Properties

Label 7569.2.a.bt.1.5
Level 75697569
Weight 22
Character 7569.1
Self dual yes
Analytic conductor 60.43960.439
Analytic rank 11
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7569,2,Mod(1,7569)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7569, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7569.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 7569=32292 7569 = 3^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7569.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,0,8,-2,0,-10,0,0,-20,14,0,-16,0,0,-4,22,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.438769289960.4387692899
Analytic rank: 11
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+2x10+38x930x890x7+55x6+90x530x4++1 x^{12} - 6 x^{11} + 2 x^{10} + 38 x^{9} - 30 x^{8} - 90 x^{7} + 55 x^{6} + 90 x^{5} - 30 x^{4} + \cdots + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 0.7571240.757124 of defining polynomial
Character χ\chi == 7569.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.242876q21.94101q40.975857q5+3.22234q70.957176q80.237012q10+5.81530q112.71844q13+0.782628q14+3.64955q160.0461060q173.13915q19+1.89415q20+1.41240q220.317052q234.04770q250.660243q266.25460q287.55971q31+2.80074q320.0111980q343.14454q353.22197q370.762423q38+0.934067q4010.7403q410.324676q4311.2876q440.0770043q46+8.90113q47+3.38347q490.983089q50+5.27652q52+12.6243q535.67490q553.08435q56+1.44348q596.78143q611.83607q626.61886q64+2.65281q656.15519q67+0.0894923q680.763733q7011.2594q71+5.12818q730.782540q74+6.09312q76+18.7389q77+10.1502q793.56144q802.60855q828.06599q83+0.0449929q850.0788560q865.56627q88+3.21940q898.75973q91+0.615402q92+2.16187q94+3.06336q9514.2107q97+0.821763q98+O(q100)q+0.242876 q^{2} -1.94101 q^{4} -0.975857 q^{5} +3.22234 q^{7} -0.957176 q^{8} -0.237012 q^{10} +5.81530 q^{11} -2.71844 q^{13} +0.782628 q^{14} +3.64955 q^{16} -0.0461060 q^{17} -3.13915 q^{19} +1.89415 q^{20} +1.41240 q^{22} -0.317052 q^{23} -4.04770 q^{25} -0.660243 q^{26} -6.25460 q^{28} -7.55971 q^{31} +2.80074 q^{32} -0.0111980 q^{34} -3.14454 q^{35} -3.22197 q^{37} -0.762423 q^{38} +0.934067 q^{40} -10.7403 q^{41} -0.324676 q^{43} -11.2876 q^{44} -0.0770043 q^{46} +8.90113 q^{47} +3.38347 q^{49} -0.983089 q^{50} +5.27652 q^{52} +12.6243 q^{53} -5.67490 q^{55} -3.08435 q^{56} +1.44348 q^{59} -6.78143 q^{61} -1.83607 q^{62} -6.61886 q^{64} +2.65281 q^{65} -6.15519 q^{67} +0.0894923 q^{68} -0.763733 q^{70} -11.2594 q^{71} +5.12818 q^{73} -0.782540 q^{74} +6.09312 q^{76} +18.7389 q^{77} +10.1502 q^{79} -3.56144 q^{80} -2.60855 q^{82} -8.06599 q^{83} +0.0449929 q^{85} -0.0788560 q^{86} -5.56627 q^{88} +3.21940 q^{89} -8.75973 q^{91} +0.615402 q^{92} +2.16187 q^{94} +3.06336 q^{95} -14.2107 q^{97} +0.821763 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q2+8q42q510q720q10+14q1116q134q16+22q1716q194q20+12q222q232q258q264q284q31+16q32++6q98+O(q100) 12 q + 6 q^{2} + 8 q^{4} - 2 q^{5} - 10 q^{7} - 20 q^{10} + 14 q^{11} - 16 q^{13} - 4 q^{16} + 22 q^{17} - 16 q^{19} - 4 q^{20} + 12 q^{22} - 2 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{28} - 4 q^{31} + 16 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.242876 0.171739 0.0858695 0.996306i 0.472633π-0.472633\pi
0.0858695 + 0.996306i 0.472633π0.472633\pi
33 0 0
44 −1.94101 −0.970506
55 −0.975857 −0.436417 −0.218208 0.975902i 0.570021π-0.570021\pi
−0.218208 + 0.975902i 0.570021π0.570021\pi
66 0 0
77 3.22234 1.21793 0.608965 0.793197i 0.291585π-0.291585\pi
0.608965 + 0.793197i 0.291585π0.291585\pi
88 −0.957176 −0.338413
99 0 0
1010 −0.237012 −0.0749498
1111 5.81530 1.75338 0.876689 0.481057i 0.159747π-0.159747\pi
0.876689 + 0.481057i 0.159747π0.159747\pi
1212 0 0
1313 −2.71844 −0.753959 −0.376979 0.926222i 0.623037π-0.623037\pi
−0.376979 + 0.926222i 0.623037π0.623037\pi
1414 0.782628 0.209166
1515 0 0
1616 3.64955 0.912387
1717 −0.0461060 −0.0111823 −0.00559117 0.999984i 0.501780π-0.501780\pi
−0.00559117 + 0.999984i 0.501780π0.501780\pi
1818 0 0
1919 −3.13915 −0.720170 −0.360085 0.932920i 0.617252π-0.617252\pi
−0.360085 + 0.932920i 0.617252π0.617252\pi
2020 1.89415 0.423545
2121 0 0
2222 1.41240 0.301124
2323 −0.317052 −0.0661100 −0.0330550 0.999454i 0.510524π-0.510524\pi
−0.0330550 + 0.999454i 0.510524π0.510524\pi
2424 0 0
2525 −4.04770 −0.809540
2626 −0.660243 −0.129484
2727 0 0
2828 −6.25460 −1.18201
2929 0 0
3030 0 0
3131 −7.55971 −1.35776 −0.678882 0.734247i 0.737535π-0.737535\pi
−0.678882 + 0.734247i 0.737535π0.737535\pi
3232 2.80074 0.495105
3333 0 0
3434 −0.0111980 −0.00192045
3535 −3.14454 −0.531525
3636 0 0
3737 −3.22197 −0.529689 −0.264845 0.964291i 0.585321π-0.585321\pi
−0.264845 + 0.964291i 0.585321π0.585321\pi
3838 −0.762423 −0.123681
3939 0 0
4040 0.934067 0.147689
4141 −10.7403 −1.67735 −0.838673 0.544635i 0.816668π-0.816668\pi
−0.838673 + 0.544635i 0.816668π0.816668\pi
4242 0 0
4343 −0.324676 −0.0495127 −0.0247563 0.999694i 0.507881π-0.507881\pi
−0.0247563 + 0.999694i 0.507881π0.507881\pi
4444 −11.2876 −1.70166
4545 0 0
4646 −0.0770043 −0.0113537
4747 8.90113 1.29836 0.649182 0.760633i 0.275111π-0.275111\pi
0.649182 + 0.760633i 0.275111π0.275111\pi
4848 0 0
4949 3.38347 0.483353
5050 −0.983089 −0.139030
5151 0 0
5252 5.27652 0.731721
5353 12.6243 1.73408 0.867041 0.498237i 0.166019π-0.166019\pi
0.867041 + 0.498237i 0.166019π0.166019\pi
5454 0 0
5555 −5.67490 −0.765204
5656 −3.08435 −0.412163
5757 0 0
5858 0 0
5959 1.44348 0.187925 0.0939624 0.995576i 0.470047π-0.470047\pi
0.0939624 + 0.995576i 0.470047π0.470047\pi
6060 0 0
6161 −6.78143 −0.868273 −0.434136 0.900847i 0.642946π-0.642946\pi
−0.434136 + 0.900847i 0.642946π0.642946\pi
6262 −1.83607 −0.233181
6363 0 0
6464 −6.61886 −0.827358
6565 2.65281 0.329040
6666 0 0
6767 −6.15519 −0.751976 −0.375988 0.926624i 0.622697π-0.622697\pi
−0.375988 + 0.926624i 0.622697π0.622697\pi
6868 0.0894923 0.0108525
6969 0 0
7070 −0.763733 −0.0912836
7171 −11.2594 −1.33625 −0.668123 0.744051i 0.732902π-0.732902\pi
−0.668123 + 0.744051i 0.732902π0.732902\pi
7272 0 0
7373 5.12818 0.600208 0.300104 0.953906i 0.402979π-0.402979\pi
0.300104 + 0.953906i 0.402979π0.402979\pi
7474 −0.782540 −0.0909684
7575 0 0
7676 6.09312 0.698929
7777 18.7389 2.13549
7878 0 0
7979 10.1502 1.14199 0.570993 0.820955i 0.306558π-0.306558\pi
0.570993 + 0.820955i 0.306558π0.306558\pi
8080 −3.56144 −0.398181
8181 0 0
8282 −2.60855 −0.288066
8383 −8.06599 −0.885358 −0.442679 0.896680i 0.645972π-0.645972\pi
−0.442679 + 0.896680i 0.645972π0.645972\pi
8484 0 0
8585 0.0449929 0.00488016
8686 −0.0788560 −0.00850327
8787 0 0
8888 −5.56627 −0.593366
8989 3.21940 0.341255 0.170628 0.985336i 0.445420π-0.445420\pi
0.170628 + 0.985336i 0.445420π0.445420\pi
9090 0 0
9191 −8.75973 −0.918269
9292 0.615402 0.0641601
9393 0 0
9494 2.16187 0.222980
9595 3.06336 0.314294
9696 0 0
9797 −14.2107 −1.44288 −0.721440 0.692477i 0.756519π-0.756519\pi
−0.721440 + 0.692477i 0.756519π0.756519\pi
9898 0.821763 0.0830106
9999 0 0
100100 7.85664 0.785664
101101 −2.48892 −0.247657 −0.123828 0.992304i 0.539517π-0.539517\pi
−0.123828 + 0.992304i 0.539517π0.539517\pi
102102 0 0
103103 14.2892 1.40795 0.703977 0.710223i 0.251406π-0.251406\pi
0.703977 + 0.710223i 0.251406π0.251406\pi
104104 2.60202 0.255149
105105 0 0
106106 3.06614 0.297810
107107 −14.5407 −1.40570 −0.702851 0.711337i 0.748090π-0.748090\pi
−0.702851 + 0.711337i 0.748090π0.748090\pi
108108 0 0
109109 −3.85519 −0.369260 −0.184630 0.982808i 0.559109π-0.559109\pi
−0.184630 + 0.982808i 0.559109π0.559109\pi
110110 −1.37830 −0.131415
111111 0 0
112112 11.7601 1.11122
113113 8.41550 0.791664 0.395832 0.918323i 0.370456π-0.370456\pi
0.395832 + 0.918323i 0.370456π0.370456\pi
114114 0 0
115115 0.309398 0.0288515
116116 0 0
117117 0 0
118118 0.350586 0.0322740
119119 −0.148569 −0.0136193
120120 0 0
121121 22.8177 2.07434
122122 −1.64704 −0.149116
123123 0 0
124124 14.6735 1.31772
125125 8.82927 0.789714
126126 0 0
127127 −2.19393 −0.194680 −0.0973400 0.995251i 0.531033π-0.531033\pi
−0.0973400 + 0.995251i 0.531033π0.531033\pi
128128 −7.20904 −0.637195
129129 0 0
130130 0.644303 0.0565091
131131 18.3171 1.60037 0.800184 0.599754i 0.204735π-0.204735\pi
0.800184 + 0.599754i 0.204735π0.204735\pi
132132 0 0
133133 −10.1154 −0.877116
134134 −1.49495 −0.129144
135135 0 0
136136 0.0441316 0.00378425
137137 0.362343 0.0309571 0.0154785 0.999880i 0.495073π-0.495073\pi
0.0154785 + 0.999880i 0.495073π0.495073\pi
138138 0 0
139139 9.39836 0.797158 0.398579 0.917134i 0.369503π-0.369503\pi
0.398579 + 0.917134i 0.369503π0.369503\pi
140140 6.10359 0.515848
141141 0 0
142142 −2.73464 −0.229486
143143 −15.8085 −1.32198
144144 0 0
145145 0 0
146146 1.24551 0.103079
147147 0 0
148148 6.25389 0.514067
149149 2.89876 0.237476 0.118738 0.992926i 0.462115π-0.462115\pi
0.118738 + 0.992926i 0.462115π0.462115\pi
150150 0 0
151151 −10.8109 −0.879780 −0.439890 0.898052i 0.644982π-0.644982\pi
−0.439890 + 0.898052i 0.644982π0.644982\pi
152152 3.00472 0.243715
153153 0 0
154154 4.55122 0.366747
155155 7.37720 0.592551
156156 0 0
157157 −20.7432 −1.65549 −0.827743 0.561107i 0.810375π-0.810375\pi
−0.827743 + 0.561107i 0.810375π0.810375\pi
158158 2.46523 0.196124
159159 0 0
160160 −2.73312 −0.216072
161161 −1.02165 −0.0805173
162162 0 0
163163 −24.2502 −1.89942 −0.949712 0.313125i 0.898624π-0.898624\pi
−0.949712 + 0.313125i 0.898624π0.898624\pi
164164 20.8470 1.62787
165165 0 0
166166 −1.95903 −0.152051
167167 5.34975 0.413976 0.206988 0.978343i 0.433634π-0.433634\pi
0.206988 + 0.978343i 0.433634π0.433634\pi
168168 0 0
169169 −5.61010 −0.431546
170170 0.0109277 0.000838115 0
171171 0 0
172172 0.630201 0.0480524
173173 −9.02908 −0.686469 −0.343234 0.939250i 0.611522π-0.611522\pi
−0.343234 + 0.939250i 0.611522π0.611522\pi
174174 0 0
175175 −13.0431 −0.985963
176176 21.2232 1.59976
177177 0 0
178178 0.781914 0.0586069
179179 23.8270 1.78092 0.890459 0.455064i 0.150384π-0.150384\pi
0.890459 + 0.455064i 0.150384π0.150384\pi
180180 0 0
181181 −18.1286 −1.34749 −0.673743 0.738966i 0.735314π-0.735314\pi
−0.673743 + 0.738966i 0.735314π0.735314\pi
182182 −2.12753 −0.157703
183183 0 0
184184 0.303475 0.0223725
185185 3.14419 0.231165
186186 0 0
187187 −0.268120 −0.0196069
188188 −17.2772 −1.26007
189189 0 0
190190 0.744016 0.0539766
191191 11.5710 0.837249 0.418625 0.908159i 0.362512π-0.362512\pi
0.418625 + 0.908159i 0.362512π0.362512\pi
192192 0 0
193193 1.34897 0.0971013 0.0485507 0.998821i 0.484540π-0.484540\pi
0.0485507 + 0.998821i 0.484540π0.484540\pi
194194 −3.45144 −0.247799
195195 0 0
196196 −6.56736 −0.469097
197197 −18.8288 −1.34150 −0.670748 0.741686i 0.734027π-0.734027\pi
−0.670748 + 0.741686i 0.734027π0.734027\pi
198198 0 0
199199 −4.97851 −0.352917 −0.176459 0.984308i 0.556464π-0.556464\pi
−0.176459 + 0.984308i 0.556464π0.556464\pi
200200 3.87436 0.273959
201201 0 0
202202 −0.604498 −0.0425324
203203 0 0
204204 0 0
205205 10.4810 0.732022
206206 3.47049 0.241801
207207 0 0
208208 −9.92107 −0.687902
209209 −18.2551 −1.26273
210210 0 0
211211 0.601335 0.0413976 0.0206988 0.999786i 0.493411π-0.493411\pi
0.0206988 + 0.999786i 0.493411π0.493411\pi
212212 −24.5039 −1.68294
213213 0 0
214214 −3.53158 −0.241414
215215 0.316838 0.0216082
216216 0 0
217217 −24.3600 −1.65366
218218 −0.936332 −0.0634164
219219 0 0
220220 11.0151 0.742635
221221 0.125336 0.00843103
222222 0 0
223223 −6.11125 −0.409240 −0.204620 0.978842i 0.565596π-0.565596\pi
−0.204620 + 0.978842i 0.565596π0.565596\pi
224224 9.02493 0.603004
225225 0 0
226226 2.04392 0.135960
227227 9.40550 0.624265 0.312132 0.950039i 0.398957π-0.398957\pi
0.312132 + 0.950039i 0.398957π0.398957\pi
228228 0 0
229229 0.392271 0.0259220 0.0129610 0.999916i 0.495874π-0.495874\pi
0.0129610 + 0.999916i 0.495874π0.495874\pi
230230 0.0751452 0.00495493
231231 0 0
232232 0 0
233233 −22.9385 −1.50275 −0.751376 0.659874i 0.770609π-0.770609\pi
−0.751376 + 0.659874i 0.770609π0.770609\pi
234234 0 0
235235 −8.68623 −0.566627
236236 −2.80181 −0.182382
237237 0 0
238238 −0.0360838 −0.00233897
239239 1.66088 0.107434 0.0537168 0.998556i 0.482893π-0.482893\pi
0.0537168 + 0.998556i 0.482893π0.482893\pi
240240 0 0
241241 −23.2131 −1.49529 −0.747645 0.664099i 0.768815π-0.768815\pi
−0.747645 + 0.664099i 0.768815π0.768815\pi
242242 5.54187 0.356245
243243 0 0
244244 13.1628 0.842664
245245 −3.30178 −0.210943
246246 0 0
247247 8.53358 0.542978
248248 7.23598 0.459485
249249 0 0
250250 2.14441 0.135625
251251 −5.21093 −0.328911 −0.164455 0.986385i 0.552587π-0.552587\pi
−0.164455 + 0.986385i 0.552587π0.552587\pi
252252 0 0
253253 −1.84375 −0.115916
254254 −0.532853 −0.0334342
255255 0 0
256256 11.4868 0.717927
257257 −5.19998 −0.324366 −0.162183 0.986761i 0.551853π-0.551853\pi
−0.162183 + 0.986761i 0.551853π0.551853\pi
258258 0 0
259259 −10.3823 −0.645124
260260 −5.14913 −0.319335
261261 0 0
262262 4.44877 0.274846
263263 8.96684 0.552919 0.276459 0.961026i 0.410839π-0.410839\pi
0.276459 + 0.961026i 0.410839π0.410839\pi
264264 0 0
265265 −12.3195 −0.756782
266266 −2.45678 −0.150635
267267 0 0
268268 11.9473 0.729797
269269 −4.42050 −0.269523 −0.134761 0.990878i 0.543027π-0.543027\pi
−0.134761 + 0.990878i 0.543027π0.543027\pi
270270 0 0
271271 26.6551 1.61918 0.809592 0.586993i 0.199688π-0.199688\pi
0.809592 + 0.586993i 0.199688π0.199688\pi
272272 −0.168266 −0.0102026
273273 0 0
274274 0.0880043 0.00531654
275275 −23.5386 −1.41943
276276 0 0
277277 −2.55670 −0.153617 −0.0768087 0.997046i 0.524473π-0.524473\pi
−0.0768087 + 0.997046i 0.524473π0.524473\pi
278278 2.28263 0.136903
279279 0 0
280280 3.00988 0.179875
281281 −21.4241 −1.27805 −0.639026 0.769185i 0.720663π-0.720663\pi
−0.639026 + 0.769185i 0.720663π0.720663\pi
282282 0 0
283283 16.7062 0.993079 0.496539 0.868014i 0.334604π-0.334604\pi
0.496539 + 0.868014i 0.334604π0.334604\pi
284284 21.8546 1.29683
285285 0 0
286286 −3.83951 −0.227035
287287 −34.6088 −2.04289
288288 0 0
289289 −16.9979 −0.999875
290290 0 0
291291 0 0
292292 −9.95386 −0.582505
293293 −24.0034 −1.40229 −0.701146 0.713018i 0.747328π-0.747328\pi
−0.701146 + 0.713018i 0.747328π0.747328\pi
294294 0 0
295295 −1.40863 −0.0820135
296296 3.08400 0.179254
297297 0 0
298298 0.704038 0.0407838
299299 0.861887 0.0498442
300300 0 0
301301 −1.04622 −0.0603030
302302 −2.62571 −0.151093
303303 0 0
304304 −11.4565 −0.657073
305305 6.61770 0.378929
306306 0 0
307307 9.02358 0.515003 0.257502 0.966278i 0.417101π-0.417101\pi
0.257502 + 0.966278i 0.417101π0.417101\pi
308308 −36.3724 −2.07251
309309 0 0
310310 1.79174 0.101764
311311 −26.6145 −1.50917 −0.754586 0.656201i 0.772162π-0.772162\pi
−0.754586 + 0.656201i 0.772162π0.772162\pi
312312 0 0
313313 −13.2311 −0.747864 −0.373932 0.927456i 0.621991π-0.621991\pi
−0.373932 + 0.927456i 0.621991π0.621991\pi
314314 −5.03802 −0.284312
315315 0 0
316316 −19.7016 −1.10830
317317 5.57496 0.313121 0.156561 0.987668i 0.449959π-0.449959\pi
0.156561 + 0.987668i 0.449959π0.449959\pi
318318 0 0
319319 0 0
320320 6.45907 0.361073
321321 0 0
322322 −0.248134 −0.0138280
323323 0.144734 0.00805319
324324 0 0
325325 11.0034 0.610360
326326 −5.88979 −0.326205
327327 0 0
328328 10.2803 0.567636
329329 28.6825 1.58132
330330 0 0
331331 9.86617 0.542294 0.271147 0.962538i 0.412597π-0.412597\pi
0.271147 + 0.962538i 0.412597π0.412597\pi
332332 15.6562 0.859245
333333 0 0
334334 1.29933 0.0710959
335335 6.00659 0.328175
336336 0 0
337337 10.7438 0.585252 0.292626 0.956227i 0.405471π-0.405471\pi
0.292626 + 0.956227i 0.405471π0.405471\pi
338338 −1.36256 −0.0741133
339339 0 0
340340 −0.0873317 −0.00473623
341341 −43.9620 −2.38067
342342 0 0
343343 −11.6537 −0.629240
344344 0.310773 0.0167557
345345 0 0
346346 −2.19295 −0.117893
347347 −29.6747 −1.59302 −0.796510 0.604625i 0.793323π-0.793323\pi
−0.796510 + 0.604625i 0.793323π0.793323\pi
348348 0 0
349349 15.6483 0.837632 0.418816 0.908071i 0.362445π-0.362445\pi
0.418816 + 0.908071i 0.362445π0.362445\pi
350350 −3.16785 −0.169328
351351 0 0
352352 16.2871 0.868107
353353 −4.26989 −0.227264 −0.113632 0.993523i 0.536248π-0.536248\pi
−0.113632 + 0.993523i 0.536248π0.536248\pi
354354 0 0
355355 10.9876 0.583160
356356 −6.24889 −0.331190
357357 0 0
358358 5.78701 0.305853
359359 25.9811 1.37123 0.685615 0.727964i 0.259533π-0.259533\pi
0.685615 + 0.727964i 0.259533π0.259533\pi
360360 0 0
361361 −9.14575 −0.481356
362362 −4.40299 −0.231416
363363 0 0
364364 17.0027 0.891185
365365 −5.00437 −0.261941
366366 0 0
367367 14.5300 0.758462 0.379231 0.925302i 0.376189π-0.376189\pi
0.379231 + 0.925302i 0.376189π0.376189\pi
368368 −1.15710 −0.0603179
369369 0 0
370370 0.763647 0.0397001
371371 40.6798 2.11199
372372 0 0
373373 −23.5680 −1.22031 −0.610153 0.792284i 0.708892π-0.708892\pi
−0.610153 + 0.792284i 0.708892π0.708892\pi
374374 −0.0651199 −0.00336727
375375 0 0
376376 −8.51995 −0.439383
377377 0 0
378378 0 0
379379 18.1033 0.929902 0.464951 0.885336i 0.346072π-0.346072\pi
0.464951 + 0.885336i 0.346072π0.346072\pi
380380 −5.94602 −0.305024
381381 0 0
382382 2.81032 0.143788
383383 −27.4106 −1.40062 −0.700309 0.713840i 0.746954π-0.746954\pi
−0.700309 + 0.713840i 0.746954π0.746954\pi
384384 0 0
385385 −18.2865 −0.931964
386386 0.327633 0.0166761
387387 0 0
388388 27.5832 1.40032
389389 −6.98440 −0.354123 −0.177062 0.984200i 0.556659π-0.556659\pi
−0.177062 + 0.984200i 0.556659π0.556659\pi
390390 0 0
391391 0.0146180 0.000739265 0
392392 −3.23858 −0.163573
393393 0 0
394394 −4.57305 −0.230387
395395 −9.90514 −0.498381
396396 0 0
397397 −9.45477 −0.474522 −0.237261 0.971446i 0.576250π-0.576250\pi
−0.237261 + 0.971446i 0.576250π0.576250\pi
398398 −1.20916 −0.0606096
399399 0 0
400400 −14.7723 −0.738614
401401 −29.4747 −1.47190 −0.735948 0.677038i 0.763263π-0.763263\pi
−0.735948 + 0.677038i 0.763263π0.763263\pi
402402 0 0
403403 20.5506 1.02370
404404 4.83102 0.240352
405405 0 0
406406 0 0
407407 −18.7367 −0.928746
408408 0 0
409409 −13.9350 −0.689039 −0.344520 0.938779i 0.611958π-0.611958\pi
−0.344520 + 0.938779i 0.611958π0.611958\pi
410410 2.54557 0.125717
411411 0 0
412412 −27.7354 −1.36643
413413 4.65138 0.228879
414414 0 0
415415 7.87126 0.386385
416416 −7.61363 −0.373289
417417 0 0
418418 −4.43372 −0.216860
419419 2.66976 0.130426 0.0652132 0.997871i 0.479227π-0.479227\pi
0.0652132 + 0.997871i 0.479227π0.479227\pi
420420 0 0
421421 −5.55692 −0.270828 −0.135414 0.990789i 0.543236π-0.543236\pi
−0.135414 + 0.990789i 0.543236π0.543236\pi
422422 0.146050 0.00710959
423423 0 0
424424 −12.0837 −0.586835
425425 0.186623 0.00905256
426426 0 0
427427 −21.8521 −1.05750
428428 28.2237 1.36424
429429 0 0
430430 0.0769523 0.00371097
431431 −16.6060 −0.799883 −0.399942 0.916541i 0.630970π-0.630970\pi
−0.399942 + 0.916541i 0.630970π0.630970\pi
432432 0 0
433433 10.2686 0.493480 0.246740 0.969082i 0.420641π-0.420641\pi
0.246740 + 0.969082i 0.420641π0.420641\pi
434434 −5.91644 −0.283998
435435 0 0
436436 7.48297 0.358369
437437 0.995274 0.0476104
438438 0 0
439439 4.26072 0.203353 0.101677 0.994818i 0.467579π-0.467579\pi
0.101677 + 0.994818i 0.467579π0.467579\pi
440440 5.43188 0.258955
441441 0 0
442442 0.0304411 0.00144794
443443 26.9235 1.27917 0.639587 0.768719i 0.279105π-0.279105\pi
0.639587 + 0.768719i 0.279105π0.279105\pi
444444 0 0
445445 −3.14167 −0.148930
446446 −1.48428 −0.0702825
447447 0 0
448448 −21.3282 −1.00766
449449 −27.9572 −1.31938 −0.659691 0.751537i 0.729313π-0.729313\pi
−0.659691 + 0.751537i 0.729313π0.729313\pi
450450 0 0
451451 −62.4578 −2.94102
452452 −16.3346 −0.768315
453453 0 0
454454 2.28437 0.107211
455455 8.54824 0.400748
456456 0 0
457457 −26.5876 −1.24371 −0.621857 0.783131i 0.713622π-0.713622\pi
−0.621857 + 0.783131i 0.713622π0.713622\pi
458458 0.0952730 0.00445182
459459 0 0
460460 −0.600545 −0.0280005
461461 −16.1451 −0.751951 −0.375975 0.926630i 0.622692π-0.622692\pi
−0.375975 + 0.926630i 0.622692π0.622692\pi
462462 0 0
463463 13.9805 0.649729 0.324865 0.945761i 0.394681π-0.394681\pi
0.324865 + 0.945761i 0.394681π0.394681\pi
464464 0 0
465465 0 0
466466 −5.57121 −0.258081
467467 −17.4597 −0.807937 −0.403968 0.914773i 0.632369π-0.632369\pi
−0.403968 + 0.914773i 0.632369π0.632369\pi
468468 0 0
469469 −19.8341 −0.915854
470470 −2.10968 −0.0973121
471471 0 0
472472 −1.38166 −0.0635962
473473 −1.88809 −0.0868145
474474 0 0
475475 12.7063 0.583007
476476 0.288374 0.0132176
477477 0 0
478478 0.403388 0.0184505
479479 23.7399 1.08470 0.542352 0.840152i 0.317534π-0.317534\pi
0.542352 + 0.840152i 0.317534π0.317534\pi
480480 0 0
481481 8.75874 0.399364
482482 −5.63791 −0.256800
483483 0 0
484484 −44.2894 −2.01316
485485 13.8676 0.629697
486486 0 0
487487 28.7264 1.30172 0.650859 0.759199i 0.274409π-0.274409\pi
0.650859 + 0.759199i 0.274409π0.274409\pi
488488 6.49102 0.293835
489489 0 0
490490 −0.801923 −0.0362272
491491 −12.0365 −0.543201 −0.271600 0.962410i 0.587553π-0.587553\pi
−0.271600 + 0.962410i 0.587553π0.587553\pi
492492 0 0
493493 0 0
494494 2.07260 0.0932506
495495 0 0
496496 −27.5895 −1.23881
497497 −36.2816 −1.62745
498498 0 0
499499 18.4422 0.825584 0.412792 0.910825i 0.364554π-0.364554\pi
0.412792 + 0.910825i 0.364554π0.364554\pi
500500 −17.1377 −0.766422
501501 0 0
502502 −1.26561 −0.0564868
503503 −26.7470 −1.19259 −0.596294 0.802766i 0.703361π-0.703361\pi
−0.596294 + 0.802766i 0.703361π0.703361\pi
504504 0 0
505505 2.42883 0.108082
506506 −0.447803 −0.0199073
507507 0 0
508508 4.25845 0.188938
509509 34.9643 1.54976 0.774882 0.632106i 0.217809π-0.217809\pi
0.774882 + 0.632106i 0.217809π0.217809\pi
510510 0 0
511511 16.5247 0.731011
512512 17.2080 0.760491
513513 0 0
514514 −1.26295 −0.0557062
515515 −13.9442 −0.614455
516516 0 0
517517 51.7627 2.27652
518518 −2.52161 −0.110793
519519 0 0
520520 −2.53920 −0.111351
521521 −19.6126 −0.859243 −0.429621 0.903009i 0.641353π-0.641353\pi
−0.429621 + 0.903009i 0.641353π0.641353\pi
522522 0 0
523523 −39.2690 −1.71711 −0.858556 0.512720i 0.828638π-0.828638\pi
−0.858556 + 0.512720i 0.828638π0.828638\pi
524524 −35.5536 −1.55317
525525 0 0
526526 2.17783 0.0949578
527527 0.348548 0.0151830
528528 0 0
529529 −22.8995 −0.995629
530530 −2.99211 −0.129969
531531 0 0
532532 19.6341 0.851246
533533 29.1967 1.26465
534534 0 0
535535 14.1897 0.613472
536536 5.89160 0.254478
537537 0 0
538538 −1.07363 −0.0462876
539539 19.6759 0.847501
540540 0 0
541541 8.46210 0.363814 0.181907 0.983316i 0.441773π-0.441773\pi
0.181907 + 0.983316i 0.441773π0.441773\pi
542542 6.47389 0.278077
543543 0 0
544544 −0.129131 −0.00553644
545545 3.76212 0.161151
546546 0 0
547547 −10.4695 −0.447646 −0.223823 0.974630i 0.571854π-0.571854\pi
−0.223823 + 0.974630i 0.571854π0.571854\pi
548548 −0.703312 −0.0300440
549549 0 0
550550 −5.71696 −0.243772
551551 0 0
552552 0 0
553553 32.7073 1.39086
554554 −0.620962 −0.0263821
555555 0 0
556556 −18.2423 −0.773647
557557 −8.77203 −0.371683 −0.185841 0.982580i 0.559501π-0.559501\pi
−0.185841 + 0.982580i 0.559501π0.559501\pi
558558 0 0
559559 0.882613 0.0373305
560560 −11.4762 −0.484956
561561 0 0
562562 −5.20339 −0.219492
563563 11.5047 0.484867 0.242433 0.970168i 0.422054π-0.422054\pi
0.242433 + 0.970168i 0.422054π0.422054\pi
564564 0 0
565565 −8.21233 −0.345495
566566 4.05752 0.170550
567567 0 0
568568 10.7772 0.452203
569569 29.3623 1.23093 0.615466 0.788163i 0.288968π-0.288968\pi
0.615466 + 0.788163i 0.288968π0.288968\pi
570570 0 0
571571 10.1743 0.425782 0.212891 0.977076i 0.431712π-0.431712\pi
0.212891 + 0.977076i 0.431712π0.431712\pi
572572 30.6845 1.28298
573573 0 0
574574 −8.40563 −0.350844
575575 1.28333 0.0535187
576576 0 0
577577 19.9508 0.830562 0.415281 0.909693i 0.363683π-0.363683\pi
0.415281 + 0.909693i 0.363683π0.363683\pi
578578 −4.12837 −0.171718
579579 0 0
580580 0 0
581581 −25.9914 −1.07830
582582 0 0
583583 73.4141 3.04050
584584 −4.90857 −0.203118
585585 0 0
586586 −5.82984 −0.240828
587587 −28.2713 −1.16688 −0.583441 0.812155i 0.698294π-0.698294\pi
−0.583441 + 0.812155i 0.698294π0.698294\pi
588588 0 0
589589 23.7310 0.977821
590590 −0.342122 −0.0140849
591591 0 0
592592 −11.7588 −0.483282
593593 −3.94837 −0.162140 −0.0810700 0.996708i 0.525834π-0.525834\pi
−0.0810700 + 0.996708i 0.525834π0.525834\pi
594594 0 0
595595 0.144982 0.00594370
596596 −5.62652 −0.230471
597597 0 0
598598 0.209331 0.00856020
599599 3.49455 0.142783 0.0713917 0.997448i 0.477256π-0.477256\pi
0.0713917 + 0.997448i 0.477256π0.477256\pi
600600 0 0
601601 −1.79919 −0.0733905 −0.0366953 0.999327i 0.511683π-0.511683\pi
−0.0366953 + 0.999327i 0.511683π0.511683\pi
602602 −0.254101 −0.0103564
603603 0 0
604604 20.9841 0.853831
605605 −22.2668 −0.905275
606606 0 0
607607 1.86238 0.0755916 0.0377958 0.999285i 0.487966π-0.487966\pi
0.0377958 + 0.999285i 0.487966π0.487966\pi
608608 −8.79193 −0.356560
609609 0 0
610610 1.60728 0.0650769
611611 −24.1972 −0.978913
612612 0 0
613613 9.37869 0.378802 0.189401 0.981900i 0.439345π-0.439345\pi
0.189401 + 0.981900i 0.439345π0.439345\pi
614614 2.19161 0.0884462
615615 0 0
616616 −17.9364 −0.722678
617617 10.2686 0.413398 0.206699 0.978405i 0.433728π-0.433728\pi
0.206699 + 0.978405i 0.433728π0.433728\pi
618618 0 0
619619 −20.4500 −0.821956 −0.410978 0.911645i 0.634813π-0.634813\pi
−0.410978 + 0.911645i 0.634813π0.634813\pi
620620 −14.3192 −0.575074
621621 0 0
622622 −6.46402 −0.259184
623623 10.3740 0.415625
624624 0 0
625625 11.6224 0.464896
626626 −3.21351 −0.128438
627627 0 0
628628 40.2627 1.60666
629629 0.148552 0.00592317
630630 0 0
631631 −20.2476 −0.806045 −0.403022 0.915190i 0.632040π-0.632040\pi
−0.403022 + 0.915190i 0.632040π0.632040\pi
632632 −9.71552 −0.386463
633633 0 0
634634 1.35402 0.0537752
635635 2.14097 0.0849616
636636 0 0
637637 −9.19775 −0.364428
638638 0 0
639639 0 0
640640 7.03499 0.278083
641641 −1.97133 −0.0778630 −0.0389315 0.999242i 0.512395π-0.512395\pi
−0.0389315 + 0.999242i 0.512395π0.512395\pi
642642 0 0
643643 36.3376 1.43301 0.716507 0.697580i 0.245740π-0.245740\pi
0.716507 + 0.697580i 0.245740π0.245740\pi
644644 1.98303 0.0781425
645645 0 0
646646 0.0351523 0.00138305
647647 −1.77749 −0.0698803 −0.0349402 0.999389i 0.511124π-0.511124\pi
−0.0349402 + 0.999389i 0.511124π0.511124\pi
648648 0 0
649649 8.39426 0.329503
650650 2.67247 0.104823
651651 0 0
652652 47.0699 1.84340
653653 21.1086 0.826043 0.413021 0.910721i 0.364474π-0.364474\pi
0.413021 + 0.910721i 0.364474π0.364474\pi
654654 0 0
655655 −17.8748 −0.698428
656656 −39.1971 −1.53039
657657 0 0
658658 6.96628 0.271574
659659 18.7017 0.728516 0.364258 0.931298i 0.381323π-0.381323\pi
0.364258 + 0.931298i 0.381323π0.381323\pi
660660 0 0
661661 −13.6054 −0.529189 −0.264594 0.964360i 0.585238π-0.585238\pi
−0.264594 + 0.964360i 0.585238π0.585238\pi
662662 2.39625 0.0931330
663663 0 0
664664 7.72058 0.299617
665665 9.87119 0.382788
666666 0 0
667667 0 0
668668 −10.3839 −0.401766
669669 0 0
670670 1.45885 0.0563605
671671 −39.4360 −1.52241
672672 0 0
673673 −15.4327 −0.594888 −0.297444 0.954739i 0.596134π-0.596134\pi
−0.297444 + 0.954739i 0.596134π0.596134\pi
674674 2.60941 0.100511
675675 0 0
676676 10.8893 0.418818
677677 7.35606 0.282716 0.141358 0.989959i 0.454853π-0.454853\pi
0.141358 + 0.989959i 0.454853π0.454853\pi
678678 0 0
679679 −45.7918 −1.75733
680680 −0.0430661 −0.00165151
681681 0 0
682682 −10.6773 −0.408855
683683 12.4365 0.475870 0.237935 0.971281i 0.423530π-0.423530\pi
0.237935 + 0.971281i 0.423530π0.423530\pi
684684 0 0
685685 −0.353595 −0.0135102
686686 −2.83040 −0.108065
687687 0 0
688688 −1.18492 −0.0451747
689689 −34.3184 −1.30743
690690 0 0
691691 −30.7572 −1.17006 −0.585030 0.811012i 0.698917π-0.698917\pi
−0.585030 + 0.811012i 0.698917π0.698917\pi
692692 17.5256 0.666222
693693 0 0
694694 −7.20726 −0.273584
695695 −9.17146 −0.347893
696696 0 0
697697 0.495190 0.0187567
698698 3.80058 0.143854
699699 0 0
700700 25.3167 0.956883
701701 −28.3853 −1.07210 −0.536050 0.844186i 0.680084π-0.680084\pi
−0.536050 + 0.844186i 0.680084π0.680084\pi
702702 0 0
703703 10.1143 0.381466
704704 −38.4907 −1.45067
705705 0 0
706706 −1.03705 −0.0390300
707707 −8.02014 −0.301629
708708 0 0
709709 21.2643 0.798597 0.399299 0.916821i 0.369254π-0.369254\pi
0.399299 + 0.916821i 0.369254π0.369254\pi
710710 2.66862 0.100151
711711 0 0
712712 −3.08153 −0.115485
713713 2.39682 0.0897618
714714 0 0
715715 15.4269 0.576932
716716 −46.2486 −1.72839
717717 0 0
718718 6.31018 0.235494
719719 24.6441 0.919070 0.459535 0.888160i 0.348016π-0.348016\pi
0.459535 + 0.888160i 0.348016π0.348016\pi
720720 0 0
721721 46.0446 1.71479
722722 −2.22128 −0.0826676
723723 0 0
724724 35.1877 1.30774
725725 0 0
726726 0 0
727727 −2.61086 −0.0968316 −0.0484158 0.998827i 0.515417π-0.515417\pi
−0.0484158 + 0.998827i 0.515417π0.515417\pi
728728 8.38460 0.310754
729729 0 0
730730 −1.21544 −0.0449855
731731 0.0149695 0.000553668 0
732732 0 0
733733 −8.31243 −0.307027 −0.153513 0.988147i 0.549059π-0.549059\pi
−0.153513 + 0.988147i 0.549059π0.549059\pi
734734 3.52900 0.130258
735735 0 0
736736 −0.887981 −0.0327314
737737 −35.7943 −1.31850
738738 0 0
739739 4.87707 0.179406 0.0897029 0.995969i 0.471408π-0.471408\pi
0.0897029 + 0.995969i 0.471408π0.471408\pi
740740 −6.10290 −0.224347
741741 0 0
742742 9.88013 0.362711
743743 −5.87529 −0.215544 −0.107772 0.994176i 0.534372π-0.534372\pi
−0.107772 + 0.994176i 0.534372π0.534372\pi
744744 0 0
745745 −2.82877 −0.103638
746746 −5.72410 −0.209574
747747 0 0
748748 0.520424 0.0190286
749749 −46.8551 −1.71205
750750 0 0
751751 −11.0687 −0.403904 −0.201952 0.979395i 0.564728π-0.564728\pi
−0.201952 + 0.979395i 0.564728π0.564728\pi
752752 32.4851 1.18461
753753 0 0
754754 0 0
755755 10.5499 0.383950
756756 0 0
757757 −15.9704 −0.580455 −0.290227 0.956958i 0.593731π-0.593731\pi
−0.290227 + 0.956958i 0.593731π0.593731\pi
758758 4.39684 0.159701
759759 0 0
760760 −2.93218 −0.106361
761761 35.0081 1.26904 0.634522 0.772905i 0.281197π-0.281197\pi
0.634522 + 0.772905i 0.281197π0.281197\pi
762762 0 0
763763 −12.4227 −0.449733
764764 −22.4595 −0.812555
765765 0 0
766766 −6.65738 −0.240541
767767 −3.92401 −0.141688
768768 0 0
769769 −13.6731 −0.493066 −0.246533 0.969134i 0.579291π-0.579291\pi
−0.246533 + 0.969134i 0.579291π0.579291\pi
770770 −4.44134 −0.160055
771771 0 0
772772 −2.61837 −0.0942374
773773 −27.7310 −0.997414 −0.498707 0.866771i 0.666192π-0.666192\pi
−0.498707 + 0.866771i 0.666192π0.666192\pi
774774 0 0
775775 30.5995 1.09917
776776 13.6022 0.488289
777777 0 0
778778 −1.69634 −0.0608168
779779 33.7153 1.20797
780780 0 0
781781 −65.4768 −2.34295
782782 0.00355036 0.000126961 0
783783 0 0
784784 12.3481 0.441005
785785 20.2424 0.722482
786786 0 0
787787 −42.5533 −1.51686 −0.758431 0.651754i 0.774034π-0.774034\pi
−0.758431 + 0.651754i 0.774034π0.774034\pi
788788 36.5469 1.30193
789789 0 0
790790 −2.40572 −0.0855916
791791 27.1176 0.964191
792792 0 0
793793 18.4349 0.654642
794794 −2.29634 −0.0814939
795795 0 0
796796 9.66334 0.342508
797797 4.17550 0.147904 0.0739519 0.997262i 0.476439π-0.476439\pi
0.0739519 + 0.997262i 0.476439π0.476439\pi
798798 0 0
799799 −0.410396 −0.0145187
800800 −11.3366 −0.400808
801801 0 0
802802 −7.15869 −0.252782
803803 29.8219 1.05239
804804 0 0
805805 0.996985 0.0351391
806806 4.99124 0.175809
807807 0 0
808808 2.38233 0.0838102
809809 25.7708 0.906053 0.453027 0.891497i 0.350344π-0.350344\pi
0.453027 + 0.891497i 0.350344π0.350344\pi
810810 0 0
811811 −7.66158 −0.269035 −0.134517 0.990911i 0.542948π-0.542948\pi
−0.134517 + 0.990911i 0.542948π0.542948\pi
812812 0 0
813813 0 0
814814 −4.55070 −0.159502
815815 23.6648 0.828940
816816 0 0
817817 1.01921 0.0356575
818818 −3.38446 −0.118335
819819 0 0
820820 −20.3437 −0.710432
821821 7.67282 0.267783 0.133892 0.990996i 0.457253π-0.457253\pi
0.133892 + 0.990996i 0.457253π0.457253\pi
822822 0 0
823823 23.9251 0.833978 0.416989 0.908912i 0.363085π-0.363085\pi
0.416989 + 0.908912i 0.363085π0.363085\pi
824824 −13.6773 −0.476470
825825 0 0
826826 1.12971 0.0393075
827827 1.24451 0.0432760 0.0216380 0.999766i 0.493112π-0.493112\pi
0.0216380 + 0.999766i 0.493112π0.493112\pi
828828 0 0
829829 1.48564 0.0515982 0.0257991 0.999667i 0.491787π-0.491787\pi
0.0257991 + 0.999667i 0.491787π0.491787\pi
830830 1.91174 0.0663574
831831 0 0
832832 17.9930 0.623794
833833 −0.155998 −0.00540502
834834 0 0
835835 −5.22060 −0.180666
836836 35.4333 1.22549
837837 0 0
838838 0.648421 0.0223993
839839 −24.3023 −0.839007 −0.419504 0.907754i 0.637796π-0.637796\pi
−0.419504 + 0.907754i 0.637796π0.637796\pi
840840 0 0
841841 0 0
842842 −1.34964 −0.0465117
843843 0 0
844844 −1.16720 −0.0401766
845845 5.47466 0.188334
846846 0 0
847847 73.5264 2.52640
848848 46.0730 1.58215
849849 0 0
850850 0.0453263 0.00155468
851851 1.02153 0.0350178
852852 0 0
853853 50.0864 1.71492 0.857462 0.514546i 0.172040π-0.172040\pi
0.857462 + 0.514546i 0.172040π0.172040\pi
854854 −5.30734 −0.181613
855855 0 0
856856 13.9180 0.475708
857857 10.1152 0.345529 0.172764 0.984963i 0.444730π-0.444730\pi
0.172764 + 0.984963i 0.444730π0.444730\pi
858858 0 0
859859 2.06499 0.0704566 0.0352283 0.999379i 0.488784π-0.488784\pi
0.0352283 + 0.999379i 0.488784π0.488784\pi
860860 −0.614986 −0.0209708
861861 0 0
862862 −4.03320 −0.137371
863863 49.7775 1.69444 0.847222 0.531239i 0.178273π-0.178273\pi
0.847222 + 0.531239i 0.178273π0.178273\pi
864864 0 0
865865 8.81110 0.299586
866866 2.49401 0.0847498
867867 0 0
868868 47.2830 1.60489
869869 59.0264 2.00233
870870 0 0
871871 16.7325 0.566959
872872 3.69010 0.124962
873873 0 0
874874 0.241728 0.00817657
875875 28.4509 0.961816
876876 0 0
877877 16.6796 0.563230 0.281615 0.959527i 0.409130π-0.409130\pi
0.281615 + 0.959527i 0.409130π0.409130\pi
878878 1.03483 0.0349237
879879 0 0
880880 −20.7108 −0.698162
881881 −24.6163 −0.829344 −0.414672 0.909971i 0.636104π-0.636104\pi
−0.414672 + 0.909971i 0.636104π0.636104\pi
882882 0 0
883883 −20.2292 −0.680767 −0.340384 0.940287i 0.610557π-0.610557\pi
−0.340384 + 0.940287i 0.610557π0.610557\pi
884884 −0.243279 −0.00818236
885885 0 0
886886 6.53907 0.219684
887887 −20.4379 −0.686238 −0.343119 0.939292i 0.611483π-0.611483\pi
−0.343119 + 0.939292i 0.611483π0.611483\pi
888888 0 0
889889 −7.06960 −0.237107
890890 −0.763036 −0.0255770
891891 0 0
892892 11.8620 0.397169
893893 −27.9420 −0.935042
894894 0 0
895895 −23.2518 −0.777222
896896 −23.2300 −0.776059
897897 0 0
898898 −6.79013 −0.226590
899899 0 0
900900 0 0
901901 −0.582056 −0.0193911
902902 −15.1695 −0.505089
903903 0 0
904904 −8.05512 −0.267909
905905 17.6909 0.588065
906906 0 0
907907 34.5604 1.14756 0.573780 0.819010i 0.305477π-0.305477\pi
0.573780 + 0.819010i 0.305477π0.305477\pi
908908 −18.2562 −0.605853
909909 0 0
910910 2.07616 0.0688241
911911 −15.3718 −0.509290 −0.254645 0.967035i 0.581959π-0.581959\pi
−0.254645 + 0.967035i 0.581959π0.581959\pi
912912 0 0
913913 −46.9062 −1.55237
914914 −6.45748 −0.213594
915915 0 0
916916 −0.761402 −0.0251574
917917 59.0238 1.94914
918918 0 0
919919 12.6545 0.417434 0.208717 0.977976i 0.433071π-0.433071\pi
0.208717 + 0.977976i 0.433071π0.433071\pi
920920 −0.296148 −0.00976372
921921 0 0
922922 −3.92125 −0.129139
923923 30.6080 1.00747
924924 0 0
925925 13.0416 0.428805
926926 3.39553 0.111584
927927 0 0
928928 0 0
929929 41.8885 1.37432 0.687158 0.726508i 0.258858π-0.258858\pi
0.687158 + 0.726508i 0.258858π0.258858\pi
930930 0 0
931931 −10.6212 −0.348096
932932 44.5239 1.45843
933933 0 0
934934 −4.24053 −0.138754
935935 0.261647 0.00855677
936936 0 0
937937 −25.5748 −0.835493 −0.417746 0.908564i 0.637180π-0.637180\pi
−0.417746 + 0.908564i 0.637180π0.637180\pi
938938 −4.81723 −0.157288
939939 0 0
940940 16.8601 0.549915
941941 −3.86852 −0.126110 −0.0630551 0.998010i 0.520084π-0.520084\pi
−0.0630551 + 0.998010i 0.520084π0.520084\pi
942942 0 0
943943 3.40522 0.110889
944944 5.26804 0.171460
945945 0 0
946946 −0.458572 −0.0149094
947947 −9.17000 −0.297985 −0.148992 0.988838i 0.547603π-0.547603\pi
−0.148992 + 0.988838i 0.547603π0.547603\pi
948948 0 0
949949 −13.9406 −0.452532
950950 3.08606 0.100125
951951 0 0
952952 0.142207 0.00460895
953953 −11.8876 −0.385078 −0.192539 0.981289i 0.561672π-0.561672\pi
−0.192539 + 0.981289i 0.561672π0.561672\pi
954954 0 0
955955 −11.2917 −0.365389
956956 −3.22379 −0.104265
957957 0 0
958958 5.76584 0.186286
959959 1.16759 0.0377035
960960 0 0
961961 26.1492 0.843524
962962 2.12728 0.0685864
963963 0 0
964964 45.0570 1.45119
965965 −1.31641 −0.0423766
966966 0 0
967967 52.6637 1.69355 0.846775 0.531951i 0.178541π-0.178541\pi
0.846775 + 0.531951i 0.178541π0.178541\pi
968968 −21.8406 −0.701982
969969 0 0
970970 3.36811 0.108144
971971 30.6487 0.983565 0.491783 0.870718i 0.336345π-0.336345\pi
0.491783 + 0.870718i 0.336345π0.336345\pi
972972 0 0
973973 30.2847 0.970883
974974 6.97695 0.223556
975975 0 0
976976 −24.7491 −0.792201
977977 32.0309 1.02476 0.512379 0.858759i 0.328764π-0.328764\pi
0.512379 + 0.858759i 0.328764π0.328764\pi
978978 0 0
979979 18.7218 0.598350
980980 6.40880 0.204722
981981 0 0
982982 −2.92338 −0.0932888
983983 −8.72525 −0.278292 −0.139146 0.990272i 0.544436π-0.544436\pi
−0.139146 + 0.990272i 0.544436π0.544436\pi
984984 0 0
985985 18.3742 0.585451
986986 0 0
987987 0 0
988988 −16.5638 −0.526964
989989 0.102939 0.00327328
990990 0 0
991991 −6.42765 −0.204181 −0.102090 0.994775i 0.532553π-0.532553\pi
−0.102090 + 0.994775i 0.532553π0.532553\pi
992992 −21.1728 −0.672236
993993 0 0
994994 −8.81193 −0.279497
995995 4.85831 0.154019
996996 0 0
997997 −59.4725 −1.88351 −0.941757 0.336294i 0.890826π-0.890826\pi
−0.941757 + 0.336294i 0.890826π0.890826\pi
998998 4.47915 0.141785
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bt.1.5 12
3.2 odd 2 2523.2.a.s.1.8 12
29.19 odd 28 261.2.o.b.100.3 24
29.26 odd 28 261.2.o.b.154.3 24
29.28 even 2 7569.2.a.bn.1.8 12
87.26 even 28 87.2.i.a.67.2 yes 24
87.77 even 28 87.2.i.a.13.2 24
87.86 odd 2 2523.2.a.v.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.13.2 24 87.77 even 28
87.2.i.a.67.2 yes 24 87.26 even 28
261.2.o.b.100.3 24 29.19 odd 28
261.2.o.b.154.3 24 29.26 odd 28
2523.2.a.s.1.8 12 3.2 odd 2
2523.2.a.v.1.5 12 87.86 odd 2
7569.2.a.bn.1.8 12 29.28 even 2
7569.2.a.bt.1.5 12 1.1 even 1 trivial