Properties

Label 7569.2.a.br.1.8
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 93x^{8} - 241x^{6} + 282x^{4} - 149x^{2} + 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 261)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.854850\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.854850 q^{2} -1.26923 q^{4} +3.95934 q^{5} -4.38464 q^{7} -2.79470 q^{8} +3.38464 q^{10} +2.89336 q^{11} -2.95135 q^{13} -3.74821 q^{14} +0.149412 q^{16} +3.86068 q^{17} -2.14757 q^{19} -5.02532 q^{20} +2.47339 q^{22} -0.0986600 q^{23} +10.6764 q^{25} -2.52296 q^{26} +5.56513 q^{28} -0.0777611 q^{31} +5.71713 q^{32} +3.30030 q^{34} -17.3603 q^{35} -10.4189 q^{37} -1.83585 q^{38} -11.0652 q^{40} -6.48468 q^{41} +1.79584 q^{43} -3.67235 q^{44} -0.0843395 q^{46} -9.87873 q^{47} +12.2251 q^{49} +9.12671 q^{50} +3.74595 q^{52} +7.41795 q^{53} +11.4558 q^{55} +12.2538 q^{56} +2.09902 q^{59} +3.55691 q^{61} -0.0664741 q^{62} +4.58846 q^{64} -11.6854 q^{65} +4.65082 q^{67} -4.90010 q^{68} -14.8405 q^{70} -10.2521 q^{71} -6.78225 q^{73} -8.90661 q^{74} +2.72576 q^{76} -12.6864 q^{77} -6.58508 q^{79} +0.591574 q^{80} -5.54343 q^{82} -15.3808 q^{83} +15.2858 q^{85} +1.53517 q^{86} -8.08609 q^{88} +12.9155 q^{89} +12.9406 q^{91} +0.125222 q^{92} -8.44483 q^{94} -8.50295 q^{95} +12.6506 q^{97} +10.4506 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} - 14 q^{7} + 2 q^{10} - 12 q^{13} - 4 q^{16} + 14 q^{19} + 8 q^{22} + 2 q^{25} - 12 q^{28} - 28 q^{31} - 18 q^{34} - 36 q^{37} + 20 q^{43} - 20 q^{46} - 10 q^{49} - 12 q^{52} + 58 q^{55}+ \cdots - 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.854850 0.604470 0.302235 0.953233i \(-0.402267\pi\)
0.302235 + 0.953233i \(0.402267\pi\)
\(3\) 0 0
\(4\) −1.26923 −0.634616
\(5\) 3.95934 1.77067 0.885336 0.464952i \(-0.153928\pi\)
0.885336 + 0.464952i \(0.153928\pi\)
\(6\) 0 0
\(7\) −4.38464 −1.65724 −0.828620 0.559812i \(-0.810873\pi\)
−0.828620 + 0.559812i \(0.810873\pi\)
\(8\) −2.79470 −0.988076
\(9\) 0 0
\(10\) 3.38464 1.07032
\(11\) 2.89336 0.872382 0.436191 0.899854i \(-0.356327\pi\)
0.436191 + 0.899854i \(0.356327\pi\)
\(12\) 0 0
\(13\) −2.95135 −0.818557 −0.409279 0.912409i \(-0.634220\pi\)
−0.409279 + 0.912409i \(0.634220\pi\)
\(14\) −3.74821 −1.00175
\(15\) 0 0
\(16\) 0.149412 0.0373531
\(17\) 3.86068 0.936353 0.468177 0.883635i \(-0.344911\pi\)
0.468177 + 0.883635i \(0.344911\pi\)
\(18\) 0 0
\(19\) −2.14757 −0.492686 −0.246343 0.969183i \(-0.579229\pi\)
−0.246343 + 0.969183i \(0.579229\pi\)
\(20\) −5.02532 −1.12370
\(21\) 0 0
\(22\) 2.47339 0.527329
\(23\) −0.0986600 −0.0205720 −0.0102860 0.999947i \(-0.503274\pi\)
−0.0102860 + 0.999947i \(0.503274\pi\)
\(24\) 0 0
\(25\) 10.6764 2.13528
\(26\) −2.52296 −0.494793
\(27\) 0 0
\(28\) 5.56513 1.05171
\(29\) 0 0
\(30\) 0 0
\(31\) −0.0777611 −0.0139663 −0.00698315 0.999976i \(-0.502223\pi\)
−0.00698315 + 0.999976i \(0.502223\pi\)
\(32\) 5.71713 1.01066
\(33\) 0 0
\(34\) 3.30030 0.565998
\(35\) −17.3603 −2.93443
\(36\) 0 0
\(37\) −10.4189 −1.71286 −0.856429 0.516264i \(-0.827322\pi\)
−0.856429 + 0.516264i \(0.827322\pi\)
\(38\) −1.83585 −0.297814
\(39\) 0 0
\(40\) −11.0652 −1.74956
\(41\) −6.48468 −1.01274 −0.506369 0.862317i \(-0.669012\pi\)
−0.506369 + 0.862317i \(0.669012\pi\)
\(42\) 0 0
\(43\) 1.79584 0.273863 0.136932 0.990581i \(-0.456276\pi\)
0.136932 + 0.990581i \(0.456276\pi\)
\(44\) −3.67235 −0.553627
\(45\) 0 0
\(46\) −0.0843395 −0.0124352
\(47\) −9.87873 −1.44096 −0.720480 0.693476i \(-0.756079\pi\)
−0.720480 + 0.693476i \(0.756079\pi\)
\(48\) 0 0
\(49\) 12.2251 1.74644
\(50\) 9.12671 1.29071
\(51\) 0 0
\(52\) 3.74595 0.519469
\(53\) 7.41795 1.01893 0.509467 0.860490i \(-0.329843\pi\)
0.509467 + 0.860490i \(0.329843\pi\)
\(54\) 0 0
\(55\) 11.4558 1.54470
\(56\) 12.2538 1.63748
\(57\) 0 0
\(58\) 0 0
\(59\) 2.09902 0.273269 0.136635 0.990622i \(-0.456371\pi\)
0.136635 + 0.990622i \(0.456371\pi\)
\(60\) 0 0
\(61\) 3.55691 0.455416 0.227708 0.973730i \(-0.426877\pi\)
0.227708 + 0.973730i \(0.426877\pi\)
\(62\) −0.0664741 −0.00844222
\(63\) 0 0
\(64\) 4.58846 0.573558
\(65\) −11.6854 −1.44940
\(66\) 0 0
\(67\) 4.65082 0.568188 0.284094 0.958796i \(-0.408307\pi\)
0.284094 + 0.958796i \(0.408307\pi\)
\(68\) −4.90010 −0.594224
\(69\) 0 0
\(70\) −14.8405 −1.77377
\(71\) −10.2521 −1.21671 −0.608353 0.793667i \(-0.708169\pi\)
−0.608353 + 0.793667i \(0.708169\pi\)
\(72\) 0 0
\(73\) −6.78225 −0.793802 −0.396901 0.917861i \(-0.629914\pi\)
−0.396901 + 0.917861i \(0.629914\pi\)
\(74\) −8.90661 −1.03537
\(75\) 0 0
\(76\) 2.72576 0.312666
\(77\) −12.6864 −1.44575
\(78\) 0 0
\(79\) −6.58508 −0.740879 −0.370440 0.928857i \(-0.620793\pi\)
−0.370440 + 0.928857i \(0.620793\pi\)
\(80\) 0.591574 0.0661400
\(81\) 0 0
\(82\) −5.54343 −0.612169
\(83\) −15.3808 −1.68827 −0.844133 0.536134i \(-0.819884\pi\)
−0.844133 + 0.536134i \(0.819884\pi\)
\(84\) 0 0
\(85\) 15.2858 1.65797
\(86\) 1.53517 0.165542
\(87\) 0 0
\(88\) −8.08609 −0.861980
\(89\) 12.9155 1.36904 0.684520 0.728995i \(-0.260012\pi\)
0.684520 + 0.728995i \(0.260012\pi\)
\(90\) 0 0
\(91\) 12.9406 1.35655
\(92\) 0.125222 0.0130553
\(93\) 0 0
\(94\) −8.44483 −0.871017
\(95\) −8.50295 −0.872385
\(96\) 0 0
\(97\) 12.6506 1.28447 0.642237 0.766506i \(-0.278006\pi\)
0.642237 + 0.766506i \(0.278006\pi\)
\(98\) 10.4506 1.05567
\(99\) 0 0
\(100\) −13.5508 −1.35508
\(101\) −9.85634 −0.980743 −0.490371 0.871514i \(-0.663139\pi\)
−0.490371 + 0.871514i \(0.663139\pi\)
\(102\) 0 0
\(103\) 3.07274 0.302766 0.151383 0.988475i \(-0.451627\pi\)
0.151383 + 0.988475i \(0.451627\pi\)
\(104\) 8.24814 0.808797
\(105\) 0 0
\(106\) 6.34124 0.615915
\(107\) −11.5675 −1.11828 −0.559138 0.829074i \(-0.688868\pi\)
−0.559138 + 0.829074i \(0.688868\pi\)
\(108\) 0 0
\(109\) −2.82529 −0.270614 −0.135307 0.990804i \(-0.543202\pi\)
−0.135307 + 0.990804i \(0.543202\pi\)
\(110\) 9.79300 0.933726
\(111\) 0 0
\(112\) −0.655120 −0.0619030
\(113\) 9.07625 0.853822 0.426911 0.904294i \(-0.359602\pi\)
0.426911 + 0.904294i \(0.359602\pi\)
\(114\) 0 0
\(115\) −0.390629 −0.0364263
\(116\) 0 0
\(117\) 0 0
\(118\) 1.79435 0.165183
\(119\) −16.9277 −1.55176
\(120\) 0 0
\(121\) −2.62845 −0.238950
\(122\) 3.04062 0.275285
\(123\) 0 0
\(124\) 0.0986969 0.00886324
\(125\) 22.4748 2.01021
\(126\) 0 0
\(127\) 3.28599 0.291584 0.145792 0.989315i \(-0.453427\pi\)
0.145792 + 0.989315i \(0.453427\pi\)
\(128\) −7.51181 −0.663957
\(129\) 0 0
\(130\) −9.98927 −0.876117
\(131\) −9.04174 −0.789981 −0.394990 0.918685i \(-0.629252\pi\)
−0.394990 + 0.918685i \(0.629252\pi\)
\(132\) 0 0
\(133\) 9.41632 0.816498
\(134\) 3.97575 0.343453
\(135\) 0 0
\(136\) −10.7895 −0.925188
\(137\) −1.83041 −0.156382 −0.0781911 0.996938i \(-0.524914\pi\)
−0.0781911 + 0.996938i \(0.524914\pi\)
\(138\) 0 0
\(139\) −22.1499 −1.87873 −0.939366 0.342915i \(-0.888586\pi\)
−0.939366 + 0.342915i \(0.888586\pi\)
\(140\) 22.0343 1.86223
\(141\) 0 0
\(142\) −8.76405 −0.735462
\(143\) −8.53933 −0.714094
\(144\) 0 0
\(145\) 0 0
\(146\) −5.79780 −0.479830
\(147\) 0 0
\(148\) 13.2240 1.08701
\(149\) −8.46364 −0.693369 −0.346684 0.937982i \(-0.612692\pi\)
−0.346684 + 0.937982i \(0.612692\pi\)
\(150\) 0 0
\(151\) −10.4844 −0.853212 −0.426606 0.904438i \(-0.640291\pi\)
−0.426606 + 0.904438i \(0.640291\pi\)
\(152\) 6.00181 0.486811
\(153\) 0 0
\(154\) −10.8449 −0.873910
\(155\) −0.307883 −0.0247298
\(156\) 0 0
\(157\) −15.6706 −1.25065 −0.625324 0.780366i \(-0.715033\pi\)
−0.625324 + 0.780366i \(0.715033\pi\)
\(158\) −5.62925 −0.447839
\(159\) 0 0
\(160\) 22.6361 1.78954
\(161\) 0.432589 0.0340928
\(162\) 0 0
\(163\) 24.8052 1.94290 0.971448 0.237252i \(-0.0762466\pi\)
0.971448 + 0.237252i \(0.0762466\pi\)
\(164\) 8.23056 0.642699
\(165\) 0 0
\(166\) −13.1483 −1.02051
\(167\) −2.65683 −0.205592 −0.102796 0.994702i \(-0.532779\pi\)
−0.102796 + 0.994702i \(0.532779\pi\)
\(168\) 0 0
\(169\) −4.28953 −0.329964
\(170\) 13.0670 1.00220
\(171\) 0 0
\(172\) −2.27934 −0.173798
\(173\) −4.85004 −0.368742 −0.184371 0.982857i \(-0.559025\pi\)
−0.184371 + 0.982857i \(0.559025\pi\)
\(174\) 0 0
\(175\) −46.8122 −3.53867
\(176\) 0.432304 0.0325861
\(177\) 0 0
\(178\) 11.0408 0.827543
\(179\) −8.72679 −0.652271 −0.326135 0.945323i \(-0.605746\pi\)
−0.326135 + 0.945323i \(0.605746\pi\)
\(180\) 0 0
\(181\) −8.70449 −0.647000 −0.323500 0.946228i \(-0.604860\pi\)
−0.323500 + 0.946228i \(0.604860\pi\)
\(182\) 11.0623 0.819991
\(183\) 0 0
\(184\) 0.275725 0.0203267
\(185\) −41.2520 −3.03291
\(186\) 0 0
\(187\) 11.1704 0.816857
\(188\) 12.5384 0.914456
\(189\) 0 0
\(190\) −7.26875 −0.527331
\(191\) 1.77576 0.128489 0.0642446 0.997934i \(-0.479536\pi\)
0.0642446 + 0.997934i \(0.479536\pi\)
\(192\) 0 0
\(193\) −0.800725 −0.0576375 −0.0288187 0.999585i \(-0.509175\pi\)
−0.0288187 + 0.999585i \(0.509175\pi\)
\(194\) 10.8144 0.776426
\(195\) 0 0
\(196\) −15.5165 −1.10832
\(197\) −7.89840 −0.562738 −0.281369 0.959600i \(-0.590788\pi\)
−0.281369 + 0.959600i \(0.590788\pi\)
\(198\) 0 0
\(199\) −21.7842 −1.54424 −0.772120 0.635477i \(-0.780804\pi\)
−0.772120 + 0.635477i \(0.780804\pi\)
\(200\) −29.8373 −2.10982
\(201\) 0 0
\(202\) −8.42569 −0.592830
\(203\) 0 0
\(204\) 0 0
\(205\) −25.6751 −1.79323
\(206\) 2.62673 0.183013
\(207\) 0 0
\(208\) −0.440968 −0.0305756
\(209\) −6.21369 −0.429810
\(210\) 0 0
\(211\) 4.64303 0.319639 0.159820 0.987146i \(-0.448909\pi\)
0.159820 + 0.987146i \(0.448909\pi\)
\(212\) −9.41510 −0.646632
\(213\) 0 0
\(214\) −9.88851 −0.675965
\(215\) 7.11035 0.484922
\(216\) 0 0
\(217\) 0.340955 0.0231455
\(218\) −2.41520 −0.163578
\(219\) 0 0
\(220\) −14.5401 −0.980292
\(221\) −11.3942 −0.766459
\(222\) 0 0
\(223\) −2.78463 −0.186473 −0.0932364 0.995644i \(-0.529721\pi\)
−0.0932364 + 0.995644i \(0.529721\pi\)
\(224\) −25.0676 −1.67490
\(225\) 0 0
\(226\) 7.75883 0.516110
\(227\) −22.2087 −1.47404 −0.737022 0.675869i \(-0.763769\pi\)
−0.737022 + 0.675869i \(0.763769\pi\)
\(228\) 0 0
\(229\) 9.52046 0.629129 0.314565 0.949236i \(-0.398141\pi\)
0.314565 + 0.949236i \(0.398141\pi\)
\(230\) −0.333929 −0.0220186
\(231\) 0 0
\(232\) 0 0
\(233\) −17.1025 −1.12042 −0.560210 0.828350i \(-0.689280\pi\)
−0.560210 + 0.828350i \(0.689280\pi\)
\(234\) 0 0
\(235\) −39.1133 −2.55147
\(236\) −2.66414 −0.173421
\(237\) 0 0
\(238\) −14.4707 −0.937993
\(239\) 13.9576 0.902839 0.451419 0.892312i \(-0.350918\pi\)
0.451419 + 0.892312i \(0.350918\pi\)
\(240\) 0 0
\(241\) 4.05067 0.260927 0.130463 0.991453i \(-0.458354\pi\)
0.130463 + 0.991453i \(0.458354\pi\)
\(242\) −2.24693 −0.144438
\(243\) 0 0
\(244\) −4.51454 −0.289014
\(245\) 48.4034 3.09238
\(246\) 0 0
\(247\) 6.33822 0.403291
\(248\) 0.217319 0.0137998
\(249\) 0 0
\(250\) 19.2126 1.21511
\(251\) 0.931184 0.0587758 0.0293879 0.999568i \(-0.490644\pi\)
0.0293879 + 0.999568i \(0.490644\pi\)
\(252\) 0 0
\(253\) −0.285459 −0.0179467
\(254\) 2.80903 0.176254
\(255\) 0 0
\(256\) −15.5984 −0.974900
\(257\) 7.08616 0.442023 0.221011 0.975271i \(-0.429064\pi\)
0.221011 + 0.975271i \(0.429064\pi\)
\(258\) 0 0
\(259\) 45.6832 2.83862
\(260\) 14.8315 0.919810
\(261\) 0 0
\(262\) −7.72933 −0.477520
\(263\) 12.6970 0.782932 0.391466 0.920192i \(-0.371968\pi\)
0.391466 + 0.920192i \(0.371968\pi\)
\(264\) 0 0
\(265\) 29.3702 1.80420
\(266\) 8.04954 0.493549
\(267\) 0 0
\(268\) −5.90297 −0.360581
\(269\) 10.3950 0.633796 0.316898 0.948460i \(-0.397359\pi\)
0.316898 + 0.948460i \(0.397359\pi\)
\(270\) 0 0
\(271\) −24.6121 −1.49508 −0.747538 0.664219i \(-0.768764\pi\)
−0.747538 + 0.664219i \(0.768764\pi\)
\(272\) 0.576833 0.0349757
\(273\) 0 0
\(274\) −1.56472 −0.0945284
\(275\) 30.8907 1.86278
\(276\) 0 0
\(277\) 13.3979 0.805000 0.402500 0.915420i \(-0.368141\pi\)
0.402500 + 0.915420i \(0.368141\pi\)
\(278\) −18.9349 −1.13564
\(279\) 0 0
\(280\) 48.5169 2.89944
\(281\) −4.44947 −0.265433 −0.132716 0.991154i \(-0.542370\pi\)
−0.132716 + 0.991154i \(0.542370\pi\)
\(282\) 0 0
\(283\) −11.4395 −0.680009 −0.340005 0.940424i \(-0.610429\pi\)
−0.340005 + 0.940424i \(0.610429\pi\)
\(284\) 13.0123 0.772141
\(285\) 0 0
\(286\) −7.29984 −0.431649
\(287\) 28.4330 1.67835
\(288\) 0 0
\(289\) −2.09513 −0.123243
\(290\) 0 0
\(291\) 0 0
\(292\) 8.60824 0.503759
\(293\) −13.3520 −0.780030 −0.390015 0.920808i \(-0.627530\pi\)
−0.390015 + 0.920808i \(0.627530\pi\)
\(294\) 0 0
\(295\) 8.31074 0.483870
\(296\) 29.1178 1.69244
\(297\) 0 0
\(298\) −7.23514 −0.419121
\(299\) 0.291180 0.0168394
\(300\) 0 0
\(301\) −7.87412 −0.453857
\(302\) −8.96262 −0.515741
\(303\) 0 0
\(304\) −0.320873 −0.0184033
\(305\) 14.0830 0.806391
\(306\) 0 0
\(307\) 14.9596 0.853787 0.426894 0.904302i \(-0.359608\pi\)
0.426894 + 0.904302i \(0.359608\pi\)
\(308\) 16.1019 0.917493
\(309\) 0 0
\(310\) −0.263194 −0.0149484
\(311\) −19.7839 −1.12184 −0.560921 0.827869i \(-0.689553\pi\)
−0.560921 + 0.827869i \(0.689553\pi\)
\(312\) 0 0
\(313\) 4.99856 0.282535 0.141268 0.989971i \(-0.454882\pi\)
0.141268 + 0.989971i \(0.454882\pi\)
\(314\) −13.3960 −0.755979
\(315\) 0 0
\(316\) 8.35799 0.470174
\(317\) −25.4435 −1.42905 −0.714524 0.699611i \(-0.753357\pi\)
−0.714524 + 0.699611i \(0.753357\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 18.1673 1.01558
\(321\) 0 0
\(322\) 0.369799 0.0206081
\(323\) −8.29108 −0.461328
\(324\) 0 0
\(325\) −31.5098 −1.74785
\(326\) 21.2048 1.17442
\(327\) 0 0
\(328\) 18.1228 1.00066
\(329\) 43.3147 2.38802
\(330\) 0 0
\(331\) 6.50771 0.357696 0.178848 0.983877i \(-0.442763\pi\)
0.178848 + 0.983877i \(0.442763\pi\)
\(332\) 19.5218 1.07140
\(333\) 0 0
\(334\) −2.27119 −0.124274
\(335\) 18.4142 1.00607
\(336\) 0 0
\(337\) 17.5303 0.954939 0.477470 0.878648i \(-0.341554\pi\)
0.477470 + 0.878648i \(0.341554\pi\)
\(338\) −3.66691 −0.199453
\(339\) 0 0
\(340\) −19.4012 −1.05218
\(341\) −0.224991 −0.0121840
\(342\) 0 0
\(343\) −22.9102 −1.23703
\(344\) −5.01884 −0.270598
\(345\) 0 0
\(346\) −4.14606 −0.222893
\(347\) 30.8369 1.65541 0.827706 0.561163i \(-0.189646\pi\)
0.827706 + 0.561163i \(0.189646\pi\)
\(348\) 0 0
\(349\) −5.77523 −0.309141 −0.154570 0.987982i \(-0.549399\pi\)
−0.154570 + 0.987982i \(0.549399\pi\)
\(350\) −40.0174 −2.13902
\(351\) 0 0
\(352\) 16.5417 0.881677
\(353\) 17.8845 0.951894 0.475947 0.879474i \(-0.342105\pi\)
0.475947 + 0.879474i \(0.342105\pi\)
\(354\) 0 0
\(355\) −40.5918 −2.15439
\(356\) −16.3927 −0.868814
\(357\) 0 0
\(358\) −7.46009 −0.394278
\(359\) 8.77761 0.463265 0.231632 0.972803i \(-0.425593\pi\)
0.231632 + 0.972803i \(0.425593\pi\)
\(360\) 0 0
\(361\) −14.3880 −0.757261
\(362\) −7.44103 −0.391092
\(363\) 0 0
\(364\) −16.4246 −0.860885
\(365\) −26.8532 −1.40556
\(366\) 0 0
\(367\) −1.80426 −0.0941814 −0.0470907 0.998891i \(-0.514995\pi\)
−0.0470907 + 0.998891i \(0.514995\pi\)
\(368\) −0.0147410 −0.000768429 0
\(369\) 0 0
\(370\) −35.2643 −1.83330
\(371\) −32.5251 −1.68862
\(372\) 0 0
\(373\) 27.5219 1.42503 0.712515 0.701657i \(-0.247556\pi\)
0.712515 + 0.701657i \(0.247556\pi\)
\(374\) 9.54898 0.493766
\(375\) 0 0
\(376\) 27.6081 1.42378
\(377\) 0 0
\(378\) 0 0
\(379\) −32.5757 −1.67330 −0.836651 0.547737i \(-0.815490\pi\)
−0.836651 + 0.547737i \(0.815490\pi\)
\(380\) 10.7922 0.553629
\(381\) 0 0
\(382\) 1.51800 0.0776679
\(383\) 25.3043 1.29299 0.646496 0.762917i \(-0.276234\pi\)
0.646496 + 0.762917i \(0.276234\pi\)
\(384\) 0 0
\(385\) −50.2297 −2.55994
\(386\) −0.684500 −0.0348401
\(387\) 0 0
\(388\) −16.0565 −0.815148
\(389\) 25.9152 1.31395 0.656976 0.753912i \(-0.271835\pi\)
0.656976 + 0.753912i \(0.271835\pi\)
\(390\) 0 0
\(391\) −0.380895 −0.0192627
\(392\) −34.1655 −1.72562
\(393\) 0 0
\(394\) −6.75195 −0.340158
\(395\) −26.0726 −1.31185
\(396\) 0 0
\(397\) 4.17910 0.209743 0.104872 0.994486i \(-0.466557\pi\)
0.104872 + 0.994486i \(0.466557\pi\)
\(398\) −18.6222 −0.933447
\(399\) 0 0
\(400\) 1.59518 0.0797592
\(401\) −12.6370 −0.631062 −0.315531 0.948915i \(-0.602183\pi\)
−0.315531 + 0.948915i \(0.602183\pi\)
\(402\) 0 0
\(403\) 0.229500 0.0114322
\(404\) 12.5100 0.622395
\(405\) 0 0
\(406\) 0 0
\(407\) −30.1457 −1.49427
\(408\) 0 0
\(409\) −20.3988 −1.00866 −0.504328 0.863512i \(-0.668260\pi\)
−0.504328 + 0.863512i \(0.668260\pi\)
\(410\) −21.9483 −1.08395
\(411\) 0 0
\(412\) −3.90002 −0.192140
\(413\) −9.20346 −0.452873
\(414\) 0 0
\(415\) −60.8980 −2.98936
\(416\) −16.8733 −0.827279
\(417\) 0 0
\(418\) −5.31177 −0.259807
\(419\) −22.2066 −1.08486 −0.542432 0.840099i \(-0.682497\pi\)
−0.542432 + 0.840099i \(0.682497\pi\)
\(420\) 0 0
\(421\) 1.61392 0.0786576 0.0393288 0.999226i \(-0.487478\pi\)
0.0393288 + 0.999226i \(0.487478\pi\)
\(422\) 3.96909 0.193212
\(423\) 0 0
\(424\) −20.7310 −1.00678
\(425\) 41.2182 1.99938
\(426\) 0 0
\(427\) −15.5958 −0.754733
\(428\) 14.6819 0.709676
\(429\) 0 0
\(430\) 6.07828 0.293121
\(431\) −31.7335 −1.52855 −0.764275 0.644891i \(-0.776903\pi\)
−0.764275 + 0.644891i \(0.776903\pi\)
\(432\) 0 0
\(433\) −28.5005 −1.36965 −0.684823 0.728709i \(-0.740121\pi\)
−0.684823 + 0.728709i \(0.740121\pi\)
\(434\) 0.291465 0.0139908
\(435\) 0 0
\(436\) 3.58595 0.171736
\(437\) 0.211879 0.0101355
\(438\) 0 0
\(439\) −22.4252 −1.07030 −0.535148 0.844758i \(-0.679744\pi\)
−0.535148 + 0.844758i \(0.679744\pi\)
\(440\) −32.0156 −1.52628
\(441\) 0 0
\(442\) −9.74035 −0.463301
\(443\) 26.9746 1.28160 0.640801 0.767707i \(-0.278602\pi\)
0.640801 + 0.767707i \(0.278602\pi\)
\(444\) 0 0
\(445\) 51.1368 2.42412
\(446\) −2.38044 −0.112717
\(447\) 0 0
\(448\) −20.1188 −0.950523
\(449\) 23.3909 1.10388 0.551942 0.833883i \(-0.313887\pi\)
0.551942 + 0.833883i \(0.313887\pi\)
\(450\) 0 0
\(451\) −18.7625 −0.883493
\(452\) −11.5199 −0.541849
\(453\) 0 0
\(454\) −18.9851 −0.891016
\(455\) 51.2363 2.40200
\(456\) 0 0
\(457\) −3.99072 −0.186678 −0.0933389 0.995634i \(-0.529754\pi\)
−0.0933389 + 0.995634i \(0.529754\pi\)
\(458\) 8.13856 0.380290
\(459\) 0 0
\(460\) 0.495798 0.0231167
\(461\) −25.6053 −1.19256 −0.596279 0.802777i \(-0.703355\pi\)
−0.596279 + 0.802777i \(0.703355\pi\)
\(462\) 0 0
\(463\) 12.5384 0.582708 0.291354 0.956615i \(-0.405894\pi\)
0.291354 + 0.956615i \(0.405894\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −14.6201 −0.677261
\(467\) 18.1338 0.839134 0.419567 0.907724i \(-0.362182\pi\)
0.419567 + 0.907724i \(0.362182\pi\)
\(468\) 0 0
\(469\) −20.3922 −0.941623
\(470\) −33.4360 −1.54229
\(471\) 0 0
\(472\) −5.86614 −0.270011
\(473\) 5.19602 0.238913
\(474\) 0 0
\(475\) −22.9283 −1.05202
\(476\) 21.4852 0.984772
\(477\) 0 0
\(478\) 11.9316 0.545739
\(479\) 12.0320 0.549758 0.274879 0.961479i \(-0.411362\pi\)
0.274879 + 0.961479i \(0.411362\pi\)
\(480\) 0 0
\(481\) 30.7499 1.40207
\(482\) 3.46272 0.157722
\(483\) 0 0
\(484\) 3.33612 0.151642
\(485\) 50.0881 2.27438
\(486\) 0 0
\(487\) −23.6834 −1.07320 −0.536599 0.843838i \(-0.680291\pi\)
−0.536599 + 0.843838i \(0.680291\pi\)
\(488\) −9.94050 −0.449985
\(489\) 0 0
\(490\) 41.3776 1.86925
\(491\) −8.55934 −0.386277 −0.193139 0.981171i \(-0.561867\pi\)
−0.193139 + 0.981171i \(0.561867\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 5.41823 0.243778
\(495\) 0 0
\(496\) −0.0116185 −0.000521685 0
\(497\) 44.9520 2.01637
\(498\) 0 0
\(499\) 25.2356 1.12970 0.564850 0.825194i \(-0.308934\pi\)
0.564850 + 0.825194i \(0.308934\pi\)
\(500\) −28.5257 −1.27571
\(501\) 0 0
\(502\) 0.796022 0.0355282
\(503\) −6.30927 −0.281317 −0.140658 0.990058i \(-0.544922\pi\)
−0.140658 + 0.990058i \(0.544922\pi\)
\(504\) 0 0
\(505\) −39.0246 −1.73657
\(506\) −0.244025 −0.0108482
\(507\) 0 0
\(508\) −4.17068 −0.185044
\(509\) 6.06578 0.268861 0.134431 0.990923i \(-0.457079\pi\)
0.134431 + 0.990923i \(0.457079\pi\)
\(510\) 0 0
\(511\) 29.7377 1.31552
\(512\) 1.68934 0.0746588
\(513\) 0 0
\(514\) 6.05760 0.267189
\(515\) 12.1660 0.536099
\(516\) 0 0
\(517\) −28.5827 −1.25707
\(518\) 39.0523 1.71586
\(519\) 0 0
\(520\) 32.6572 1.43211
\(521\) −1.78915 −0.0783842 −0.0391921 0.999232i \(-0.512478\pi\)
−0.0391921 + 0.999232i \(0.512478\pi\)
\(522\) 0 0
\(523\) 1.03803 0.0453899 0.0226950 0.999742i \(-0.492775\pi\)
0.0226950 + 0.999742i \(0.492775\pi\)
\(524\) 11.4761 0.501334
\(525\) 0 0
\(526\) 10.8541 0.473259
\(527\) −0.300211 −0.0130774
\(528\) 0 0
\(529\) −22.9903 −0.999577
\(530\) 25.1071 1.09058
\(531\) 0 0
\(532\) −11.9515 −0.518163
\(533\) 19.1386 0.828983
\(534\) 0 0
\(535\) −45.7999 −1.98010
\(536\) −12.9977 −0.561413
\(537\) 0 0
\(538\) 8.88619 0.383111
\(539\) 35.3716 1.52356
\(540\) 0 0
\(541\) 36.9316 1.58781 0.793907 0.608039i \(-0.208044\pi\)
0.793907 + 0.608039i \(0.208044\pi\)
\(542\) −21.0396 −0.903729
\(543\) 0 0
\(544\) 22.0720 0.946330
\(545\) −11.1863 −0.479168
\(546\) 0 0
\(547\) 39.4434 1.68648 0.843239 0.537539i \(-0.180646\pi\)
0.843239 + 0.537539i \(0.180646\pi\)
\(548\) 2.32321 0.0992427
\(549\) 0 0
\(550\) 26.4069 1.12599
\(551\) 0 0
\(552\) 0 0
\(553\) 28.8732 1.22781
\(554\) 11.4532 0.486599
\(555\) 0 0
\(556\) 28.1134 1.19227
\(557\) 3.06343 0.129802 0.0649009 0.997892i \(-0.479327\pi\)
0.0649009 + 0.997892i \(0.479327\pi\)
\(558\) 0 0
\(559\) −5.30016 −0.224173
\(560\) −2.59384 −0.109610
\(561\) 0 0
\(562\) −3.80363 −0.160446
\(563\) −20.6277 −0.869355 −0.434678 0.900586i \(-0.643138\pi\)
−0.434678 + 0.900586i \(0.643138\pi\)
\(564\) 0 0
\(565\) 35.9360 1.51184
\(566\) −9.77908 −0.411045
\(567\) 0 0
\(568\) 28.6517 1.20220
\(569\) 43.6297 1.82905 0.914525 0.404529i \(-0.132565\pi\)
0.914525 + 0.404529i \(0.132565\pi\)
\(570\) 0 0
\(571\) 12.9521 0.542028 0.271014 0.962575i \(-0.412641\pi\)
0.271014 + 0.962575i \(0.412641\pi\)
\(572\) 10.8384 0.453176
\(573\) 0 0
\(574\) 24.3060 1.01451
\(575\) −1.05333 −0.0439270
\(576\) 0 0
\(577\) 0.395788 0.0164769 0.00823843 0.999966i \(-0.497378\pi\)
0.00823843 + 0.999966i \(0.497378\pi\)
\(578\) −1.79102 −0.0744966
\(579\) 0 0
\(580\) 0 0
\(581\) 67.4395 2.79786
\(582\) 0 0
\(583\) 21.4628 0.888899
\(584\) 18.9544 0.784337
\(585\) 0 0
\(586\) −11.4139 −0.471505
\(587\) −5.35996 −0.221229 −0.110615 0.993863i \(-0.535282\pi\)
−0.110615 + 0.993863i \(0.535282\pi\)
\(588\) 0 0
\(589\) 0.166997 0.00688100
\(590\) 7.10444 0.292485
\(591\) 0 0
\(592\) −1.55671 −0.0639805
\(593\) −25.3529 −1.04112 −0.520558 0.853826i \(-0.674276\pi\)
−0.520558 + 0.853826i \(0.674276\pi\)
\(594\) 0 0
\(595\) −67.0226 −2.74766
\(596\) 10.7423 0.440023
\(597\) 0 0
\(598\) 0.248915 0.0101789
\(599\) −18.8602 −0.770606 −0.385303 0.922790i \(-0.625903\pi\)
−0.385303 + 0.922790i \(0.625903\pi\)
\(600\) 0 0
\(601\) 32.5256 1.32675 0.663374 0.748288i \(-0.269124\pi\)
0.663374 + 0.748288i \(0.269124\pi\)
\(602\) −6.73119 −0.274343
\(603\) 0 0
\(604\) 13.3072 0.541462
\(605\) −10.4070 −0.423103
\(606\) 0 0
\(607\) 1.44552 0.0586719 0.0293360 0.999570i \(-0.490661\pi\)
0.0293360 + 0.999570i \(0.490661\pi\)
\(608\) −12.2779 −0.497935
\(609\) 0 0
\(610\) 12.0389 0.487440
\(611\) 29.1556 1.17951
\(612\) 0 0
\(613\) −7.05074 −0.284777 −0.142388 0.989811i \(-0.545478\pi\)
−0.142388 + 0.989811i \(0.545478\pi\)
\(614\) 12.7882 0.516089
\(615\) 0 0
\(616\) 35.4546 1.42851
\(617\) −44.5362 −1.79296 −0.896480 0.443084i \(-0.853884\pi\)
−0.896480 + 0.443084i \(0.853884\pi\)
\(618\) 0 0
\(619\) 18.1811 0.730759 0.365379 0.930859i \(-0.380939\pi\)
0.365379 + 0.930859i \(0.380939\pi\)
\(620\) 0.390775 0.0156939
\(621\) 0 0
\(622\) −16.9123 −0.678120
\(623\) −56.6298 −2.26883
\(624\) 0 0
\(625\) 35.6034 1.42414
\(626\) 4.27302 0.170784
\(627\) 0 0
\(628\) 19.8896 0.793681
\(629\) −40.2241 −1.60384
\(630\) 0 0
\(631\) −22.2589 −0.886111 −0.443056 0.896494i \(-0.646106\pi\)
−0.443056 + 0.896494i \(0.646106\pi\)
\(632\) 18.4033 0.732045
\(633\) 0 0
\(634\) −21.7504 −0.863817
\(635\) 13.0104 0.516300
\(636\) 0 0
\(637\) −36.0806 −1.42956
\(638\) 0 0
\(639\) 0 0
\(640\) −29.7418 −1.17565
\(641\) −27.8977 −1.10189 −0.550946 0.834541i \(-0.685733\pi\)
−0.550946 + 0.834541i \(0.685733\pi\)
\(642\) 0 0
\(643\) 39.5665 1.56035 0.780176 0.625560i \(-0.215129\pi\)
0.780176 + 0.625560i \(0.215129\pi\)
\(644\) −0.549056 −0.0216358
\(645\) 0 0
\(646\) −7.08763 −0.278859
\(647\) −19.4957 −0.766454 −0.383227 0.923654i \(-0.625187\pi\)
−0.383227 + 0.923654i \(0.625187\pi\)
\(648\) 0 0
\(649\) 6.07323 0.238395
\(650\) −26.9361 −1.05652
\(651\) 0 0
\(652\) −31.4836 −1.23299
\(653\) 7.08315 0.277185 0.138593 0.990349i \(-0.455742\pi\)
0.138593 + 0.990349i \(0.455742\pi\)
\(654\) 0 0
\(655\) −35.7994 −1.39880
\(656\) −0.968891 −0.0378289
\(657\) 0 0
\(658\) 37.0276 1.44348
\(659\) −8.05571 −0.313806 −0.156903 0.987614i \(-0.550151\pi\)
−0.156903 + 0.987614i \(0.550151\pi\)
\(660\) 0 0
\(661\) −8.38772 −0.326244 −0.163122 0.986606i \(-0.552156\pi\)
−0.163122 + 0.986606i \(0.552156\pi\)
\(662\) 5.56311 0.216216
\(663\) 0 0
\(664\) 42.9849 1.66814
\(665\) 37.2824 1.44575
\(666\) 0 0
\(667\) 0 0
\(668\) 3.37213 0.130472
\(669\) 0 0
\(670\) 15.7414 0.608142
\(671\) 10.2914 0.397296
\(672\) 0 0
\(673\) −4.63335 −0.178602 −0.0893012 0.996005i \(-0.528463\pi\)
−0.0893012 + 0.996005i \(0.528463\pi\)
\(674\) 14.9858 0.577232
\(675\) 0 0
\(676\) 5.44441 0.209400
\(677\) −32.8006 −1.26063 −0.630315 0.776339i \(-0.717074\pi\)
−0.630315 + 0.776339i \(0.717074\pi\)
\(678\) 0 0
\(679\) −55.4684 −2.12868
\(680\) −42.7192 −1.63821
\(681\) 0 0
\(682\) −0.192334 −0.00736483
\(683\) −5.26590 −0.201494 −0.100747 0.994912i \(-0.532123\pi\)
−0.100747 + 0.994912i \(0.532123\pi\)
\(684\) 0 0
\(685\) −7.24721 −0.276902
\(686\) −19.5848 −0.747751
\(687\) 0 0
\(688\) 0.268321 0.0102296
\(689\) −21.8930 −0.834056
\(690\) 0 0
\(691\) 12.9033 0.490864 0.245432 0.969414i \(-0.421070\pi\)
0.245432 + 0.969414i \(0.421070\pi\)
\(692\) 6.15583 0.234009
\(693\) 0 0
\(694\) 26.3609 1.00065
\(695\) −87.6992 −3.32662
\(696\) 0 0
\(697\) −25.0353 −0.948280
\(698\) −4.93695 −0.186866
\(699\) 0 0
\(700\) 59.4155 2.24570
\(701\) 23.0739 0.871487 0.435744 0.900071i \(-0.356485\pi\)
0.435744 + 0.900071i \(0.356485\pi\)
\(702\) 0 0
\(703\) 22.3753 0.843901
\(704\) 13.2761 0.500361
\(705\) 0 0
\(706\) 15.2885 0.575392
\(707\) 43.2166 1.62533
\(708\) 0 0
\(709\) 33.6636 1.26426 0.632132 0.774861i \(-0.282180\pi\)
0.632132 + 0.774861i \(0.282180\pi\)
\(710\) −34.6999 −1.30226
\(711\) 0 0
\(712\) −36.0949 −1.35272
\(713\) 0.00767191 0.000287315 0
\(714\) 0 0
\(715\) −33.8101 −1.26443
\(716\) 11.0763 0.413941
\(717\) 0 0
\(718\) 7.50354 0.280030
\(719\) 17.6394 0.657839 0.328920 0.944358i \(-0.393315\pi\)
0.328920 + 0.944358i \(0.393315\pi\)
\(720\) 0 0
\(721\) −13.4729 −0.501756
\(722\) −12.2995 −0.457742
\(723\) 0 0
\(724\) 11.0480 0.410596
\(725\) 0 0
\(726\) 0 0
\(727\) 30.3820 1.12681 0.563403 0.826182i \(-0.309492\pi\)
0.563403 + 0.826182i \(0.309492\pi\)
\(728\) −36.1652 −1.34037
\(729\) 0 0
\(730\) −22.9555 −0.849621
\(731\) 6.93317 0.256433
\(732\) 0 0
\(733\) −21.7102 −0.801884 −0.400942 0.916103i \(-0.631317\pi\)
−0.400942 + 0.916103i \(0.631317\pi\)
\(734\) −1.54237 −0.0569298
\(735\) 0 0
\(736\) −0.564052 −0.0207912
\(737\) 13.4565 0.495677
\(738\) 0 0
\(739\) 36.3858 1.33847 0.669237 0.743049i \(-0.266621\pi\)
0.669237 + 0.743049i \(0.266621\pi\)
\(740\) 52.3584 1.92473
\(741\) 0 0
\(742\) −27.8041 −1.02072
\(743\) 15.3305 0.562421 0.281210 0.959646i \(-0.409264\pi\)
0.281210 + 0.959646i \(0.409264\pi\)
\(744\) 0 0
\(745\) −33.5105 −1.22773
\(746\) 23.5271 0.861388
\(747\) 0 0
\(748\) −14.1778 −0.518390
\(749\) 50.7195 1.85325
\(750\) 0 0
\(751\) −24.8068 −0.905214 −0.452607 0.891710i \(-0.649506\pi\)
−0.452607 + 0.891710i \(0.649506\pi\)
\(752\) −1.47600 −0.0538243
\(753\) 0 0
\(754\) 0 0
\(755\) −41.5115 −1.51076
\(756\) 0 0
\(757\) 29.1867 1.06081 0.530404 0.847745i \(-0.322040\pi\)
0.530404 + 0.847745i \(0.322040\pi\)
\(758\) −27.8473 −1.01146
\(759\) 0 0
\(760\) 23.7632 0.861983
\(761\) −42.0242 −1.52338 −0.761689 0.647943i \(-0.775629\pi\)
−0.761689 + 0.647943i \(0.775629\pi\)
\(762\) 0 0
\(763\) 12.3879 0.448472
\(764\) −2.25385 −0.0815413
\(765\) 0 0
\(766\) 21.6314 0.781575
\(767\) −6.19495 −0.223687
\(768\) 0 0
\(769\) 55.1537 1.98889 0.994447 0.105235i \(-0.0335596\pi\)
0.994447 + 0.105235i \(0.0335596\pi\)
\(770\) −42.9388 −1.54741
\(771\) 0 0
\(772\) 1.01631 0.0365777
\(773\) 1.29858 0.0467068 0.0233534 0.999727i \(-0.492566\pi\)
0.0233534 + 0.999727i \(0.492566\pi\)
\(774\) 0 0
\(775\) −0.830208 −0.0298220
\(776\) −35.3547 −1.26916
\(777\) 0 0
\(778\) 22.1536 0.794245
\(779\) 13.9263 0.498961
\(780\) 0 0
\(781\) −29.6632 −1.06143
\(782\) −0.325608 −0.0116437
\(783\) 0 0
\(784\) 1.82658 0.0652350
\(785\) −62.0451 −2.21449
\(786\) 0 0
\(787\) −28.1412 −1.00313 −0.501563 0.865121i \(-0.667241\pi\)
−0.501563 + 0.865121i \(0.667241\pi\)
\(788\) 10.0249 0.357122
\(789\) 0 0
\(790\) −22.2881 −0.792977
\(791\) −39.7961 −1.41499
\(792\) 0 0
\(793\) −10.4977 −0.372784
\(794\) 3.57251 0.126784
\(795\) 0 0
\(796\) 27.6492 0.979999
\(797\) 35.8082 1.26839 0.634196 0.773173i \(-0.281331\pi\)
0.634196 + 0.773173i \(0.281331\pi\)
\(798\) 0 0
\(799\) −38.1386 −1.34925
\(800\) 61.0383 2.15803
\(801\) 0 0
\(802\) −10.8027 −0.381458
\(803\) −19.6235 −0.692498
\(804\) 0 0
\(805\) 1.71277 0.0603671
\(806\) 0.196188 0.00691044
\(807\) 0 0
\(808\) 27.5455 0.969049
\(809\) −11.9323 −0.419517 −0.209759 0.977753i \(-0.567268\pi\)
−0.209759 + 0.977753i \(0.567268\pi\)
\(810\) 0 0
\(811\) −27.0319 −0.949218 −0.474609 0.880197i \(-0.657410\pi\)
−0.474609 + 0.880197i \(0.657410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −25.7700 −0.903239
\(815\) 98.2125 3.44023
\(816\) 0 0
\(817\) −3.85669 −0.134928
\(818\) −17.4379 −0.609702
\(819\) 0 0
\(820\) 32.5876 1.13801
\(821\) −27.0561 −0.944264 −0.472132 0.881528i \(-0.656516\pi\)
−0.472132 + 0.881528i \(0.656516\pi\)
\(822\) 0 0
\(823\) −27.3770 −0.954301 −0.477150 0.878822i \(-0.658330\pi\)
−0.477150 + 0.878822i \(0.658330\pi\)
\(824\) −8.58739 −0.299156
\(825\) 0 0
\(826\) −7.86758 −0.273748
\(827\) 47.2162 1.64187 0.820934 0.571024i \(-0.193454\pi\)
0.820934 + 0.571024i \(0.193454\pi\)
\(828\) 0 0
\(829\) 16.6695 0.578957 0.289479 0.957185i \(-0.406518\pi\)
0.289479 + 0.957185i \(0.406518\pi\)
\(830\) −52.0586 −1.80698
\(831\) 0 0
\(832\) −13.5422 −0.469490
\(833\) 47.1972 1.63529
\(834\) 0 0
\(835\) −10.5193 −0.364035
\(836\) 7.88661 0.272764
\(837\) 0 0
\(838\) −18.9833 −0.655768
\(839\) 31.6460 1.09254 0.546271 0.837609i \(-0.316047\pi\)
0.546271 + 0.837609i \(0.316047\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 1.37966 0.0475462
\(843\) 0 0
\(844\) −5.89308 −0.202848
\(845\) −16.9837 −0.584258
\(846\) 0 0
\(847\) 11.5248 0.395998
\(848\) 1.10833 0.0380603
\(849\) 0 0
\(850\) 35.2354 1.20856
\(851\) 1.02793 0.0352370
\(852\) 0 0
\(853\) 21.5091 0.736458 0.368229 0.929735i \(-0.379964\pi\)
0.368229 + 0.929735i \(0.379964\pi\)
\(854\) −13.3320 −0.456213
\(855\) 0 0
\(856\) 32.3278 1.10494
\(857\) −46.9045 −1.60223 −0.801114 0.598512i \(-0.795759\pi\)
−0.801114 + 0.598512i \(0.795759\pi\)
\(858\) 0 0
\(859\) 2.47726 0.0845232 0.0422616 0.999107i \(-0.486544\pi\)
0.0422616 + 0.999107i \(0.486544\pi\)
\(860\) −9.02468 −0.307739
\(861\) 0 0
\(862\) −27.1274 −0.923963
\(863\) 9.69575 0.330047 0.165024 0.986290i \(-0.447230\pi\)
0.165024 + 0.986290i \(0.447230\pi\)
\(864\) 0 0
\(865\) −19.2030 −0.652921
\(866\) −24.3637 −0.827911
\(867\) 0 0
\(868\) −0.432751 −0.0146885
\(869\) −19.0530 −0.646330
\(870\) 0 0
\(871\) −13.7262 −0.465094
\(872\) 7.89584 0.267387
\(873\) 0 0
\(874\) 0.181125 0.00612663
\(875\) −98.5440 −3.33139
\(876\) 0 0
\(877\) −9.19027 −0.310334 −0.155167 0.987888i \(-0.549591\pi\)
−0.155167 + 0.987888i \(0.549591\pi\)
\(878\) −19.1702 −0.646962
\(879\) 0 0
\(880\) 1.71164 0.0576994
\(881\) −27.8621 −0.938698 −0.469349 0.883013i \(-0.655511\pi\)
−0.469349 + 0.883013i \(0.655511\pi\)
\(882\) 0 0
\(883\) −17.0461 −0.573646 −0.286823 0.957984i \(-0.592599\pi\)
−0.286823 + 0.957984i \(0.592599\pi\)
\(884\) 14.4619 0.486407
\(885\) 0 0
\(886\) 23.0592 0.774690
\(887\) 19.6228 0.658871 0.329435 0.944178i \(-0.393142\pi\)
0.329435 + 0.944178i \(0.393142\pi\)
\(888\) 0 0
\(889\) −14.4079 −0.483225
\(890\) 43.7143 1.46531
\(891\) 0 0
\(892\) 3.53434 0.118339
\(893\) 21.2152 0.709940
\(894\) 0 0
\(895\) −34.5523 −1.15496
\(896\) 32.9366 1.10034
\(897\) 0 0
\(898\) 19.9957 0.667265
\(899\) 0 0
\(900\) 0 0
\(901\) 28.6384 0.954082
\(902\) −16.0392 −0.534045
\(903\) 0 0
\(904\) −25.3654 −0.843641
\(905\) −34.4641 −1.14562
\(906\) 0 0
\(907\) 45.3685 1.50644 0.753218 0.657771i \(-0.228501\pi\)
0.753218 + 0.657771i \(0.228501\pi\)
\(908\) 28.1880 0.935452
\(909\) 0 0
\(910\) 43.7994 1.45194
\(911\) −2.87604 −0.0952875 −0.0476437 0.998864i \(-0.515171\pi\)
−0.0476437 + 0.998864i \(0.515171\pi\)
\(912\) 0 0
\(913\) −44.5023 −1.47281
\(914\) −3.41146 −0.112841
\(915\) 0 0
\(916\) −12.0837 −0.399256
\(917\) 39.6448 1.30919
\(918\) 0 0
\(919\) −27.5647 −0.909277 −0.454638 0.890676i \(-0.650232\pi\)
−0.454638 + 0.890676i \(0.650232\pi\)
\(920\) 1.09169 0.0359920
\(921\) 0 0
\(922\) −21.8887 −0.720865
\(923\) 30.2577 0.995943
\(924\) 0 0
\(925\) −111.236 −3.65743
\(926\) 10.7184 0.352230
\(927\) 0 0
\(928\) 0 0
\(929\) 21.8994 0.718497 0.359248 0.933242i \(-0.383033\pi\)
0.359248 + 0.933242i \(0.383033\pi\)
\(930\) 0 0
\(931\) −26.2542 −0.860447
\(932\) 21.7070 0.711037
\(933\) 0 0
\(934\) 15.5017 0.507231
\(935\) 44.2273 1.44639
\(936\) 0 0
\(937\) 2.96293 0.0967946 0.0483973 0.998828i \(-0.484589\pi\)
0.0483973 + 0.998828i \(0.484589\pi\)
\(938\) −17.4323 −0.569183
\(939\) 0 0
\(940\) 49.6438 1.61920
\(941\) 0.422587 0.0137759 0.00688797 0.999976i \(-0.497807\pi\)
0.00688797 + 0.999976i \(0.497807\pi\)
\(942\) 0 0
\(943\) 0.639779 0.0208341
\(944\) 0.313620 0.0102074
\(945\) 0 0
\(946\) 4.44182 0.144416
\(947\) −55.3487 −1.79859 −0.899296 0.437341i \(-0.855920\pi\)
−0.899296 + 0.437341i \(0.855920\pi\)
\(948\) 0 0
\(949\) 20.0168 0.649772
\(950\) −19.6002 −0.635916
\(951\) 0 0
\(952\) 47.3079 1.53326
\(953\) 40.4654 1.31080 0.655402 0.755280i \(-0.272499\pi\)
0.655402 + 0.755280i \(0.272499\pi\)
\(954\) 0 0
\(955\) 7.03083 0.227512
\(956\) −17.7154 −0.572956
\(957\) 0 0
\(958\) 10.2856 0.332312
\(959\) 8.02568 0.259163
\(960\) 0 0
\(961\) −30.9940 −0.999805
\(962\) 26.2865 0.847511
\(963\) 0 0
\(964\) −5.14124 −0.165588
\(965\) −3.17035 −0.102057
\(966\) 0 0
\(967\) −11.5025 −0.369896 −0.184948 0.982748i \(-0.559212\pi\)
−0.184948 + 0.982748i \(0.559212\pi\)
\(968\) 7.34575 0.236101
\(969\) 0 0
\(970\) 42.8178 1.37480
\(971\) −52.7268 −1.69208 −0.846042 0.533116i \(-0.821021\pi\)
−0.846042 + 0.533116i \(0.821021\pi\)
\(972\) 0 0
\(973\) 97.1196 3.11351
\(974\) −20.2457 −0.648716
\(975\) 0 0
\(976\) 0.531446 0.0170112
\(977\) −5.72799 −0.183255 −0.0916273 0.995793i \(-0.529207\pi\)
−0.0916273 + 0.995793i \(0.529207\pi\)
\(978\) 0 0
\(979\) 37.3692 1.19432
\(980\) −61.4351 −1.96247
\(981\) 0 0
\(982\) −7.31695 −0.233493
\(983\) 52.2866 1.66768 0.833841 0.552005i \(-0.186137\pi\)
0.833841 + 0.552005i \(0.186137\pi\)
\(984\) 0 0
\(985\) −31.2725 −0.996424
\(986\) 0 0
\(987\) 0 0
\(988\) −8.04467 −0.255935
\(989\) −0.177178 −0.00563392
\(990\) 0 0
\(991\) −14.5007 −0.460629 −0.230315 0.973116i \(-0.573976\pi\)
−0.230315 + 0.973116i \(0.573976\pi\)
\(992\) −0.444570 −0.0141151
\(993\) 0 0
\(994\) 38.4272 1.21884
\(995\) −86.2511 −2.73434
\(996\) 0 0
\(997\) 8.53368 0.270264 0.135132 0.990828i \(-0.456854\pi\)
0.135132 + 0.990828i \(0.456854\pi\)
\(998\) 21.5726 0.682870
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.br.1.8 12
3.2 odd 2 inner 7569.2.a.br.1.5 12
29.4 even 14 261.2.k.d.190.3 yes 24
29.22 even 14 261.2.k.d.136.3 yes 24
29.28 even 2 7569.2.a.bq.1.5 12
87.62 odd 14 261.2.k.d.190.2 yes 24
87.80 odd 14 261.2.k.d.136.2 24
87.86 odd 2 7569.2.a.bq.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.k.d.136.2 24 87.80 odd 14
261.2.k.d.136.3 yes 24 29.22 even 14
261.2.k.d.190.2 yes 24 87.62 odd 14
261.2.k.d.190.3 yes 24 29.4 even 14
7569.2.a.bq.1.5 12 29.28 even 2
7569.2.a.bq.1.8 12 87.86 odd 2
7569.2.a.br.1.5 12 3.2 odd 2 inner
7569.2.a.br.1.8 12 1.1 even 1 trivial