Properties

Label 7569.2.a.bt.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 2 x^{10} + 38 x^{9} - 30 x^{8} - 90 x^{7} + 55 x^{6} + 90 x^{5} - 30 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.90759\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.90759 q^{2} +1.63890 q^{4} +1.71673 q^{5} -1.24174 q^{7} +0.688829 q^{8} -3.27481 q^{10} -2.54849 q^{11} -6.09491 q^{13} +2.36873 q^{14} -4.59181 q^{16} +1.70189 q^{17} +0.426606 q^{19} +2.81354 q^{20} +4.86148 q^{22} +5.66024 q^{23} -2.05286 q^{25} +11.6266 q^{26} -2.03509 q^{28} +1.85090 q^{31} +7.38163 q^{32} -3.24652 q^{34} -2.13172 q^{35} -7.56191 q^{37} -0.813789 q^{38} +1.18253 q^{40} -6.80500 q^{41} +10.4809 q^{43} -4.17672 q^{44} -10.7974 q^{46} +12.0970 q^{47} -5.45809 q^{49} +3.91601 q^{50} -9.98896 q^{52} +3.20805 q^{53} -4.37506 q^{55} -0.855345 q^{56} +3.90939 q^{59} +14.5607 q^{61} -3.53077 q^{62} -4.89751 q^{64} -10.4633 q^{65} -2.00896 q^{67} +2.78924 q^{68} +4.06646 q^{70} +11.3543 q^{71} +6.86914 q^{73} +14.4250 q^{74} +0.699164 q^{76} +3.16456 q^{77} +5.87993 q^{79} -7.88287 q^{80} +12.9812 q^{82} -6.66375 q^{83} +2.92168 q^{85} -19.9932 q^{86} -1.75547 q^{88} +3.27600 q^{89} +7.56828 q^{91} +9.27658 q^{92} -23.0761 q^{94} +0.732364 q^{95} +2.49744 q^{97} +10.4118 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 8 q^{4} - 2 q^{5} - 10 q^{7} - 20 q^{10} + 14 q^{11} - 16 q^{13} - 4 q^{16} + 22 q^{17} - 16 q^{19} - 4 q^{20} + 12 q^{22} - 2 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{28} - 4 q^{31} + 16 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.90759 −1.34887 −0.674435 0.738334i \(-0.735613\pi\)
−0.674435 + 0.738334i \(0.735613\pi\)
\(3\) 0 0
\(4\) 1.63890 0.819451
\(5\) 1.71673 0.767743 0.383871 0.923387i \(-0.374591\pi\)
0.383871 + 0.923387i \(0.374591\pi\)
\(6\) 0 0
\(7\) −1.24174 −0.469333 −0.234666 0.972076i \(-0.575400\pi\)
−0.234666 + 0.972076i \(0.575400\pi\)
\(8\) 0.688829 0.243538
\(9\) 0 0
\(10\) −3.27481 −1.03559
\(11\) −2.54849 −0.768399 −0.384199 0.923250i \(-0.625522\pi\)
−0.384199 + 0.923250i \(0.625522\pi\)
\(12\) 0 0
\(13\) −6.09491 −1.69042 −0.845212 0.534431i \(-0.820526\pi\)
−0.845212 + 0.534431i \(0.820526\pi\)
\(14\) 2.36873 0.633069
\(15\) 0 0
\(16\) −4.59181 −1.14795
\(17\) 1.70189 0.412770 0.206385 0.978471i \(-0.433830\pi\)
0.206385 + 0.978471i \(0.433830\pi\)
\(18\) 0 0
\(19\) 0.426606 0.0978700 0.0489350 0.998802i \(-0.484417\pi\)
0.0489350 + 0.998802i \(0.484417\pi\)
\(20\) 2.81354 0.629127
\(21\) 0 0
\(22\) 4.86148 1.03647
\(23\) 5.66024 1.18024 0.590121 0.807315i \(-0.299080\pi\)
0.590121 + 0.807315i \(0.299080\pi\)
\(24\) 0 0
\(25\) −2.05286 −0.410571
\(26\) 11.6266 2.28016
\(27\) 0 0
\(28\) −2.03509 −0.384595
\(29\) 0 0
\(30\) 0 0
\(31\) 1.85090 0.332432 0.166216 0.986089i \(-0.446845\pi\)
0.166216 + 0.986089i \(0.446845\pi\)
\(32\) 7.38163 1.30490
\(33\) 0 0
\(34\) −3.24652 −0.556773
\(35\) −2.13172 −0.360327
\(36\) 0 0
\(37\) −7.56191 −1.24317 −0.621585 0.783347i \(-0.713511\pi\)
−0.621585 + 0.783347i \(0.713511\pi\)
\(38\) −0.813789 −0.132014
\(39\) 0 0
\(40\) 1.18253 0.186974
\(41\) −6.80500 −1.06276 −0.531382 0.847133i \(-0.678327\pi\)
−0.531382 + 0.847133i \(0.678327\pi\)
\(42\) 0 0
\(43\) 10.4809 1.59832 0.799158 0.601120i \(-0.205279\pi\)
0.799158 + 0.601120i \(0.205279\pi\)
\(44\) −4.17672 −0.629665
\(45\) 0 0
\(46\) −10.7974 −1.59199
\(47\) 12.0970 1.76452 0.882262 0.470759i \(-0.156020\pi\)
0.882262 + 0.470759i \(0.156020\pi\)
\(48\) 0 0
\(49\) −5.45809 −0.779727
\(50\) 3.91601 0.553807
\(51\) 0 0
\(52\) −9.98896 −1.38522
\(53\) 3.20805 0.440660 0.220330 0.975425i \(-0.429287\pi\)
0.220330 + 0.975425i \(0.429287\pi\)
\(54\) 0 0
\(55\) −4.37506 −0.589933
\(56\) −0.855345 −0.114300
\(57\) 0 0
\(58\) 0 0
\(59\) 3.90939 0.508959 0.254479 0.967078i \(-0.418096\pi\)
0.254479 + 0.967078i \(0.418096\pi\)
\(60\) 0 0
\(61\) 14.5607 1.86430 0.932151 0.362069i \(-0.117930\pi\)
0.932151 + 0.362069i \(0.117930\pi\)
\(62\) −3.53077 −0.448408
\(63\) 0 0
\(64\) −4.89751 −0.612188
\(65\) −10.4633 −1.29781
\(66\) 0 0
\(67\) −2.00896 −0.245433 −0.122717 0.992442i \(-0.539161\pi\)
−0.122717 + 0.992442i \(0.539161\pi\)
\(68\) 2.78924 0.338244
\(69\) 0 0
\(70\) 4.06646 0.486034
\(71\) 11.3543 1.34751 0.673755 0.738955i \(-0.264680\pi\)
0.673755 + 0.738955i \(0.264680\pi\)
\(72\) 0 0
\(73\) 6.86914 0.803972 0.401986 0.915646i \(-0.368320\pi\)
0.401986 + 0.915646i \(0.368320\pi\)
\(74\) 14.4250 1.67687
\(75\) 0 0
\(76\) 0.699164 0.0801996
\(77\) 3.16456 0.360635
\(78\) 0 0
\(79\) 5.87993 0.661544 0.330772 0.943711i \(-0.392691\pi\)
0.330772 + 0.943711i \(0.392691\pi\)
\(80\) −7.88287 −0.881331
\(81\) 0 0
\(82\) 12.9812 1.43353
\(83\) −6.66375 −0.731441 −0.365721 0.930725i \(-0.619177\pi\)
−0.365721 + 0.930725i \(0.619177\pi\)
\(84\) 0 0
\(85\) 2.92168 0.316901
\(86\) −19.9932 −2.15592
\(87\) 0 0
\(88\) −1.75547 −0.187134
\(89\) 3.27600 0.347255 0.173628 0.984811i \(-0.444451\pi\)
0.173628 + 0.984811i \(0.444451\pi\)
\(90\) 0 0
\(91\) 7.56828 0.793372
\(92\) 9.27658 0.967150
\(93\) 0 0
\(94\) −23.0761 −2.38011
\(95\) 0.732364 0.0751390
\(96\) 0 0
\(97\) 2.49744 0.253576 0.126788 0.991930i \(-0.459533\pi\)
0.126788 + 0.991930i \(0.459533\pi\)
\(98\) 10.4118 1.05175
\(99\) 0 0
\(100\) −3.36443 −0.336443
\(101\) 17.2626 1.71770 0.858848 0.512230i \(-0.171181\pi\)
0.858848 + 0.512230i \(0.171181\pi\)
\(102\) 0 0
\(103\) −17.6813 −1.74219 −0.871097 0.491112i \(-0.836591\pi\)
−0.871097 + 0.491112i \(0.836591\pi\)
\(104\) −4.19835 −0.411682
\(105\) 0 0
\(106\) −6.11965 −0.594393
\(107\) −4.64732 −0.449273 −0.224637 0.974443i \(-0.572119\pi\)
−0.224637 + 0.974443i \(0.572119\pi\)
\(108\) 0 0
\(109\) −0.941184 −0.0901491 −0.0450745 0.998984i \(-0.514353\pi\)
−0.0450745 + 0.998984i \(0.514353\pi\)
\(110\) 8.34582 0.795742
\(111\) 0 0
\(112\) 5.70182 0.538771
\(113\) −7.30986 −0.687654 −0.343827 0.939033i \(-0.611723\pi\)
−0.343827 + 0.939033i \(0.611723\pi\)
\(114\) 0 0
\(115\) 9.71708 0.906123
\(116\) 0 0
\(117\) 0 0
\(118\) −7.45751 −0.686519
\(119\) −2.11331 −0.193727
\(120\) 0 0
\(121\) −4.50520 −0.409563
\(122\) −27.7758 −2.51470
\(123\) 0 0
\(124\) 3.03345 0.272412
\(125\) −12.1078 −1.08296
\(126\) 0 0
\(127\) −7.45690 −0.661693 −0.330846 0.943685i \(-0.607334\pi\)
−0.330846 + 0.943685i \(0.607334\pi\)
\(128\) −5.42081 −0.479137
\(129\) 0 0
\(130\) 19.9597 1.75058
\(131\) −12.2316 −1.06868 −0.534342 0.845268i \(-0.679441\pi\)
−0.534342 + 0.845268i \(0.679441\pi\)
\(132\) 0 0
\(133\) −0.529732 −0.0459336
\(134\) 3.83227 0.331057
\(135\) 0 0
\(136\) 1.17231 0.100525
\(137\) −6.61576 −0.565223 −0.282611 0.959234i \(-0.591201\pi\)
−0.282611 + 0.959234i \(0.591201\pi\)
\(138\) 0 0
\(139\) 8.30734 0.704620 0.352310 0.935883i \(-0.385396\pi\)
0.352310 + 0.935883i \(0.385396\pi\)
\(140\) −3.49368 −0.295270
\(141\) 0 0
\(142\) −21.6594 −1.81762
\(143\) 15.5328 1.29892
\(144\) 0 0
\(145\) 0 0
\(146\) −13.1035 −1.08445
\(147\) 0 0
\(148\) −12.3932 −1.01872
\(149\) −20.9098 −1.71300 −0.856500 0.516147i \(-0.827366\pi\)
−0.856500 + 0.516147i \(0.827366\pi\)
\(150\) 0 0
\(151\) −23.4397 −1.90750 −0.953748 0.300608i \(-0.902810\pi\)
−0.953748 + 0.300608i \(0.902810\pi\)
\(152\) 0.293858 0.0238351
\(153\) 0 0
\(154\) −6.03668 −0.486450
\(155\) 3.17749 0.255222
\(156\) 0 0
\(157\) −15.7821 −1.25955 −0.629775 0.776778i \(-0.716853\pi\)
−0.629775 + 0.776778i \(0.716853\pi\)
\(158\) −11.2165 −0.892337
\(159\) 0 0
\(160\) 12.6722 1.00183
\(161\) −7.02854 −0.553927
\(162\) 0 0
\(163\) −10.0692 −0.788679 −0.394340 0.918965i \(-0.629027\pi\)
−0.394340 + 0.918965i \(0.629027\pi\)
\(164\) −11.1527 −0.870882
\(165\) 0 0
\(166\) 12.7117 0.986619
\(167\) −0.303139 −0.0234576 −0.0117288 0.999931i \(-0.503733\pi\)
−0.0117288 + 0.999931i \(0.503733\pi\)
\(168\) 0 0
\(169\) 24.1479 1.85753
\(170\) −5.57338 −0.427458
\(171\) 0 0
\(172\) 17.1771 1.30974
\(173\) −9.95056 −0.756527 −0.378264 0.925698i \(-0.623479\pi\)
−0.378264 + 0.925698i \(0.623479\pi\)
\(174\) 0 0
\(175\) 2.54911 0.192695
\(176\) 11.7022 0.882084
\(177\) 0 0
\(178\) −6.24927 −0.468402
\(179\) 4.67839 0.349679 0.174839 0.984597i \(-0.444059\pi\)
0.174839 + 0.984597i \(0.444059\pi\)
\(180\) 0 0
\(181\) −3.54773 −0.263700 −0.131850 0.991270i \(-0.542092\pi\)
−0.131850 + 0.991270i \(0.542092\pi\)
\(182\) −14.4372 −1.07016
\(183\) 0 0
\(184\) 3.89894 0.287434
\(185\) −12.9817 −0.954435
\(186\) 0 0
\(187\) −4.33726 −0.317172
\(188\) 19.8257 1.44594
\(189\) 0 0
\(190\) −1.39705 −0.101353
\(191\) −4.17518 −0.302106 −0.151053 0.988526i \(-0.548266\pi\)
−0.151053 + 0.988526i \(0.548266\pi\)
\(192\) 0 0
\(193\) −13.3631 −0.961894 −0.480947 0.876750i \(-0.659707\pi\)
−0.480947 + 0.876750i \(0.659707\pi\)
\(194\) −4.76408 −0.342041
\(195\) 0 0
\(196\) −8.94526 −0.638947
\(197\) 2.59538 0.184913 0.0924564 0.995717i \(-0.470528\pi\)
0.0924564 + 0.995717i \(0.470528\pi\)
\(198\) 0 0
\(199\) −6.19886 −0.439425 −0.219713 0.975565i \(-0.570512\pi\)
−0.219713 + 0.975565i \(0.570512\pi\)
\(200\) −1.41407 −0.0999896
\(201\) 0 0
\(202\) −32.9300 −2.31695
\(203\) 0 0
\(204\) 0 0
\(205\) −11.6823 −0.815929
\(206\) 33.7287 2.34999
\(207\) 0 0
\(208\) 27.9866 1.94052
\(209\) −1.08720 −0.0752032
\(210\) 0 0
\(211\) −20.9045 −1.43912 −0.719562 0.694428i \(-0.755658\pi\)
−0.719562 + 0.694428i \(0.755658\pi\)
\(212\) 5.25768 0.361099
\(213\) 0 0
\(214\) 8.86518 0.606011
\(215\) 17.9928 1.22710
\(216\) 0 0
\(217\) −2.29834 −0.156021
\(218\) 1.79539 0.121599
\(219\) 0 0
\(220\) −7.17028 −0.483421
\(221\) −10.3729 −0.697756
\(222\) 0 0
\(223\) 22.2000 1.48662 0.743312 0.668945i \(-0.233254\pi\)
0.743312 + 0.668945i \(0.233254\pi\)
\(224\) −9.16605 −0.612432
\(225\) 0 0
\(226\) 13.9442 0.927556
\(227\) −4.91192 −0.326015 −0.163008 0.986625i \(-0.552120\pi\)
−0.163008 + 0.986625i \(0.552120\pi\)
\(228\) 0 0
\(229\) 21.6047 1.42768 0.713840 0.700309i \(-0.246955\pi\)
0.713840 + 0.700309i \(0.246955\pi\)
\(230\) −18.5362 −1.22224
\(231\) 0 0
\(232\) 0 0
\(233\) −21.5539 −1.41204 −0.706021 0.708191i \(-0.749512\pi\)
−0.706021 + 0.708191i \(0.749512\pi\)
\(234\) 0 0
\(235\) 20.7672 1.35470
\(236\) 6.40710 0.417066
\(237\) 0 0
\(238\) 4.03132 0.261312
\(239\) −4.73822 −0.306490 −0.153245 0.988188i \(-0.548972\pi\)
−0.153245 + 0.988188i \(0.548972\pi\)
\(240\) 0 0
\(241\) 5.81935 0.374857 0.187429 0.982278i \(-0.439985\pi\)
0.187429 + 0.982278i \(0.439985\pi\)
\(242\) 8.59407 0.552448
\(243\) 0 0
\(244\) 23.8635 1.52770
\(245\) −9.37003 −0.598629
\(246\) 0 0
\(247\) −2.60012 −0.165442
\(248\) 1.27496 0.0809598
\(249\) 0 0
\(250\) 23.0967 1.46077
\(251\) 14.0940 0.889606 0.444803 0.895629i \(-0.353274\pi\)
0.444803 + 0.895629i \(0.353274\pi\)
\(252\) 0 0
\(253\) −14.4251 −0.906897
\(254\) 14.2247 0.892537
\(255\) 0 0
\(256\) 20.1357 1.25848
\(257\) 8.61361 0.537302 0.268651 0.963238i \(-0.413422\pi\)
0.268651 + 0.963238i \(0.413422\pi\)
\(258\) 0 0
\(259\) 9.38991 0.583461
\(260\) −17.1483 −1.06349
\(261\) 0 0
\(262\) 23.3330 1.44152
\(263\) −7.52746 −0.464163 −0.232082 0.972696i \(-0.574554\pi\)
−0.232082 + 0.972696i \(0.574554\pi\)
\(264\) 0 0
\(265\) 5.50734 0.338313
\(266\) 1.01051 0.0619585
\(267\) 0 0
\(268\) −3.29248 −0.201120
\(269\) −13.3188 −0.812060 −0.406030 0.913860i \(-0.633087\pi\)
−0.406030 + 0.913860i \(0.633087\pi\)
\(270\) 0 0
\(271\) 16.1608 0.981696 0.490848 0.871245i \(-0.336687\pi\)
0.490848 + 0.871245i \(0.336687\pi\)
\(272\) −7.81476 −0.473840
\(273\) 0 0
\(274\) 12.6202 0.762412
\(275\) 5.23168 0.315482
\(276\) 0 0
\(277\) 21.5548 1.29510 0.647552 0.762021i \(-0.275793\pi\)
0.647552 + 0.762021i \(0.275793\pi\)
\(278\) −15.8470 −0.950440
\(279\) 0 0
\(280\) −1.46839 −0.0877533
\(281\) 1.08043 0.0644528 0.0322264 0.999481i \(-0.489740\pi\)
0.0322264 + 0.999481i \(0.489740\pi\)
\(282\) 0 0
\(283\) 0.280757 0.0166893 0.00834464 0.999965i \(-0.497344\pi\)
0.00834464 + 0.999965i \(0.497344\pi\)
\(284\) 18.6086 1.10422
\(285\) 0 0
\(286\) −29.6303 −1.75207
\(287\) 8.45004 0.498790
\(288\) 0 0
\(289\) −14.1036 −0.829621
\(290\) 0 0
\(291\) 0 0
\(292\) 11.2578 0.658816
\(293\) −1.28096 −0.0748342 −0.0374171 0.999300i \(-0.511913\pi\)
−0.0374171 + 0.999300i \(0.511913\pi\)
\(294\) 0 0
\(295\) 6.71134 0.390749
\(296\) −5.20886 −0.302759
\(297\) 0 0
\(298\) 39.8874 2.31061
\(299\) −34.4987 −1.99511
\(300\) 0 0
\(301\) −13.0145 −0.750143
\(302\) 44.7133 2.57296
\(303\) 0 0
\(304\) −1.95889 −0.112350
\(305\) 24.9967 1.43130
\(306\) 0 0
\(307\) −9.48636 −0.541415 −0.270708 0.962662i \(-0.587258\pi\)
−0.270708 + 0.962662i \(0.587258\pi\)
\(308\) 5.18640 0.295522
\(309\) 0 0
\(310\) −6.06135 −0.344262
\(311\) −10.7333 −0.608632 −0.304316 0.952571i \(-0.598428\pi\)
−0.304316 + 0.952571i \(0.598428\pi\)
\(312\) 0 0
\(313\) 6.54110 0.369725 0.184862 0.982764i \(-0.440816\pi\)
0.184862 + 0.982764i \(0.440816\pi\)
\(314\) 30.1058 1.69897
\(315\) 0 0
\(316\) 9.63663 0.542103
\(317\) 10.5645 0.593359 0.296680 0.954977i \(-0.404121\pi\)
0.296680 + 0.954977i \(0.404121\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −8.40767 −0.470003
\(321\) 0 0
\(322\) 13.4076 0.747175
\(323\) 0.726037 0.0403978
\(324\) 0 0
\(325\) 12.5120 0.694039
\(326\) 19.2079 1.06383
\(327\) 0 0
\(328\) −4.68748 −0.258823
\(329\) −15.0213 −0.828149
\(330\) 0 0
\(331\) −23.0562 −1.26728 −0.633641 0.773627i \(-0.718440\pi\)
−0.633641 + 0.773627i \(0.718440\pi\)
\(332\) −10.9212 −0.599380
\(333\) 0 0
\(334\) 0.578264 0.0316412
\(335\) −3.44883 −0.188429
\(336\) 0 0
\(337\) −22.3538 −1.21769 −0.608844 0.793290i \(-0.708366\pi\)
−0.608844 + 0.793290i \(0.708366\pi\)
\(338\) −46.0644 −2.50557
\(339\) 0 0
\(340\) 4.78835 0.259685
\(341\) −4.71701 −0.255440
\(342\) 0 0
\(343\) 15.4697 0.835284
\(344\) 7.21952 0.389251
\(345\) 0 0
\(346\) 18.9816 1.02046
\(347\) 17.5923 0.944404 0.472202 0.881490i \(-0.343459\pi\)
0.472202 + 0.881490i \(0.343459\pi\)
\(348\) 0 0
\(349\) −8.06121 −0.431507 −0.215753 0.976448i \(-0.569221\pi\)
−0.215753 + 0.976448i \(0.569221\pi\)
\(350\) −4.86266 −0.259920
\(351\) 0 0
\(352\) −18.8120 −1.00268
\(353\) 16.6752 0.887532 0.443766 0.896143i \(-0.353642\pi\)
0.443766 + 0.896143i \(0.353642\pi\)
\(354\) 0 0
\(355\) 19.4922 1.03454
\(356\) 5.36904 0.284559
\(357\) 0 0
\(358\) −8.92444 −0.471671
\(359\) −13.1953 −0.696419 −0.348210 0.937417i \(-0.613210\pi\)
−0.348210 + 0.937417i \(0.613210\pi\)
\(360\) 0 0
\(361\) −18.8180 −0.990421
\(362\) 6.76761 0.355698
\(363\) 0 0
\(364\) 12.4037 0.650129
\(365\) 11.7924 0.617244
\(366\) 0 0
\(367\) −1.47179 −0.0768269 −0.0384135 0.999262i \(-0.512230\pi\)
−0.0384135 + 0.999262i \(0.512230\pi\)
\(368\) −25.9907 −1.35486
\(369\) 0 0
\(370\) 24.7638 1.28741
\(371\) −3.98356 −0.206816
\(372\) 0 0
\(373\) 17.2512 0.893235 0.446617 0.894725i \(-0.352629\pi\)
0.446617 + 0.894725i \(0.352629\pi\)
\(374\) 8.27371 0.427824
\(375\) 0 0
\(376\) 8.33274 0.429728
\(377\) 0 0
\(378\) 0 0
\(379\) −7.50752 −0.385635 −0.192818 0.981235i \(-0.561763\pi\)
−0.192818 + 0.981235i \(0.561763\pi\)
\(380\) 1.20027 0.0615727
\(381\) 0 0
\(382\) 7.96454 0.407501
\(383\) −2.39899 −0.122583 −0.0612915 0.998120i \(-0.519522\pi\)
−0.0612915 + 0.998120i \(0.519522\pi\)
\(384\) 0 0
\(385\) 5.43268 0.276875
\(386\) 25.4912 1.29747
\(387\) 0 0
\(388\) 4.09305 0.207793
\(389\) 26.6147 1.34942 0.674709 0.738084i \(-0.264269\pi\)
0.674709 + 0.738084i \(0.264269\pi\)
\(390\) 0 0
\(391\) 9.63313 0.487168
\(392\) −3.75969 −0.189893
\(393\) 0 0
\(394\) −4.95091 −0.249423
\(395\) 10.0942 0.507896
\(396\) 0 0
\(397\) −2.71330 −0.136176 −0.0680882 0.997679i \(-0.521690\pi\)
−0.0680882 + 0.997679i \(0.521690\pi\)
\(398\) 11.8249 0.592728
\(399\) 0 0
\(400\) 9.42631 0.471316
\(401\) 7.43927 0.371499 0.185750 0.982597i \(-0.440529\pi\)
0.185750 + 0.982597i \(0.440529\pi\)
\(402\) 0 0
\(403\) −11.2811 −0.561951
\(404\) 28.2917 1.40757
\(405\) 0 0
\(406\) 0 0
\(407\) 19.2714 0.955250
\(408\) 0 0
\(409\) −2.97967 −0.147335 −0.0736675 0.997283i \(-0.523470\pi\)
−0.0736675 + 0.997283i \(0.523470\pi\)
\(410\) 22.2851 1.10058
\(411\) 0 0
\(412\) −28.9780 −1.42764
\(413\) −4.85443 −0.238871
\(414\) 0 0
\(415\) −11.4398 −0.561559
\(416\) −44.9904 −2.20583
\(417\) 0 0
\(418\) 2.07393 0.101439
\(419\) −35.1174 −1.71560 −0.857798 0.513987i \(-0.828168\pi\)
−0.857798 + 0.513987i \(0.828168\pi\)
\(420\) 0 0
\(421\) −29.0918 −1.41785 −0.708923 0.705286i \(-0.750819\pi\)
−0.708923 + 0.705286i \(0.750819\pi\)
\(422\) 39.8772 1.94119
\(423\) 0 0
\(424\) 2.20980 0.107317
\(425\) −3.49374 −0.169471
\(426\) 0 0
\(427\) −18.0805 −0.874979
\(428\) −7.61649 −0.368157
\(429\) 0 0
\(430\) −34.3228 −1.65519
\(431\) −20.9780 −1.01047 −0.505236 0.862981i \(-0.668595\pi\)
−0.505236 + 0.862981i \(0.668595\pi\)
\(432\) 0 0
\(433\) −28.3258 −1.36125 −0.680626 0.732631i \(-0.738292\pi\)
−0.680626 + 0.732631i \(0.738292\pi\)
\(434\) 4.38429 0.210452
\(435\) 0 0
\(436\) −1.54251 −0.0738727
\(437\) 2.41469 0.115510
\(438\) 0 0
\(439\) −16.2271 −0.774475 −0.387238 0.921980i \(-0.626571\pi\)
−0.387238 + 0.921980i \(0.626571\pi\)
\(440\) −3.01367 −0.143671
\(441\) 0 0
\(442\) 19.7872 0.941182
\(443\) 14.8967 0.707765 0.353882 0.935290i \(-0.384861\pi\)
0.353882 + 0.935290i \(0.384861\pi\)
\(444\) 0 0
\(445\) 5.62399 0.266603
\(446\) −42.3486 −2.00526
\(447\) 0 0
\(448\) 6.08142 0.287320
\(449\) 6.90118 0.325687 0.162843 0.986652i \(-0.447933\pi\)
0.162843 + 0.986652i \(0.447933\pi\)
\(450\) 0 0
\(451\) 17.3425 0.816626
\(452\) −11.9801 −0.563499
\(453\) 0 0
\(454\) 9.36993 0.439752
\(455\) 12.9927 0.609105
\(456\) 0 0
\(457\) −36.5848 −1.71136 −0.855682 0.517503i \(-0.826862\pi\)
−0.855682 + 0.517503i \(0.826862\pi\)
\(458\) −41.2129 −1.92575
\(459\) 0 0
\(460\) 15.9253 0.742523
\(461\) −6.43285 −0.299608 −0.149804 0.988716i \(-0.547864\pi\)
−0.149804 + 0.988716i \(0.547864\pi\)
\(462\) 0 0
\(463\) −5.95015 −0.276527 −0.138263 0.990395i \(-0.544152\pi\)
−0.138263 + 0.990395i \(0.544152\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 41.1160 1.90466
\(467\) −24.1307 −1.11663 −0.558317 0.829628i \(-0.688553\pi\)
−0.558317 + 0.829628i \(0.688553\pi\)
\(468\) 0 0
\(469\) 2.49460 0.115190
\(470\) −39.6152 −1.82731
\(471\) 0 0
\(472\) 2.69290 0.123951
\(473\) −26.7104 −1.22814
\(474\) 0 0
\(475\) −0.875759 −0.0401826
\(476\) −3.46350 −0.158749
\(477\) 0 0
\(478\) 9.03859 0.413416
\(479\) −14.2737 −0.652182 −0.326091 0.945338i \(-0.605732\pi\)
−0.326091 + 0.945338i \(0.605732\pi\)
\(480\) 0 0
\(481\) 46.0891 2.10148
\(482\) −11.1009 −0.505634
\(483\) 0 0
\(484\) −7.38357 −0.335617
\(485\) 4.28741 0.194681
\(486\) 0 0
\(487\) 1.92761 0.0873482 0.0436741 0.999046i \(-0.486094\pi\)
0.0436741 + 0.999046i \(0.486094\pi\)
\(488\) 10.0298 0.454028
\(489\) 0 0
\(490\) 17.8742 0.807473
\(491\) 10.5430 0.475798 0.237899 0.971290i \(-0.423541\pi\)
0.237899 + 0.971290i \(0.423541\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 4.95997 0.223160
\(495\) 0 0
\(496\) −8.49899 −0.381616
\(497\) −14.0991 −0.632431
\(498\) 0 0
\(499\) −15.5558 −0.696373 −0.348186 0.937425i \(-0.613202\pi\)
−0.348186 + 0.937425i \(0.613202\pi\)
\(500\) −19.8435 −0.887429
\(501\) 0 0
\(502\) −26.8856 −1.19996
\(503\) 37.7207 1.68188 0.840941 0.541127i \(-0.182002\pi\)
0.840941 + 0.541127i \(0.182002\pi\)
\(504\) 0 0
\(505\) 29.6352 1.31875
\(506\) 27.5171 1.22329
\(507\) 0 0
\(508\) −12.2211 −0.542224
\(509\) −2.04844 −0.0907953 −0.0453977 0.998969i \(-0.514455\pi\)
−0.0453977 + 0.998969i \(0.514455\pi\)
\(510\) 0 0
\(511\) −8.52968 −0.377331
\(512\) −27.5691 −1.21839
\(513\) 0 0
\(514\) −16.4312 −0.724751
\(515\) −30.3540 −1.33756
\(516\) 0 0
\(517\) −30.8290 −1.35586
\(518\) −17.9121 −0.787013
\(519\) 0 0
\(520\) −7.20741 −0.316066
\(521\) −14.7934 −0.648109 −0.324055 0.946038i \(-0.605046\pi\)
−0.324055 + 0.946038i \(0.605046\pi\)
\(522\) 0 0
\(523\) −39.6013 −1.73164 −0.865821 0.500354i \(-0.833203\pi\)
−0.865821 + 0.500354i \(0.833203\pi\)
\(524\) −20.0465 −0.875734
\(525\) 0 0
\(526\) 14.3593 0.626096
\(527\) 3.15004 0.137218
\(528\) 0 0
\(529\) 9.03835 0.392972
\(530\) −10.5058 −0.456341
\(531\) 0 0
\(532\) −0.868179 −0.0376403
\(533\) 41.4759 1.79652
\(534\) 0 0
\(535\) −7.97817 −0.344926
\(536\) −1.38383 −0.0597722
\(537\) 0 0
\(538\) 25.4068 1.09536
\(539\) 13.9099 0.599141
\(540\) 0 0
\(541\) 16.1188 0.693003 0.346501 0.938049i \(-0.387370\pi\)
0.346501 + 0.938049i \(0.387370\pi\)
\(542\) −30.8281 −1.32418
\(543\) 0 0
\(544\) 12.5627 0.538623
\(545\) −1.61575 −0.0692113
\(546\) 0 0
\(547\) 0.445342 0.0190414 0.00952072 0.999955i \(-0.496969\pi\)
0.00952072 + 0.999955i \(0.496969\pi\)
\(548\) −10.8426 −0.463172
\(549\) 0 0
\(550\) −9.97990 −0.425545
\(551\) 0 0
\(552\) 0 0
\(553\) −7.30134 −0.310484
\(554\) −41.1178 −1.74693
\(555\) 0 0
\(556\) 13.6149 0.577401
\(557\) 42.0616 1.78221 0.891103 0.453802i \(-0.149933\pi\)
0.891103 + 0.453802i \(0.149933\pi\)
\(558\) 0 0
\(559\) −63.8799 −2.70183
\(560\) 9.78846 0.413638
\(561\) 0 0
\(562\) −2.06101 −0.0869384
\(563\) −29.9081 −1.26048 −0.630239 0.776401i \(-0.717043\pi\)
−0.630239 + 0.776401i \(0.717043\pi\)
\(564\) 0 0
\(565\) −12.5490 −0.527942
\(566\) −0.535570 −0.0225117
\(567\) 0 0
\(568\) 7.82119 0.328170
\(569\) −36.4098 −1.52638 −0.763189 0.646175i \(-0.776368\pi\)
−0.763189 + 0.646175i \(0.776368\pi\)
\(570\) 0 0
\(571\) −42.0605 −1.76018 −0.880088 0.474810i \(-0.842517\pi\)
−0.880088 + 0.474810i \(0.842517\pi\)
\(572\) 25.4568 1.06440
\(573\) 0 0
\(574\) −16.1192 −0.672803
\(575\) −11.6197 −0.484573
\(576\) 0 0
\(577\) 20.2054 0.841162 0.420581 0.907255i \(-0.361826\pi\)
0.420581 + 0.907255i \(0.361826\pi\)
\(578\) 26.9038 1.11905
\(579\) 0 0
\(580\) 0 0
\(581\) 8.27463 0.343289
\(582\) 0 0
\(583\) −8.17569 −0.338602
\(584\) 4.73167 0.195798
\(585\) 0 0
\(586\) 2.44354 0.100942
\(587\) 38.4897 1.58864 0.794319 0.607501i \(-0.207828\pi\)
0.794319 + 0.607501i \(0.207828\pi\)
\(588\) 0 0
\(589\) 0.789606 0.0325351
\(590\) −12.8025 −0.527070
\(591\) 0 0
\(592\) 34.7228 1.42710
\(593\) 37.0241 1.52040 0.760198 0.649691i \(-0.225102\pi\)
0.760198 + 0.649691i \(0.225102\pi\)
\(594\) 0 0
\(595\) −3.62797 −0.148732
\(596\) −34.2691 −1.40372
\(597\) 0 0
\(598\) 65.8093 2.69114
\(599\) −43.8397 −1.79124 −0.895621 0.444818i \(-0.853268\pi\)
−0.895621 + 0.444818i \(0.853268\pi\)
\(600\) 0 0
\(601\) 31.2193 1.27346 0.636731 0.771086i \(-0.280286\pi\)
0.636731 + 0.771086i \(0.280286\pi\)
\(602\) 24.8263 1.01185
\(603\) 0 0
\(604\) −38.4153 −1.56310
\(605\) −7.73419 −0.314439
\(606\) 0 0
\(607\) 0.493466 0.0200291 0.0100146 0.999950i \(-0.496812\pi\)
0.0100146 + 0.999950i \(0.496812\pi\)
\(608\) 3.14904 0.127711
\(609\) 0 0
\(610\) −47.6834 −1.93064
\(611\) −73.7299 −2.98279
\(612\) 0 0
\(613\) −16.2384 −0.655864 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(614\) 18.0961 0.730299
\(615\) 0 0
\(616\) 2.17984 0.0878282
\(617\) 25.7102 1.03506 0.517528 0.855666i \(-0.326852\pi\)
0.517528 + 0.855666i \(0.326852\pi\)
\(618\) 0 0
\(619\) 17.6792 0.710585 0.355293 0.934755i \(-0.384381\pi\)
0.355293 + 0.934755i \(0.384381\pi\)
\(620\) 5.20759 0.209142
\(621\) 0 0
\(622\) 20.4748 0.820965
\(623\) −4.06794 −0.162978
\(624\) 0 0
\(625\) −10.5215 −0.420860
\(626\) −12.4777 −0.498711
\(627\) 0 0
\(628\) −25.8653 −1.03214
\(629\) −12.8696 −0.513143
\(630\) 0 0
\(631\) −24.9109 −0.991688 −0.495844 0.868412i \(-0.665141\pi\)
−0.495844 + 0.868412i \(0.665141\pi\)
\(632\) 4.05027 0.161111
\(633\) 0 0
\(634\) −20.1527 −0.800365
\(635\) −12.8014 −0.508010
\(636\) 0 0
\(637\) 33.2665 1.31807
\(638\) 0 0
\(639\) 0 0
\(640\) −9.30605 −0.367854
\(641\) 22.3113 0.881242 0.440621 0.897693i \(-0.354758\pi\)
0.440621 + 0.897693i \(0.354758\pi\)
\(642\) 0 0
\(643\) −31.8680 −1.25675 −0.628375 0.777911i \(-0.716280\pi\)
−0.628375 + 0.777911i \(0.716280\pi\)
\(644\) −11.5191 −0.453915
\(645\) 0 0
\(646\) −1.38498 −0.0544914
\(647\) 39.4579 1.55125 0.775625 0.631194i \(-0.217435\pi\)
0.775625 + 0.631194i \(0.217435\pi\)
\(648\) 0 0
\(649\) −9.96303 −0.391083
\(650\) −23.8677 −0.936169
\(651\) 0 0
\(652\) −16.5024 −0.646284
\(653\) −3.48476 −0.136369 −0.0681845 0.997673i \(-0.521721\pi\)
−0.0681845 + 0.997673i \(0.521721\pi\)
\(654\) 0 0
\(655\) −20.9984 −0.820475
\(656\) 31.2473 1.22000
\(657\) 0 0
\(658\) 28.6544 1.11707
\(659\) 22.3709 0.871446 0.435723 0.900081i \(-0.356493\pi\)
0.435723 + 0.900081i \(0.356493\pi\)
\(660\) 0 0
\(661\) 2.43331 0.0946449 0.0473225 0.998880i \(-0.484931\pi\)
0.0473225 + 0.998880i \(0.484931\pi\)
\(662\) 43.9817 1.70940
\(663\) 0 0
\(664\) −4.59018 −0.178134
\(665\) −0.909405 −0.0352652
\(666\) 0 0
\(667\) 0 0
\(668\) −0.496814 −0.0192223
\(669\) 0 0
\(670\) 6.57895 0.254167
\(671\) −37.1077 −1.43253
\(672\) 0 0
\(673\) 29.5001 1.13715 0.568573 0.822633i \(-0.307496\pi\)
0.568573 + 0.822633i \(0.307496\pi\)
\(674\) 42.6418 1.64250
\(675\) 0 0
\(676\) 39.5761 1.52216
\(677\) −2.01910 −0.0776003 −0.0388002 0.999247i \(-0.512354\pi\)
−0.0388002 + 0.999247i \(0.512354\pi\)
\(678\) 0 0
\(679\) −3.10116 −0.119012
\(680\) 2.01254 0.0771774
\(681\) 0 0
\(682\) 8.99812 0.344556
\(683\) 24.2990 0.929776 0.464888 0.885370i \(-0.346095\pi\)
0.464888 + 0.885370i \(0.346095\pi\)
\(684\) 0 0
\(685\) −11.3574 −0.433946
\(686\) −29.5098 −1.12669
\(687\) 0 0
\(688\) −48.1261 −1.83479
\(689\) −19.5528 −0.744902
\(690\) 0 0
\(691\) −18.4208 −0.700758 −0.350379 0.936608i \(-0.613947\pi\)
−0.350379 + 0.936608i \(0.613947\pi\)
\(692\) −16.3080 −0.619937
\(693\) 0 0
\(694\) −33.5589 −1.27388
\(695\) 14.2614 0.540967
\(696\) 0 0
\(697\) −11.5814 −0.438677
\(698\) 15.3775 0.582047
\(699\) 0 0
\(700\) 4.17774 0.157904
\(701\) −22.7157 −0.857961 −0.428981 0.903314i \(-0.641127\pi\)
−0.428981 + 0.903314i \(0.641127\pi\)
\(702\) 0 0
\(703\) −3.22595 −0.121669
\(704\) 12.4812 0.470405
\(705\) 0 0
\(706\) −31.8095 −1.19716
\(707\) −21.4357 −0.806171
\(708\) 0 0
\(709\) 41.0465 1.54153 0.770767 0.637117i \(-0.219873\pi\)
0.770767 + 0.637117i \(0.219873\pi\)
\(710\) −37.1832 −1.39546
\(711\) 0 0
\(712\) 2.25660 0.0845698
\(713\) 10.4766 0.392350
\(714\) 0 0
\(715\) 26.6656 0.997236
\(716\) 7.66741 0.286545
\(717\) 0 0
\(718\) 25.1712 0.939379
\(719\) 9.71121 0.362167 0.181084 0.983468i \(-0.442040\pi\)
0.181084 + 0.983468i \(0.442040\pi\)
\(720\) 0 0
\(721\) 21.9556 0.817669
\(722\) 35.8971 1.33595
\(723\) 0 0
\(724\) −5.81437 −0.216089
\(725\) 0 0
\(726\) 0 0
\(727\) 11.2890 0.418687 0.209344 0.977842i \(-0.432867\pi\)
0.209344 + 0.977842i \(0.432867\pi\)
\(728\) 5.21325 0.193216
\(729\) 0 0
\(730\) −22.4951 −0.832582
\(731\) 17.8373 0.659737
\(732\) 0 0
\(733\) 8.47930 0.313190 0.156595 0.987663i \(-0.449948\pi\)
0.156595 + 0.987663i \(0.449948\pi\)
\(734\) 2.80758 0.103630
\(735\) 0 0
\(736\) 41.7818 1.54010
\(737\) 5.11981 0.188590
\(738\) 0 0
\(739\) −11.4841 −0.422449 −0.211225 0.977438i \(-0.567745\pi\)
−0.211225 + 0.977438i \(0.567745\pi\)
\(740\) −21.2757 −0.782112
\(741\) 0 0
\(742\) 7.59900 0.278968
\(743\) −19.9907 −0.733387 −0.366694 0.930342i \(-0.619510\pi\)
−0.366694 + 0.930342i \(0.619510\pi\)
\(744\) 0 0
\(745\) −35.8964 −1.31514
\(746\) −32.9083 −1.20486
\(747\) 0 0
\(748\) −7.10834 −0.259907
\(749\) 5.77075 0.210859
\(750\) 0 0
\(751\) −24.5548 −0.896016 −0.448008 0.894030i \(-0.647866\pi\)
−0.448008 + 0.894030i \(0.647866\pi\)
\(752\) −55.5469 −2.02559
\(753\) 0 0
\(754\) 0 0
\(755\) −40.2395 −1.46447
\(756\) 0 0
\(757\) −28.1411 −1.02281 −0.511403 0.859341i \(-0.670874\pi\)
−0.511403 + 0.859341i \(0.670874\pi\)
\(758\) 14.3213 0.520172
\(759\) 0 0
\(760\) 0.504474 0.0182992
\(761\) −20.9629 −0.759904 −0.379952 0.925006i \(-0.624059\pi\)
−0.379952 + 0.925006i \(0.624059\pi\)
\(762\) 0 0
\(763\) 1.16870 0.0423099
\(764\) −6.84271 −0.247561
\(765\) 0 0
\(766\) 4.57630 0.165348
\(767\) −23.8274 −0.860356
\(768\) 0 0
\(769\) −14.7809 −0.533014 −0.266507 0.963833i \(-0.585870\pi\)
−0.266507 + 0.963833i \(0.585870\pi\)
\(770\) −10.3633 −0.373468
\(771\) 0 0
\(772\) −21.9007 −0.788224
\(773\) 26.3677 0.948381 0.474190 0.880422i \(-0.342741\pi\)
0.474190 + 0.880422i \(0.342741\pi\)
\(774\) 0 0
\(775\) −3.79964 −0.136487
\(776\) 1.72031 0.0617554
\(777\) 0 0
\(778\) −50.7699 −1.82019
\(779\) −2.90305 −0.104013
\(780\) 0 0
\(781\) −28.9364 −1.03542
\(782\) −18.3761 −0.657127
\(783\) 0 0
\(784\) 25.0625 0.895088
\(785\) −27.0936 −0.967010
\(786\) 0 0
\(787\) −2.71416 −0.0967493 −0.0483747 0.998829i \(-0.515404\pi\)
−0.0483747 + 0.998829i \(0.515404\pi\)
\(788\) 4.25356 0.151527
\(789\) 0 0
\(790\) −19.2557 −0.685085
\(791\) 9.07694 0.322739
\(792\) 0 0
\(793\) −88.7460 −3.15146
\(794\) 5.17586 0.183684
\(795\) 0 0
\(796\) −10.1593 −0.360087
\(797\) 43.3542 1.53568 0.767841 0.640640i \(-0.221331\pi\)
0.767841 + 0.640640i \(0.221331\pi\)
\(798\) 0 0
\(799\) 20.5877 0.728342
\(800\) −15.1534 −0.535754
\(801\) 0 0
\(802\) −14.1911 −0.501104
\(803\) −17.5059 −0.617771
\(804\) 0 0
\(805\) −12.0661 −0.425273
\(806\) 21.5197 0.757999
\(807\) 0 0
\(808\) 11.8910 0.418324
\(809\) 10.8368 0.381000 0.190500 0.981687i \(-0.438989\pi\)
0.190500 + 0.981687i \(0.438989\pi\)
\(810\) 0 0
\(811\) 25.5684 0.897828 0.448914 0.893575i \(-0.351811\pi\)
0.448914 + 0.893575i \(0.351811\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −36.7620 −1.28851
\(815\) −17.2860 −0.605503
\(816\) 0 0
\(817\) 4.47119 0.156427
\(818\) 5.68399 0.198736
\(819\) 0 0
\(820\) −19.1462 −0.668613
\(821\) 32.2144 1.12429 0.562145 0.827039i \(-0.309976\pi\)
0.562145 + 0.827039i \(0.309976\pi\)
\(822\) 0 0
\(823\) −28.8996 −1.00738 −0.503689 0.863885i \(-0.668024\pi\)
−0.503689 + 0.863885i \(0.668024\pi\)
\(824\) −12.1794 −0.424290
\(825\) 0 0
\(826\) 9.26027 0.322206
\(827\) −43.1409 −1.50016 −0.750078 0.661350i \(-0.769984\pi\)
−0.750078 + 0.661350i \(0.769984\pi\)
\(828\) 0 0
\(829\) −4.73634 −0.164500 −0.0822500 0.996612i \(-0.526211\pi\)
−0.0822500 + 0.996612i \(0.526211\pi\)
\(830\) 21.8225 0.757470
\(831\) 0 0
\(832\) 29.8499 1.03486
\(833\) −9.28908 −0.321848
\(834\) 0 0
\(835\) −0.520405 −0.0180094
\(836\) −1.78181 −0.0616253
\(837\) 0 0
\(838\) 66.9896 2.31412
\(839\) −50.5499 −1.74517 −0.872587 0.488458i \(-0.837560\pi\)
−0.872587 + 0.488458i \(0.837560\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 55.4952 1.91249
\(843\) 0 0
\(844\) −34.2604 −1.17929
\(845\) 41.4554 1.42611
\(846\) 0 0
\(847\) 5.59428 0.192222
\(848\) −14.7308 −0.505856
\(849\) 0 0
\(850\) 6.66463 0.228595
\(851\) −42.8022 −1.46724
\(852\) 0 0
\(853\) −16.6034 −0.568489 −0.284244 0.958752i \(-0.591743\pi\)
−0.284244 + 0.958752i \(0.591743\pi\)
\(854\) 34.4903 1.18023
\(855\) 0 0
\(856\) −3.20121 −0.109415
\(857\) −34.4467 −1.17668 −0.588338 0.808615i \(-0.700217\pi\)
−0.588338 + 0.808615i \(0.700217\pi\)
\(858\) 0 0
\(859\) −17.1112 −0.583826 −0.291913 0.956445i \(-0.594292\pi\)
−0.291913 + 0.956445i \(0.594292\pi\)
\(860\) 29.4884 1.00554
\(861\) 0 0
\(862\) 40.0174 1.36300
\(863\) −29.3576 −0.999344 −0.499672 0.866215i \(-0.666546\pi\)
−0.499672 + 0.866215i \(0.666546\pi\)
\(864\) 0 0
\(865\) −17.0824 −0.580818
\(866\) 54.0340 1.83615
\(867\) 0 0
\(868\) −3.76675 −0.127852
\(869\) −14.9850 −0.508330
\(870\) 0 0
\(871\) 12.2444 0.414886
\(872\) −0.648315 −0.0219547
\(873\) 0 0
\(874\) −4.60624 −0.155808
\(875\) 15.0347 0.508267
\(876\) 0 0
\(877\) 51.3508 1.73399 0.866997 0.498314i \(-0.166047\pi\)
0.866997 + 0.498314i \(0.166047\pi\)
\(878\) 30.9546 1.04467
\(879\) 0 0
\(880\) 20.0894 0.677214
\(881\) −16.0968 −0.542314 −0.271157 0.962535i \(-0.587406\pi\)
−0.271157 + 0.962535i \(0.587406\pi\)
\(882\) 0 0
\(883\) −17.4335 −0.586683 −0.293341 0.956008i \(-0.594767\pi\)
−0.293341 + 0.956008i \(0.594767\pi\)
\(884\) −17.0001 −0.571777
\(885\) 0 0
\(886\) −28.4169 −0.954683
\(887\) 40.4547 1.35834 0.679168 0.733983i \(-0.262341\pi\)
0.679168 + 0.733983i \(0.262341\pi\)
\(888\) 0 0
\(889\) 9.25952 0.310554
\(890\) −10.7283 −0.359613
\(891\) 0 0
\(892\) 36.3836 1.21821
\(893\) 5.16063 0.172694
\(894\) 0 0
\(895\) 8.03150 0.268463
\(896\) 6.73123 0.224875
\(897\) 0 0
\(898\) −13.1646 −0.439309
\(899\) 0 0
\(900\) 0 0
\(901\) 5.45976 0.181891
\(902\) −33.0824 −1.10152
\(903\) 0 0
\(904\) −5.03525 −0.167470
\(905\) −6.09047 −0.202454
\(906\) 0 0
\(907\) 38.0589 1.26373 0.631863 0.775080i \(-0.282291\pi\)
0.631863 + 0.775080i \(0.282291\pi\)
\(908\) −8.05015 −0.267153
\(909\) 0 0
\(910\) −24.7847 −0.821604
\(911\) −1.63752 −0.0542534 −0.0271267 0.999632i \(-0.508636\pi\)
−0.0271267 + 0.999632i \(0.508636\pi\)
\(912\) 0 0
\(913\) 16.9825 0.562038
\(914\) 69.7887 2.30841
\(915\) 0 0
\(916\) 35.4080 1.16991
\(917\) 15.1885 0.501569
\(918\) 0 0
\(919\) −7.82279 −0.258050 −0.129025 0.991641i \(-0.541185\pi\)
−0.129025 + 0.991641i \(0.541185\pi\)
\(920\) 6.69341 0.220675
\(921\) 0 0
\(922\) 12.2712 0.404132
\(923\) −69.2036 −2.27786
\(924\) 0 0
\(925\) 15.5235 0.510409
\(926\) 11.3504 0.372999
\(927\) 0 0
\(928\) 0 0
\(929\) −18.3159 −0.600926 −0.300463 0.953794i \(-0.597141\pi\)
−0.300463 + 0.953794i \(0.597141\pi\)
\(930\) 0 0
\(931\) −2.32845 −0.0763119
\(932\) −35.3247 −1.15710
\(933\) 0 0
\(934\) 46.0314 1.50619
\(935\) −7.44588 −0.243506
\(936\) 0 0
\(937\) 0.405863 0.0132590 0.00662948 0.999978i \(-0.497890\pi\)
0.00662948 + 0.999978i \(0.497890\pi\)
\(938\) −4.75867 −0.155376
\(939\) 0 0
\(940\) 34.0353 1.11011
\(941\) −21.8792 −0.713242 −0.356621 0.934249i \(-0.616071\pi\)
−0.356621 + 0.934249i \(0.616071\pi\)
\(942\) 0 0
\(943\) −38.5180 −1.25432
\(944\) −17.9511 −0.584260
\(945\) 0 0
\(946\) 50.9525 1.65661
\(947\) 36.2764 1.17882 0.589412 0.807833i \(-0.299359\pi\)
0.589412 + 0.807833i \(0.299359\pi\)
\(948\) 0 0
\(949\) −41.8668 −1.35905
\(950\) 1.67059 0.0542011
\(951\) 0 0
\(952\) −1.45571 −0.0471797
\(953\) −39.6858 −1.28555 −0.642775 0.766055i \(-0.722217\pi\)
−0.642775 + 0.766055i \(0.722217\pi\)
\(954\) 0 0
\(955\) −7.16764 −0.231939
\(956\) −7.76548 −0.251154
\(957\) 0 0
\(958\) 27.2284 0.879708
\(959\) 8.21505 0.265278
\(960\) 0 0
\(961\) −27.5742 −0.889489
\(962\) −87.9192 −2.83463
\(963\) 0 0
\(964\) 9.53734 0.307177
\(965\) −22.9407 −0.738487
\(966\) 0 0
\(967\) 17.3969 0.559447 0.279723 0.960081i \(-0.409757\pi\)
0.279723 + 0.960081i \(0.409757\pi\)
\(968\) −3.10331 −0.0997442
\(969\) 0 0
\(970\) −8.17862 −0.262600
\(971\) −48.7992 −1.56604 −0.783020 0.621996i \(-0.786322\pi\)
−0.783020 + 0.621996i \(0.786322\pi\)
\(972\) 0 0
\(973\) −10.3155 −0.330701
\(974\) −3.67708 −0.117821
\(975\) 0 0
\(976\) −66.8598 −2.14013
\(977\) 51.9072 1.66066 0.830329 0.557274i \(-0.188153\pi\)
0.830329 + 0.557274i \(0.188153\pi\)
\(978\) 0 0
\(979\) −8.34885 −0.266831
\(980\) −15.3566 −0.490547
\(981\) 0 0
\(982\) −20.1117 −0.641790
\(983\) −16.0820 −0.512936 −0.256468 0.966553i \(-0.582559\pi\)
−0.256468 + 0.966553i \(0.582559\pi\)
\(984\) 0 0
\(985\) 4.45555 0.141966
\(986\) 0 0
\(987\) 0 0
\(988\) −4.26134 −0.135571
\(989\) 59.3242 1.88640
\(990\) 0 0
\(991\) −24.4350 −0.776202 −0.388101 0.921617i \(-0.626869\pi\)
−0.388101 + 0.921617i \(0.626869\pi\)
\(992\) 13.6627 0.433790
\(993\) 0 0
\(994\) 26.8953 0.853067
\(995\) −10.6417 −0.337366
\(996\) 0 0
\(997\) −55.5897 −1.76054 −0.880272 0.474469i \(-0.842640\pi\)
−0.880272 + 0.474469i \(0.842640\pi\)
\(998\) 29.6741 0.939316
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bt.1.2 12
3.2 odd 2 2523.2.a.s.1.11 12
29.3 odd 28 261.2.o.b.154.2 24
29.10 odd 28 261.2.o.b.100.2 24
29.28 even 2 7569.2.a.bn.1.11 12
87.32 even 28 87.2.i.a.67.3 yes 24
87.68 even 28 87.2.i.a.13.3 24
87.86 odd 2 2523.2.a.v.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.13.3 24 87.68 even 28
87.2.i.a.67.3 yes 24 87.32 even 28
261.2.o.b.100.2 24 29.10 odd 28
261.2.o.b.154.2 24 29.3 odd 28
2523.2.a.s.1.11 12 3.2 odd 2
2523.2.a.v.1.2 12 87.86 odd 2
7569.2.a.bn.1.11 12 29.28 even 2
7569.2.a.bt.1.2 12 1.1 even 1 trivial