25729 −0.907161
\(65\) −16.0254 −1.98770
\(66\) 0 0
\(67\) −5.26714 −0.643484 −0.321742 0.946827i \(-0.604268\pi\)
−0.321742 + 0.946827i \(0.604268\pi\)
\(68\) 6.04783 0.733407
\(69\) 0 0
\(70\) −2.31946 −0.277228
\(71\) 5.83609 0.692616 0.346308 0.938121i \(-0.387435\pi\)
0.346308 + 0.938121i \(0.387435\pi\)
\(72\) 0 0
\(73\) 10.5495 1.23473 0.617365 0.786677i \(-0.288200\pi\)
0.617365 + 0.786677i \(0.288200\pi\)
\(74\) −1.12051 −0.130256
\(75\) 0 0
\(76\) −7.07272 −0.811297
\(77\) 16.1931 1.84538
\(78\) 0 0
\(79\) −10.0367 −1.12921 −0.564607 0.825360i \(-0.690972\pi\)
−0.564607 + 0.825360i \(0.690972\pi\)
\(80\) 13.1598 1.47131
\(81\) 0 0
\(82\) −0.349059 −0.0385471
\(83\) 7.09816 0.779124 0.389562 0.921000i \(-0.372626\pi\)
0.389562 + 0.921000i \(0.372626\pi\)
\(84\) 0 0
\(85\) −10.6031 −1.15006
\(86\) 0.0444768 0.00479606
\(87\) 0 0
\(88\) 2.99840 0.319630
\(89\) −13.9762 −1.48147 −0.740737 0.671795i \(-0.765524\pi\)
−0.740737 + 0.671795i \(0.765524\pi\)
\(90\) 0 0
\(91\) 17.6216 1.84724
\(92\) −0.853611 −0.0889951
\(93\) 0 0
\(94\) −0.852834 −0.0879631
\(95\) 12.3999 1.27220
\(96\) 0 0
\(97\) 14.3224 1.45422 0.727111 0.686520i \(-0.240863\pi\)
0.727111 + 0.686520i \(0.240863\pi\)
\(98\) 1.31098 0.132429
\(99\) 0 0
\(100\) −13.6080 −1.36080
\(101\) 0.816445 0.0812393 0.0406196 0.999175i \(-0.487067\pi\)
0.0406196 + 0.999175i \(0.487067\pi\)
\(102\) 0 0
\(103\) −4.95795 −0.488521 −0.244260 0.969710i \(-0.578545\pi\)
−0.244260 + 0.969710i \(0.578545\pi\)
\(104\) 3.26289 0.319953
\(105\) 0 0
\(106\) −1.94238 −0.188661
\(107\) 11.5359 1.11521 0.557607 0.830105i \(-0.311720\pi\)
0.557607 + 0.830105i \(0.311720\pi\)
\(108\) 0 0
\(109\) 8.64718 0.828250 0.414125 0.910220i \(-0.364088\pi\)
0.414125 + 0.910220i \(0.364088\pi\)
\(110\) −2.60763 −0.248628
\(111\) 0 0
\(112\) −14.4706 −1.36734
\(113\) 7.58551 0.713584 0.356792 0.934184i \(-0.383870\pi\)
0.356792 + 0.934184i \(0.383870\pi\)
\(114\) 0 0
\(115\) 1.49655 0.139554
\(116\) 0 0
\(117\) 0 0
\(118\) 1.07481 0.0989447
\(119\) 11.6592 1.06880
\(120\) 0 0
\(121\) 7.20498 0.654998
\(122\) −0.671414 −0.0607869
\(123\) 0 0
\(124\) −8.90281 −0.799496
\(125\) 6.60043 0.590360
\(126\) 0 0
\(127\) −1.23469 −0.109561 −0.0547807 0.998498i \(-0.517446\pi\)
−0.0547807 + 0.998498i \(0.517446\pi\)
\(128\) −5.44633 −0.481392
\(129\) 0 0
\(130\) −2.83765 −0.248879
\(131\) −3.99564 −0.349101 −0.174550 0.984648i \(-0.555847\pi\)
−0.174550 + 0.984648i \(0.555847\pi\)
\(132\) 0 0
\(133\) −13.6350 −1.18230
\(134\) −0.932667 −0.0805702
\(135\) 0 0
\(136\) 2.15887 0.185121
\(137\) 16.6539 1.42284 0.711418 0.702769i \(-0.248053\pi\)
0.711418 + 0.702769i \(0.248053\pi\)
\(138\) 0 0
\(139\) 8.27106 0.701543 0.350771 0.936461i \(-0.385919\pi\)
0.350771 + 0.936461i \(0.385919\pi\)
\(140\) 25.7871 2.17941
\(141\) 0 0
\(142\) 1.03341 0.0867219
\(143\) 19.8109 1.65667
\(144\) 0 0
\(145\) 0 0
\(146\) 1.86803 0.154600
\(147\) 0 0
\(148\) 12.4575 1.02400
\(149\) 9.38848 0.769135 0.384567 0.923097i \(-0.374351\pi\)
0.384567 + 0.923097i \(0.374351\pi\)
\(150\) 0 0
\(151\) 19.6633 1.60018 0.800088 0.599883i \(-0.204786\pi\)
0.800088 + 0.599883i \(0.204786\pi\)
\(152\) −2.52472 −0.204782
\(153\) 0 0
\(154\) 2.86736 0.231059
\(155\) 15.6084 1.25370
\(156\) 0 0
\(157\) 2.61457 0.208665 0.104333 0.994542i \(-0.466729\pi\)
0.104333 + 0.994542i \(0.466729\pi\)
\(158\) −1.77722 −0.141388
\(159\) 0 0
\(160\) 7.18115 0.567720
\(161\) −1.64562 −0.129693
\(162\) 0 0
\(163\) 0.527800 0.0413405 0.0206702 0.999786i \(-0.493420\pi\)
0.0206702 + 0.999786i \(0.493420\pi\)
\(164\) 3.88074 0.303035
\(165\) 0 0
\(166\) 1.25689 0.0975536
\(167\) 15.0489 1.16452 0.582261 0.813002i \(-0.302168\pi\)
0.582261 + 0.813002i \(0.302168\pi\)
\(168\) 0 0
\(169\) 8.55844 0.658342
\(170\) −1.87751 −0.143999
\(171\) 0 0
\(172\) −0.494481 −0.0377038
\(173\) −0.103233 −0.00784865 −0.00392433 0.999992i \(-0.501249\pi\)
−0.00392433 + 0.999992i \(0.501249\pi\)
\(174\) 0 0
\(175\) −26.2339 −1.98310
\(176\) −16.2684 −1.22628
\(177\) 0 0
\(178\) −2.47480 −0.185494
\(179\) 4.04916 0.302649 0.151324 0.988484i \(-0.451646\pi\)
0.151324 + 0.988484i \(0.451646\pi\)
\(180\) 0 0
\(181\) −11.5222 −0.856442 −0.428221 0.903674i \(-0.640860\pi\)
−0.428221 + 0.903674i \(0.640860\pi\)
\(182\) 3.12030 0.231292
\(183\) 0 0
\(184\) −0.304710 −0.0224635
\(185\) −21.8404 −1.60574
\(186\) 0 0
\(187\) 13.1077 0.958532
\(188\) 9.48157 0.691515
\(189\) 0 0
\(190\) 2.19568 0.159292
\(191\) 1.55942 0.112836 0.0564179 0.998407i \(-0.482032\pi\)
0.0564179 + 0.998407i \(0.482032\pi\)
\(192\) 0 0
\(193\) −13.3775 −0.962932 −0.481466 0.876465i \(-0.659896\pi\)
−0.481466 + 0.876465i \(0.659896\pi\)
\(194\) 2.53611 0.182082
\(195\) 0 0
\(196\) −14.5751 −1.04108
\(197\) 12.7756 0.910226 0.455113 0.890434i \(-0.349599\pi\)
0.455113 + 0.890434i \(0.349599\pi\)
\(198\) 0 0
\(199\) 8.82206 0.625379 0.312690 0.949855i \(-0.398770\pi\)
0.312690 + 0.949855i \(0.398770\pi\)
\(200\) −4.85759 −0.343484
\(201\) 0 0
\(202\) 0.144570 0.0101719
\(203\) 0 0
\(204\) 0 0
\(205\) −6.80372 −0.475193
\(206\) −0.877917 −0.0611674
\(207\) 0 0
\(208\) −17.7035 −1.22752
\(209\) −15.3290 −1.06033
\(210\) 0 0
\(211\) 15.0234 1.03425 0.517127 0.855909i \(-0.327002\pi\)
0.517127 + 0.855909i \(0.327002\pi\)
\(212\) 21.5949 1.48314
\(213\) 0 0
\(214\) 2.04269 0.139635
\(215\) 0.866924 0.0591237
\(216\) 0 0
\(217\) −17.1631 −1.16511
\(218\) 1.53118 0.103705
\(219\) 0 0
\(220\) 28.9909 1.95457
\(221\) 14.2640 0.959500
\(222\) 0 0
\(223\) 23.9456 1.60352 0.801759 0.597648i \(-0.203898\pi\)
0.801759 + 0.597648i \(0.203898\pi\)
\(224\) −7.89643 −0.527602
\(225\) 0 0
\(226\) 1.34319 0.0893474
\(227\) 5.15851 0.342382 0.171191 0.985238i \(-0.445238\pi\)
0.171191 + 0.985238i \(0.445238\pi\)
\(228\) 0 0
\(229\) 8.10170 0.535375 0.267688 0.963506i \(-0.413740\pi\)
0.267688 + 0.963506i \(0.413740\pi\)
\(230\) 0.264998 0.0174735
\(231\) 0 0
\(232\) 0 0
\(233\) −24.5153 −1.60605 −0.803027 0.595943i \(-0.796778\pi\)
−0.803027 + 0.595943i \(0.796778\pi\)
\(234\) 0 0
\(235\) −16.6231 −1.08437
\(236\) −11.9495 −0.777846
\(237\) 0 0
\(238\) 2.06452 0.133823
\(239\) 27.9408 1.80734 0.903669 0.428232i \(-0.140863\pi\)
0.903669 + 0.428232i \(0.140863\pi\)
\(240\) 0 0
\(241\) 3.96836 0.255625 0.127812 0.991798i \(-0.459204\pi\)
0.127812 + 0.991798i \(0.459204\pi\)
\(242\) 1.27581 0.0820119
\(243\) 0 0
\(244\) 7.46459 0.477871
\(245\) 25.5531 1.63253
\(246\) 0 0
\(247\) −16.6812 −1.06140
\(248\) −3.17800 −0.201803
\(249\) 0 0
\(250\) 1.16876 0.0739186
\(251\) −31.6093 −1.99516 −0.997581 0.0695077i \(-0.977857\pi\)
−0.997581 + 0.0695077i \(0.977857\pi\)
\(252\) 0 0
\(253\) −1.85007 −0.116313
\(254\) −0.218631 −0.0137181
\(255\) 0 0
\(256\) 13.5502 0.846886
\(257\) 4.05027 0.252649 0.126324 0.991989i \(-0.459682\pi\)
0.126324 + 0.991989i \(0.459682\pi\)
\(258\) 0 0
\(259\) 24.0159 1.49227
\(260\) 31.5483 1.95654
\(261\) 0 0
\(262\) −0.707518 −0.0437106
\(263\) −14.3001 −0.881782 −0.440891 0.897561i \(-0.645338\pi\)
−0.440891 + 0.897561i \(0.645338\pi\)
\(264\) 0 0
\(265\) −37.8602 −2.32573
\(266\) −2.41439 −0.148035
\(267\) 0 0
\(268\) 10.3691 0.633396
\(269\) 21.5174 1.31194 0.655970 0.754787i \(-0.272260\pi\)
0.655970 + 0.754787i \(0.272260\pi\)
\(270\) 0 0
\(271\) 19.7901 1.20216 0.601080 0.799189i \(-0.294737\pi\)
0.601080 + 0.799189i \(0.294737\pi\)
\(272\) −11.7134 −0.710228
\(273\) 0 0
\(274\) 2.94895 0.178152
\(275\) −29.4932 −1.77851
\(276\) 0 0
\(277\) 5.60355 0.336685 0.168342 0.985729i \(-0.446159\pi\)
0.168342 + 0.985729i \(0.446159\pi\)
\(278\) 1.46458 0.0878397
\(279\) 0 0
\(280\) 9.20511 0.550110
\(281\) 10.8186 0.645382 0.322691 0.946504i \(-0.395413\pi\)
0.322691 + 0.946504i \(0.395413\pi\)
\(282\) 0 0
\(283\) −7.43490 −0.441959 −0.220980 0.975278i \(-0.570925\pi\)
−0.220980 + 0.975278i \(0.570925\pi\)
\(284\) −11.4892 −0.681757
\(285\) 0 0
\(286\) 3.50797 0.207430
\(287\) 7.48141 0.441614
\(288\) 0 0
\(289\) −7.56234 −0.444843
\(290\) 0 0
\(291\) 0 0
\(292\) −20.7683 −1.21537
\(293\) 12.4164 0.725373 0.362686 0.931911i \(-0.381860\pi\)
0.362686 + 0.931911i \(0.381860\pi\)
\(294\) 0 0
\(295\) 20.9499 1.21975
\(296\) 4.44689 0.258470
\(297\) 0 0
\(298\) 1.66244 0.0963028
\(299\) −2.01327 −0.116430
\(300\) 0 0
\(301\) −0.953274 −0.0549458
\(302\) 3.48183 0.200357
\(303\) 0 0
\(304\) 13.6984 0.785656
\(305\) −13.0869 −0.749355
\(306\) 0 0
\(307\) −24.0387 −1.37196 −0.685981 0.727620i \(-0.740627\pi\)
−0.685981 + 0.727620i \(0.740627\pi\)
\(308\) −31.8785 −1.81645
\(309\) 0 0
\(310\) 2.76382 0.156975
\(311\) −31.2545 −1.77228 −0.886140 0.463418i \(-0.846623\pi\)
−0.886140 + 0.463418i \(0.846623\pi\)
\(312\) 0 0
\(313\) −21.0508 −1.18986 −0.594931 0.803777i \(-0.702821\pi\)
−0.594931 + 0.803777i \(0.702821\pi\)
\(314\) 0.462969 0.0261268
\(315\) 0 0
\(316\) 19.7586 1.11151
\(317\) −15.6515 −0.879073 −0.439537 0.898225i \(-0.644857\pi\)
−0.439537 + 0.898225i \(0.644857\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −25.0480 −1.40023
\(321\) 0 0
\(322\) −0.291394 −0.0162387
\(323\) −11.0370 −0.614116
\(324\) 0 0
\(325\) −32.0949 −1.78030
\(326\) 0.0934589 0.00517621
\(327\) 0 0
\(328\) 1.38529 0.0764900
\(329\) 18.2788 1.00775
\(330\) 0 0
\(331\) 19.4595 1.06959 0.534796 0.844981i \(-0.320388\pi\)
0.534796 + 0.844981i \(0.320388\pi\)
\(332\) −13.9738 −0.766910
\(333\) 0 0
\(334\) 2.66476 0.145809
\(335\) −18.1792 −0.993235
\(336\) 0 0
\(337\) −20.1780 −1.09916 −0.549582 0.835440i \(-0.685213\pi\)
−0.549582 + 0.835440i \(0.685213\pi\)
\(338\) 1.51547 0.0824305
\(339\) 0 0
\(340\) 20.8737 1.13203
\(341\) −19.2954 −1.04491
\(342\) 0 0
\(343\) −1.53184 −0.0827119
\(344\) −0.176513 −0.00951692
\(345\) 0 0
\(346\) −0.0182797 −0.000982724 0
\(347\) −0.788354 −0.0423211 −0.0211605 0.999776i \(-0.506736\pi\)
−0.0211605 + 0.999776i \(0.506736\pi\)
\(348\) 0 0
\(349\) 20.9417 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(350\) −4.64531 −0.248302
\(351\) 0 0
\(352\) −8.87748 −0.473172
\(353\) 36.0882 1.92078 0.960390 0.278659i \(-0.0898898\pi\)
0.960390 + 0.278659i \(0.0898898\pi\)
\(354\) 0 0
\(355\) 20.1428 1.06907
\(356\) 27.5142 1.45825
\(357\) 0 0
\(358\) 0.716996 0.0378944
\(359\) 18.6229 0.982881 0.491441 0.870911i \(-0.336471\pi\)
0.491441 + 0.870911i \(0.336471\pi\)
\(360\) 0 0
\(361\) −6.09261 −0.320664
\(362\) −2.04028 −0.107235
\(363\) 0 0
\(364\) −34.6906 −1.81828
\(365\) 36.4110 1.90584
\(366\) 0 0
\(367\) −16.1322 −0.842094 −0.421047 0.907039i \(-0.638337\pi\)
−0.421047 + 0.907039i \(0.638337\pi\)
\(368\) 1.65327 0.0861824
\(369\) 0 0
\(370\) −3.86735 −0.201054
\(371\) 41.6312 2.16139
\(372\) 0 0
\(373\) 1.13592 0.0588156 0.0294078 0.999567i \(-0.490638\pi\)
0.0294078 + 0.999567i \(0.490638\pi\)
\(374\) 2.32102 0.120017
\(375\) 0 0
\(376\) 3.38460 0.174547
\(377\) 0 0
\(378\) 0 0
\(379\) −30.2475 −1.55371 −0.776856 0.629679i \(-0.783187\pi\)
−0.776856 + 0.629679i \(0.783187\pi\)
\(380\) −24.4110 −1.25226
\(381\) 0 0
\(382\) 0.276131 0.0141281
\(383\) 17.5797 0.898280 0.449140 0.893461i \(-0.351730\pi\)
0.449140 + 0.893461i \(0.351730\pi\)
\(384\) 0 0
\(385\) 55.8895 2.84839
\(386\) −2.36879 −0.120568
\(387\) 0 0
\(388\) −28.1958 −1.43142
\(389\) 38.5442 1.95427 0.977134 0.212625i \(-0.0682014\pi\)
0.977134 + 0.212625i \(0.0682014\pi\)
\(390\) 0 0
\(391\) −1.33206 −0.0673653
\(392\) −5.20281 −0.262782
\(393\) 0 0
\(394\) 2.26222 0.113969
\(395\) −34.6409 −1.74297
\(396\) 0 0
\(397\) −21.0742 −1.05768 −0.528841 0.848721i \(-0.677373\pi\)
−0.528841 + 0.848721i \(0.677373\pi\)
\(398\) 1.56215 0.0783033
\(399\) 0 0
\(400\) 26.3559 1.31779
\(401\) 34.7249 1.73408 0.867039 0.498240i \(-0.166020\pi\)
0.867039 + 0.498240i \(0.166020\pi\)
\(402\) 0 0
\(403\) −20.9975 −1.04596
\(404\) −1.60729 −0.0799657
\(405\) 0 0
\(406\) 0 0
\(407\) 26.9996 1.33832
\(408\) 0 0
\(409\) 3.13466 0.154999 0.0774995 0.996992i \(-0.475306\pi\)
0.0774995 + 0.996992i \(0.475306\pi\)
\(410\) −1.20475 −0.0594985
\(411\) 0 0
\(412\) 9.76044 0.480862
\(413\) −23.0366 −1.13356
\(414\) 0 0
\(415\) 24.4988 1.20260
\(416\) −9.66059 −0.473649
\(417\) 0 0
\(418\) −2.71435 −0.132763
\(419\) 8.68305 0.424195 0.212097 0.977249i \(-0.431971\pi\)
0.212097 + 0.977249i \(0.431971\pi\)
\(420\) 0 0
\(421\) −28.3830 −1.38330 −0.691651 0.722232i \(-0.743116\pi\)
−0.691651 + 0.722232i \(0.743116\pi\)
\(422\) 2.66023 0.129498
\(423\) 0 0
\(424\) 7.70863 0.374364
\(425\) −21.2354 −1.03007
\(426\) 0 0
\(427\) 14.3905 0.696403
\(428\) −22.7100 −1.09773
\(429\) 0 0
\(430\) 0.153509 0.00740284
\(431\) −0.0823506 −0.00396669 −0.00198334 0.999998i \(-0.500631\pi\)
−0.00198334 + 0.999998i \(0.500631\pi\)
\(432\) 0 0
\(433\) −1.26450 −0.0607678 −0.0303839 0.999538i \(-0.509673\pi\)
−0.0303839 + 0.999538i \(0.509673\pi\)
\(434\) −3.03912 −0.145882
\(435\) 0 0
\(436\) −17.0232 −0.815265
\(437\) 1.55780 0.0745197
\(438\) 0 0
\(439\) 29.1767 1.39253 0.696263 0.717787i \(-0.254845\pi\)
0.696263 + 0.717787i \(0.254845\pi\)
\(440\) 10.3488 0.493358
\(441\) 0 0
\(442\) 2.52576 0.120138
\(443\) −18.2966 −0.869298 −0.434649 0.900600i \(-0.643128\pi\)
−0.434649 + 0.900600i \(0.643128\pi\)
\(444\) 0 0
\(445\) −48.2379 −2.28669
\(446\) 4.24012 0.200775
\(447\) 0 0
\(448\) 27.5429 1.30128
\(449\) −10.6432 −0.502283 −0.251142 0.967950i \(-0.580806\pi\)
−0.251142 + 0.967950i \(0.580806\pi\)
\(450\) 0 0
\(451\) 8.41090 0.396054
\(452\) −14.9332 −0.702397
\(453\) 0 0
\(454\) 0.913431 0.0428694
\(455\) 60.8196 2.85127
\(456\) 0 0
\(457\) 30.2026 1.41282 0.706408 0.707804i \(-0.250314\pi\)
0.706408 + 0.707804i \(0.250314\pi\)
\(458\) 1.43459 0.0670340
\(459\) 0 0
\(460\) −2.94618 −0.137366
\(461\) −36.4593 −1.69808 −0.849041 0.528328i \(-0.822819\pi\)
−0.849041 + 0.528328i \(0.822819\pi\)
\(462\) 0 0
\(463\) 18.1919 0.845450 0.422725 0.906258i \(-0.361074\pi\)
0.422725 + 0.906258i \(0.361074\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −4.34100 −0.201093
\(467\) 9.91290 0.458714 0.229357 0.973342i \(-0.426338\pi\)
0.229357 + 0.973342i \(0.426338\pi\)
\(468\) 0 0
\(469\) 19.9899 0.923049
\(470\) −2.94350 −0.135773
\(471\) 0 0
\(472\) −4.26556 −0.196338
\(473\) −1.07171 −0.0492772
\(474\) 0 0
\(475\) 24.8340 1.13946
\(476\) −22.9528 −1.05204
\(477\) 0 0
\(478\) 4.94755 0.226296
\(479\) 42.7297 1.95237 0.976184 0.216945i \(-0.0696091\pi\)
0.976184 + 0.216945i \(0.0696091\pi\)
\(480\) 0 0
\(481\) 29.3813 1.33967
\(482\) 0.702689 0.0320066
\(483\) 0 0
\(484\) −14.1841 −0.644730
\(485\) 49.4328 2.24463
\(486\) 0 0
\(487\) −25.4364 −1.15263 −0.576316 0.817227i \(-0.695510\pi\)
−0.576316 + 0.817227i \(0.695510\pi\)
\(488\) 2.66460 0.120621
\(489\) 0 0
\(490\) 4.52476 0.204408
\(491\) 31.4216 1.41804 0.709018 0.705190i \(-0.249138\pi\)
0.709018 + 0.705190i \(0.249138\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −2.95379 −0.132897
\(495\) 0 0
\(496\) 17.2429 0.774228
\(497\) −22.1492 −0.993526
\(498\) 0 0
\(499\) −6.94660 −0.310973 −0.155486 0.987838i \(-0.549694\pi\)
−0.155486 + 0.987838i \(0.549694\pi\)
\(500\) −12.9939 −0.581105
\(501\) 0 0
\(502\) −5.59715 −0.249813
\(503\) 26.5513 1.18386 0.591932 0.805988i \(-0.298365\pi\)
0.591932 + 0.805988i \(0.298365\pi\)
\(504\) 0 0
\(505\) 2.81790 0.125395
\(506\) −0.327596 −0.0145634
\(507\) 0 0
\(508\) 2.43067 0.107844
\(509\) 1.38050 0.0611896 0.0305948 0.999532i \(-0.490260\pi\)
0.0305948 + 0.999532i \(0.490260\pi\)
\(510\) 0 0
\(511\) −40.0377 −1.77116
\(512\) 13.2920 0.587430
\(513\) 0 0
\(514\) 0.717192 0.0316340
\(515\) −17.1120 −0.754045
\(516\) 0 0
\(517\) 20.5498 0.903780
\(518\) 4.25255 0.186846
\(519\) 0 0
\(520\) 11.2616 0.493856
\(521\) −8.46722 −0.370956 −0.185478 0.982648i \(-0.559383\pi\)
−0.185478 + 0.982648i \(0.559383\pi\)
\(522\) 0 0
\(523\) 4.74716 0.207579 0.103789 0.994599i \(-0.466903\pi\)
0.103789 + 0.994599i \(0.466903\pi\)
\(524\) 7.86599 0.343628
\(525\) 0 0
\(526\) −2.53216 −0.110407
\(527\) −13.8929 −0.605183
\(528\) 0 0
\(529\) −22.8120 −0.991826
\(530\) −6.70400 −0.291203
\(531\) 0 0
\(532\) 26.8425 1.16377
\(533\) 9.15285 0.396454
\(534\) 0 0
\(535\) 39.8152 1.72136
\(536\) 3.70143 0.159877
\(537\) 0 0
\(538\) 3.81015 0.164267
\(539\) −31.5893 −1.36065
\(540\) 0 0
\(541\) −2.44407 −0.105079 −0.0525394 0.998619i \(-0.516732\pi\)
−0.0525394 + 0.998619i \(0.516732\pi\)
\(542\) 3.50428 0.150522
\(543\) 0 0
\(544\) −6.39186 −0.274049
\(545\) 29.8451 1.27843
\(546\) 0 0
\(547\) 6.17333 0.263952 0.131976 0.991253i \(-0.457868\pi\)
0.131976 + 0.991253i \(0.457868\pi\)
\(548\) −32.7856 −1.40053
\(549\) 0 0
\(550\) −5.22245 −0.222686
\(551\) 0 0
\(552\) 0 0
\(553\) 38.0913 1.61981
\(554\) 0.992235 0.0421560
\(555\) 0 0
\(556\) −16.2828 −0.690544
\(557\) 12.4564 0.527794 0.263897 0.964551i \(-0.414992\pi\)
0.263897 + 0.964551i \(0.414992\pi\)
\(558\) 0 0
\(559\) −1.16625 −0.0493270
\(560\) −49.9442 −2.11053
\(561\) 0 0
\(562\) 1.91567 0.0808078
\(563\) −3.58213 −0.150969 −0.0754843 0.997147i \(-0.524050\pi\)
−0.0754843 + 0.997147i \(0.524050\pi\)
\(564\) 0 0
\(565\) 26.1809 1.10144
\(566\) −1.31652 −0.0553374
\(567\) 0 0
\(568\) −4.10124 −0.172084
\(569\) −26.8881 −1.12721 −0.563603 0.826046i \(-0.690585\pi\)
−0.563603 + 0.826046i \(0.690585\pi\)
\(570\) 0 0
\(571\) −30.0109 −1.25592 −0.627959 0.778247i \(-0.716109\pi\)
−0.627959 + 0.778247i \(0.716109\pi\)
\(572\) −39.0006 −1.63070
\(573\) 0 0
\(574\) 1.32475 0.0552941
\(575\) 2.99723 0.124993
\(576\) 0 0
\(577\) 2.86591 0.119309 0.0596546 0.998219i \(-0.481000\pi\)
0.0596546 + 0.998219i \(0.481000\pi\)
\(578\) −1.33908 −0.0556985
\(579\) 0 0
\(580\) 0 0
\(581\) −26.9390 −1.11762
\(582\) 0 0
\(583\) 46.8035 1.93840
\(584\) −7.41357 −0.306776
\(585\) 0 0
\(586\) 2.19860 0.0908234
\(587\) −21.8403 −0.901446 −0.450723 0.892664i \(-0.648834\pi\)
−0.450723 + 0.892664i \(0.648834\pi\)
\(588\) 0 0
\(589\) 16.2472 0.669455
\(590\) 3.70965 0.152724
\(591\) 0 0
\(592\) −24.1275 −0.991635
\(593\) −19.9669 −0.819941 −0.409971 0.912099i \(-0.634461\pi\)
−0.409971 + 0.912099i \(0.634461\pi\)
\(594\) 0 0
\(595\) 40.2409 1.64971
\(596\) −18.4826 −0.757077
\(597\) 0 0
\(598\) −0.356494 −0.0145781
\(599\) −25.8925 −1.05794 −0.528969 0.848641i \(-0.677421\pi\)
−0.528969 + 0.848641i \(0.677421\pi\)
\(600\) 0 0
\(601\) −24.1209 −0.983911 −0.491956 0.870620i \(-0.663718\pi\)
−0.491956 + 0.870620i \(0.663718\pi\)
\(602\) −0.168799 −0.00687973
\(603\) 0 0
\(604\) −38.7100 −1.57509
\(605\) 24.8675 1.01101
\(606\) 0 0
\(607\) 5.67771 0.230451 0.115226 0.993339i \(-0.463241\pi\)
0.115226 + 0.993339i \(0.463241\pi\)
\(608\) 7.47505 0.303153
\(609\) 0 0
\(610\) −2.31734 −0.0938262
\(611\) 22.3626 0.904693
\(612\) 0 0
\(613\) −44.8240 −1.81042 −0.905212 0.424961i \(-0.860288\pi\)
−0.905212 + 0.424961i \(0.860288\pi\)
\(614\) −4.25660 −0.171782
\(615\) 0 0
\(616\) −11.3795 −0.458495
\(617\) −29.0434 −1.16924 −0.584622 0.811306i \(-0.698757\pi\)
−0.584622 + 0.811306i \(0.698757\pi\)
\(618\) 0 0
\(619\) 7.61305 0.305994 0.152997 0.988227i \(-0.451107\pi\)
0.152997 + 0.988227i \(0.451107\pi\)
\(620\) −30.7274 −1.23404
\(621\) 0 0
\(622\) −5.53432 −0.221906
\(623\) 53.0426 2.12511
\(624\) 0 0
\(625\) −11.7810 −0.471238
\(626\) −3.72753 −0.148982
\(627\) 0 0
\(628\) −5.14716 −0.205394
\(629\) 19.4399 0.775121
\(630\) 0 0
\(631\) 43.7635 1.74220 0.871099 0.491107i \(-0.163408\pi\)
0.871099 + 0.491107i \(0.163408\pi\)
\(632\) 7.05316 0.280560
\(633\) 0 0
\(634\) −2.77144 −0.110068
\(635\) −4.26146 −0.169111
\(636\) 0 0
\(637\) −34.3758 −1.36202
\(638\) 0 0
\(639\) 0 0
\(640\) −18.7976 −0.743041
\(641\) 15.3364 0.605750 0.302875 0.953030i \(-0.402053\pi\)
0.302875 + 0.953030i \(0.402053\pi\)
\(642\) 0 0
\(643\) 27.2674 1.07532 0.537661 0.843161i \(-0.319308\pi\)
0.537661 + 0.843161i \(0.319308\pi\)
\(644\) 3.23963 0.127659
\(645\) 0 0
\(646\) −1.95435 −0.0768930
\(647\) 24.1819 0.950690 0.475345 0.879800i \(-0.342323\pi\)
0.475345 + 0.879800i \(0.342323\pi\)
\(648\) 0 0
\(649\) −25.8986 −1.01661
\(650\) −5.68313 −0.222911
\(651\) 0 0
\(652\) −1.03905 −0.0406923
\(653\) −25.1321 −0.983497 −0.491748 0.870737i \(-0.663642\pi\)
−0.491748 + 0.870737i \(0.663642\pi\)
\(654\) 0 0
\(655\) −13.7907 −0.538846
\(656\) −7.51619 −0.293458
\(657\) 0 0
\(658\) 3.23668 0.126179
\(659\) 9.64762 0.375818 0.187909 0.982186i \(-0.439829\pi\)
0.187909 + 0.982186i \(0.439829\pi\)
\(660\) 0 0
\(661\) 15.7907 0.614188 0.307094 0.951679i \(-0.400643\pi\)
0.307094 + 0.951679i \(0.400643\pi\)
\(662\) 3.44575 0.133923
\(663\) 0 0
\(664\) −4.98815 −0.193578
\(665\) −47.0603 −1.82492
\(666\) 0 0
\(667\) 0 0
\(668\) −29.6260 −1.14627
\(669\) 0 0
\(670\) −3.21904 −0.124362
\(671\) 16.1783 0.624557
\(672\) 0 0
\(673\) −16.3293 −0.629450 −0.314725 0.949183i \(-0.601912\pi\)
−0.314725 + 0.949183i \(0.601912\pi\)
\(674\) −3.57297 −0.137625
\(675\) 0 0
\(676\) −16.8485 −0.648021
\(677\) 11.3525 0.436314 0.218157 0.975914i \(-0.429996\pi\)
0.218157 + 0.975914i \(0.429996\pi\)
\(678\) 0 0
\(679\) −54.3566 −2.08602
\(680\) 7.45118 0.285740
\(681\) 0 0
\(682\) −3.41670 −0.130832
\(683\) −21.0754 −0.806426 −0.403213 0.915106i \(-0.632107\pi\)
−0.403213 + 0.915106i \(0.632107\pi\)
\(684\) 0 0
\(685\) 57.4797 2.19619
\(686\) −0.271248 −0.0103563
\(687\) 0 0
\(688\) 0.957706 0.0365122
\(689\) 50.9321 1.94036
\(690\) 0 0
\(691\) 5.59507 0.212846 0.106423 0.994321i \(-0.466060\pi\)
0.106423 + 0.994321i \(0.466060\pi\)
\(692\) 0.203229 0.00772561
\(693\) 0 0
\(694\) −0.139596 −0.00529899
\(695\) 28.5470 1.08285
\(696\) 0 0
\(697\) 6.05592 0.229384
\(698\) 3.70820 0.140357
\(699\) 0 0
\(700\) 51.6453 1.95201
\(701\) 17.3045 0.653583 0.326791 0.945097i \(-0.394033\pi\)
0.326791 + 0.945097i \(0.394033\pi\)
\(702\) 0 0
\(703\) −22.7343 −0.857440
\(704\) 30.9649 1.16703
\(705\) 0 0
\(706\) 6.39023 0.240500
\(707\) −3.09858 −0.116534
\(708\) 0 0
\(709\) 18.6967 0.702171 0.351085 0.936343i \(-0.385813\pi\)
0.351085 + 0.936343i \(0.385813\pi\)
\(710\) 3.56675 0.133858
\(711\) 0 0
\(712\) 9.82162 0.368081
\(713\) 1.96089 0.0734357
\(714\) 0 0
\(715\) 68.3759 2.55711
\(716\) −7.97137 −0.297904
\(717\) 0 0
\(718\) 3.29761 0.123066
\(719\) 17.2847 0.644610 0.322305 0.946636i \(-0.395542\pi\)
0.322305 + 0.946636i \(0.395542\pi\)
\(720\) 0 0
\(721\) 18.8164 0.700761
\(722\) −1.07884 −0.0401501
\(723\) 0 0
\(724\) 22.6832 0.843015
\(725\) 0 0
\(726\) 0 0
\(727\) −2.87185 −0.106511 −0.0532556 0.998581i \(-0.516960\pi\)
−0.0532556 + 0.998581i \(0.516960\pi\)
\(728\) −12.3834 −0.458958
\(729\) 0 0
\(730\) 6.44739 0.238629
\(731\) −0.771639 −0.0285401
\(732\) 0 0
\(733\) −46.8195 −1.72932 −0.864659 0.502359i \(-0.832466\pi\)
−0.864659 + 0.502359i \(0.832466\pi\)
\(734\) −2.85657 −0.105438
\(735\) 0 0
\(736\) 0.902168 0.0332543
\(737\) 22.4735 0.827821
\(738\) 0 0
\(739\) −25.0754 −0.922415 −0.461208 0.887292i \(-0.652584\pi\)
−0.461208 + 0.887292i \(0.652584\pi\)
\(740\) 42.9961 1.58057
\(741\) 0 0
\(742\) 7.37175 0.270626
\(743\) 28.1550 1.03291 0.516453 0.856316i \(-0.327252\pi\)
0.516453 + 0.856316i \(0.327252\pi\)
\(744\) 0 0
\(745\) 32.4037 1.18718
\(746\) 0.201140 0.00736426
\(747\) 0 0
\(748\) −25.8045 −0.943505
\(749\) −43.7810 −1.59972
\(750\) 0 0
\(751\) 40.8050 1.48900 0.744498 0.667624i \(-0.232689\pi\)
0.744498 + 0.667624i \(0.232689\pi\)
\(752\) −18.3638 −0.669660
\(753\) 0 0
\(754\) 0 0
\(755\) 67.8664 2.46991
\(756\) 0 0
\(757\) −40.8015 −1.48296 −0.741478 0.670977i \(-0.765875\pi\)
−0.741478 + 0.670977i \(0.765875\pi\)
\(758\) −5.35601 −0.194539
\(759\) 0 0
\(760\) −8.71389 −0.316086
\(761\) 41.6230 1.50883 0.754417 0.656395i \(-0.227920\pi\)
0.754417 + 0.656395i \(0.227920\pi\)
\(762\) 0 0
\(763\) −32.8179 −1.18809
\(764\) −3.06995 −0.111067
\(765\) 0 0
\(766\) 3.11288 0.112473
\(767\) −28.1832 −1.01764
\(768\) 0 0
\(769\) 9.30333 0.335487 0.167743 0.985831i \(-0.446352\pi\)
0.167743 + 0.985831i \(0.446352\pi\)
\(770\) 9.89650 0.356645
\(771\) 0 0
\(772\) 26.3355 0.947836
\(773\) 14.4098 0.518284 0.259142 0.965839i \(-0.416560\pi\)
0.259142 + 0.965839i \(0.416560\pi\)
\(774\) 0 0
\(775\) 31.2599 1.12289
\(776\) −10.0649 −0.361310
\(777\) 0 0
\(778\) 6.82512 0.244692
\(779\) −7.08218 −0.253745
\(780\) 0 0
\(781\) −24.9010 −0.891028
\(782\) −0.235872 −0.00843476
\(783\) 0 0
\(784\) 28.2289 1.00818
\(785\) 9.02400 0.322080
\(786\) 0 0
\(787\) 31.0529 1.10692 0.553459 0.832877i \(-0.313308\pi\)
0.553459 + 0.832877i \(0.313308\pi\)
\(788\) −25.1507 −0.895957
\(789\) 0 0
\(790\) −6.13395 −0.218236
\(791\) −28.7886 −1.02360
\(792\) 0 0
\(793\) 17.6055 0.625188
\(794\) −3.73166 −0.132432
\(795\) 0 0
\(796\) −17.3675 −0.615575
\(797\) −33.4931 −1.18639 −0.593193 0.805060i \(-0.702133\pi\)
−0.593193 + 0.805060i \(0.702133\pi\)
\(798\) 0 0
\(799\) 14.7960 0.523446
\(800\) 14.3821 0.508484
\(801\) 0 0
\(802\) 6.14883 0.217123
\(803\) −45.0120 −1.58844
\(804\) 0 0
\(805\) −5.67973 −0.200184
\(806\) −3.71809 −0.130964
\(807\) 0 0
\(808\) −0.573747 −0.0201844
\(809\) 17.9475 0.631000 0.315500 0.948926i \(-0.397828\pi\)
0.315500 + 0.948926i \(0.397828\pi\)
\(810\) 0 0
\(811\) 6.11810 0.214836 0.107418 0.994214i \(-0.465742\pi\)
0.107418 + 0.994214i \(0.465742\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.78089 0.167570
\(815\) 1.82166 0.0638101
\(816\) 0 0
\(817\) 0.902404 0.0315711
\(818\) 0.555063 0.0194073
\(819\) 0 0
\(820\) 13.3941 0.467743
\(821\) 38.5521 1.34548 0.672738 0.739881i \(-0.265118\pi\)
0.672738 + 0.739881i \(0.265118\pi\)
\(822\) 0 0
\(823\) 15.0217 0.523625 0.261813 0.965119i \(-0.415680\pi\)
0.261813 + 0.965119i \(0.415680\pi\)
\(824\) 3.48414 0.121376
\(825\) 0 0
\(826\) −4.07915 −0.141932
\(827\) 17.5838 0.611448 0.305724 0.952120i \(-0.401101\pi\)
0.305724 + 0.952120i \(0.401101\pi\)
\(828\) 0 0
\(829\) 27.9182 0.969640 0.484820 0.874614i \(-0.338885\pi\)
0.484820 + 0.874614i \(0.338885\pi\)
\(830\) 4.33807 0.150577
\(831\) 0 0
\(832\) 33.6964 1.16821
\(833\) −22.7445 −0.788051
\(834\) 0 0
\(835\) 51.9404 1.79747
\(836\) 30.1774 1.04371
\(837\) 0 0
\(838\) 1.53753 0.0531131
\(839\) −22.1987 −0.766384 −0.383192 0.923669i \(-0.625175\pi\)
−0.383192 + 0.923669i \(0.625175\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −5.02585 −0.173202
\(843\) 0 0
\(844\) −29.5757 −1.01804
\(845\) 29.5389 1.01617
\(846\) 0 0
\(847\) −27.3444 −0.939566
\(848\) −41.8248 −1.43627
\(849\) 0 0
\(850\) −3.76020 −0.128974
\(851\) −2.74381 −0.0940568
\(852\) 0 0
\(853\) −26.4548 −0.905794 −0.452897 0.891563i \(-0.649609\pi\)
−0.452897 + 0.891563i \(0.649609\pi\)
\(854\) 2.54816 0.0871961
\(855\) 0 0
\(856\) −8.10670 −0.277081
\(857\) 45.8418 1.56592 0.782962 0.622069i \(-0.213708\pi\)
0.782962 + 0.622069i \(0.213708\pi\)
\(858\) 0 0
\(859\) −8.29444 −0.283003 −0.141501 0.989938i \(-0.545193\pi\)
−0.141501 + 0.989938i \(0.545193\pi\)
\(860\) −1.70667 −0.0581968
\(861\) 0 0
\(862\) −0.0145820 −0.000496666 0
\(863\) 7.74485 0.263638 0.131819 0.991274i \(-0.457918\pi\)
0.131819 + 0.991274i \(0.457918\pi\)
\(864\) 0 0
\(865\) −0.356301 −0.0121146
\(866\) −0.223908 −0.00760869
\(867\) 0 0
\(868\) 33.7880 1.14684
\(869\) 42.8238 1.45270
\(870\) 0 0
\(871\) 24.4559 0.828657
\(872\) −6.07671 −0.205783
\(873\) 0 0
\(874\) 0.275844 0.00933055
\(875\) −25.0500 −0.846845
\(876\) 0 0
\(877\) 37.2741 1.25866 0.629328 0.777139i \(-0.283330\pi\)
0.629328 + 0.777139i \(0.283330\pi\)
\(878\) 5.16639 0.174357
\(879\) 0 0
\(880\) −56.1493 −1.89279
\(881\) −15.2380 −0.513382 −0.256691 0.966493i \(-0.582632\pi\)
−0.256691 + 0.966493i \(0.582632\pi\)
\(882\) 0 0
\(883\) −48.7085 −1.63917 −0.819586 0.572956i \(-0.805797\pi\)
−0.819586 + 0.572956i \(0.805797\pi\)
\(884\) −28.0807 −0.944457
\(885\) 0 0
\(886\) −3.23983 −0.108844
\(887\) −8.21801 −0.275934 −0.137967 0.990437i \(-0.544057\pi\)
−0.137967 + 0.990437i \(0.544057\pi\)
\(888\) 0 0
\(889\) 4.68592 0.157161
\(890\) −8.54161 −0.286315
\(891\) 0 0
\(892\) −47.1404 −1.57838
\(893\) −17.3034 −0.579037
\(894\) 0 0
\(895\) 13.9754 0.467146
\(896\) 20.6700 0.690535
\(897\) 0 0
\(898\) −1.88462 −0.0628906
\(899\) 0 0
\(900\) 0 0
\(901\) 33.6989 1.12267
\(902\) 1.48934 0.0495896
\(903\) 0 0
\(904\) −5.33063 −0.177294
\(905\) −39.7682 −1.32194
\(906\) 0 0
\(907\) 4.20133 0.139503 0.0697514 0.997564i \(-0.477779\pi\)
0.0697514 + 0.997564i \(0.477779\pi\)
\(908\) −10.1553 −0.337014
\(909\) 0 0
\(910\) 10.7695 0.357005
\(911\) −13.0361 −0.431906 −0.215953 0.976404i \(-0.569286\pi\)
−0.215953 + 0.976404i \(0.569286\pi\)
\(912\) 0 0
\(913\) −30.2859 −1.00232
\(914\) 5.34805 0.176898
\(915\) 0 0
\(916\) −15.9494 −0.526982
\(917\) 15.1643 0.500769
\(918\) 0 0
\(919\) 2.15993 0.0712497 0.0356248 0.999365i \(-0.488658\pi\)
0.0356248 + 0.999365i \(0.488658\pi\)
\(920\) −1.05168 −0.0346730
\(921\) 0 0
\(922\) −6.45595 −0.212616
\(923\) −27.0976 −0.891927
\(924\) 0 0
\(925\) −43.7411 −1.43820
\(926\) 3.22129 0.105858
\(927\) 0 0
\(928\) 0 0
\(929\) −5.52224 −0.181179 −0.0905894 0.995888i \(-0.528875\pi\)
−0.0905894 + 0.995888i \(0.528875\pi\)
\(930\) 0 0
\(931\) 26.5989 0.871744
\(932\) 48.2620 1.58087
\(933\) 0 0
\(934\) 1.75530 0.0574353
\(935\) 45.2404 1.47952
\(936\) 0 0
\(937\) 55.7255 1.82047 0.910237 0.414089i \(-0.135900\pi\)
0.910237 + 0.414089i \(0.135900\pi\)
\(938\) 3.53967 0.115574
\(939\) 0 0
\(940\) 32.7250 1.06737
\(941\) −52.7691 −1.72022 −0.860112 0.510105i \(-0.829606\pi\)
−0.860112 + 0.510105i \(0.829606\pi\)
\(942\) 0 0
\(943\) −0.854752 −0.0278345
\(944\) 23.1437 0.753262
\(945\) 0 0
\(946\) −0.189770 −0.00616997
\(947\) 42.3685 1.37679 0.688396 0.725335i \(-0.258315\pi\)
0.688396 + 0.725335i \(0.258315\pi\)
\(948\) 0 0
\(949\) −48.9826 −1.59004
\(950\) 4.39742 0.142671
\(951\) 0 0
\(952\) −8.19336 −0.265548
\(953\) −1.43433 −0.0464623 −0.0232312 0.999730i \(-0.507395\pi\)
−0.0232312 + 0.999730i \(0.507395\pi\)
\(954\) 0 0
\(955\) 5.38224 0.174165
\(956\) −55.0055 −1.77900
\(957\) 0 0
\(958\) 7.56626 0.244455
\(959\) −63.2050 −2.04100
\(960\) 0 0
\(961\) −10.5488 −0.340283
\(962\) 5.20263 0.167739
\(963\) 0 0
\(964\) −7.81230 −0.251617
\(965\) −46.1715 −1.48631
\(966\) 0 0
\(967\) 10.4202 0.335092 0.167546 0.985864i \(-0.446416\pi\)
0.167546 + 0.985864i \(0.446416\pi\)
\(968\) −5.06322 −0.162738
\(969\) 0 0
\(970\) 8.75321 0.281049
\(971\) −39.4639 −1.26646 −0.633228 0.773965i \(-0.718271\pi\)
−0.633228 + 0.773965i \(0.718271\pi\)
\(972\) 0 0
\(973\) −31.3904 −1.00633
\(974\) −4.50408 −0.144320
\(975\) 0 0
\(976\) −14.4574 −0.462769
\(977\) −7.31111 −0.233903 −0.116952 0.993138i \(-0.537312\pi\)
−0.116952 + 0.993138i \(0.537312\pi\)
\(978\) 0 0
\(979\) 59.6327 1.90587
\(980\) −50.3050 −1.60693
\(981\) 0 0
\(982\) 5.56390 0.177551
\(983\) −39.1740 −1.24946 −0.624728 0.780842i \(-0.714790\pi\)
−0.624728 + 0.780842i \(0.714790\pi\)
\(984\) 0 0
\(985\) 44.0942 1.40496
\(986\) 0 0
\(987\) 0 0
\(988\) 32.8394 1.04476
\(989\) 0.108912 0.00346319
\(990\) 0 0
\(991\) −47.8488 −1.51997 −0.759983 0.649942i \(-0.774793\pi\)
−0.759983 + 0.649942i \(0.774793\pi\)
\(992\) 9.40924 0.298744
\(993\) 0 0
\(994\) −3.92201 −0.124399
\(995\) 30.4487 0.965290
\(996\) 0 0
\(997\) −51.3829 −1.62731 −0.813656 0.581347i \(-0.802526\pi\)
−0.813656 + 0.581347i \(0.802526\pi\)
\(998\) −1.23005 −0.0389367
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bm.1.5 9
3.2 odd 2 2523.2.a.o.1.5 9
29.9 even 14 261.2.k.c.226.2 18
29.13 even 14 261.2.k.c.82.2 18
29.28 even 2 7569.2.a.bj.1.5 9
87.38 odd 14 87.2.g.a.52.2 18
87.71 odd 14 87.2.g.a.82.2 yes 18
87.86 odd 2 2523.2.a.r.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.2 18 87.38 odd 14
87.2.g.a.82.2 yes 18 87.71 odd 14
261.2.k.c.82.2 18 29.13 even 14
261.2.k.c.226.2 18 29.9 even 14
2523.2.a.o.1.5 9 3.2 odd 2
2523.2.a.r.1.5 9 87.86 odd 2
7569.2.a.bj.1.5 9 29.28 even 2
7569.2.a.bm.1.5 9 1.1 even 1 trivial