Properties

Label 7569.2.a.bt.1.5
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 2 x^{10} + 38 x^{9} - 30 x^{8} - 90 x^{7} + 55 x^{6} + 90 x^{5} - 30 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.757124\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.242876 q^{2} -1.94101 q^{4} -0.975857 q^{5} +3.22234 q^{7} -0.957176 q^{8} -0.237012 q^{10} +5.81530 q^{11} -2.71844 q^{13} +0.782628 q^{14} +3.64955 q^{16} -0.0461060 q^{17} -3.13915 q^{19} +1.89415 q^{20} +1.41240 q^{22} -0.317052 q^{23} -4.04770 q^{25} -0.660243 q^{26} -6.25460 q^{28} -7.55971 q^{31} +2.80074 q^{32} -0.0111980 q^{34} -3.14454 q^{35} -3.22197 q^{37} -0.762423 q^{38} +0.934067 q^{40} -10.7403 q^{41} -0.324676 q^{43} -11.2876 q^{44} -0.0770043 q^{46} +8.90113 q^{47} +3.38347 q^{49} -0.983089 q^{50} +5.27652 q^{52} +12.6243 q^{53} -5.67490 q^{55} -3.08435 q^{56} +1.44348 q^{59} -6.78143 q^{61} -1.83607 q^{62} -6.61886 q^{64} +2.65281 q^{65} -6.15519 q^{67} +0.0894923 q^{68} -0.763733 q^{70} -11.2594 q^{71} +5.12818 q^{73} -0.782540 q^{74} +6.09312 q^{76} +18.7389 q^{77} +10.1502 q^{79} -3.56144 q^{80} -2.60855 q^{82} -8.06599 q^{83} +0.0449929 q^{85} -0.0788560 q^{86} -5.56627 q^{88} +3.21940 q^{89} -8.75973 q^{91} +0.615402 q^{92} +2.16187 q^{94} +3.06336 q^{95} -14.2107 q^{97} +0.821763 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 8 q^{4} - 2 q^{5} - 10 q^{7} - 20 q^{10} + 14 q^{11} - 16 q^{13} - 4 q^{16} + 22 q^{17} - 16 q^{19} - 4 q^{20} + 12 q^{22} - 2 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{28} - 4 q^{31} + 16 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.242876 0.171739 0.0858695 0.996306i \(-0.472633\pi\)
0.0858695 + 0.996306i \(0.472633\pi\)
\(3\) 0 0
\(4\) −1.94101 −0.970506
\(5\) −0.975857 −0.436417 −0.218208 0.975902i \(-0.570021\pi\)
−0.218208 + 0.975902i \(0.570021\pi\)
\(6\) 0 0
\(7\) 3.22234 1.21793 0.608965 0.793197i \(-0.291585\pi\)
0.608965 + 0.793197i \(0.291585\pi\)
\(8\) −0.957176 −0.338413
\(9\) 0 0
\(10\) −0.237012 −0.0749498
\(11\) 5.81530 1.75338 0.876689 0.481057i \(-0.159747\pi\)
0.876689 + 0.481057i \(0.159747\pi\)
\(12\) 0 0
\(13\) −2.71844 −0.753959 −0.376979 0.926222i \(-0.623037\pi\)
−0.376979 + 0.926222i \(0.623037\pi\)
\(14\) 0.782628 0.209166
\(15\) 0 0
\(16\) 3.64955 0.912387
\(17\) −0.0461060 −0.0111823 −0.00559117 0.999984i \(-0.501780\pi\)
−0.00559117 + 0.999984i \(0.501780\pi\)
\(18\) 0 0
\(19\) −3.13915 −0.720170 −0.360085 0.932920i \(-0.617252\pi\)
−0.360085 + 0.932920i \(0.617252\pi\)
\(20\) 1.89415 0.423545
\(21\) 0 0
\(22\) 1.41240 0.301124
\(23\) −0.317052 −0.0661100 −0.0330550 0.999454i \(-0.510524\pi\)
−0.0330550 + 0.999454i \(0.510524\pi\)
\(24\) 0 0
\(25\) −4.04770 −0.809540
\(26\) −0.660243 −0.129484
\(27\) 0 0
\(28\) −6.25460 −1.18201
\(29\) 0 0
\(30\) 0 0
\(31\) −7.55971 −1.35776 −0.678882 0.734247i \(-0.737535\pi\)
−0.678882 + 0.734247i \(0.737535\pi\)
\(32\) 2.80074 0.495105
\(33\) 0 0
\(34\) −0.0111980 −0.00192045
\(35\) −3.14454 −0.531525
\(36\) 0 0
\(37\) −3.22197 −0.529689 −0.264845 0.964291i \(-0.585321\pi\)
−0.264845 + 0.964291i \(0.585321\pi\)
\(38\) −0.762423 −0.123681
\(39\) 0 0
\(40\) 0.934067 0.147689
\(41\) −10.7403 −1.67735 −0.838673 0.544635i \(-0.816668\pi\)
−0.838673 + 0.544635i \(0.816668\pi\)
\(42\) 0 0
\(43\) −0.324676 −0.0495127 −0.0247563 0.999694i \(-0.507881\pi\)
−0.0247563 + 0.999694i \(0.507881\pi\)
\(44\) −11.2876 −1.70166
\(45\) 0 0
\(46\) −0.0770043 −0.0113537
\(47\) 8.90113 1.29836 0.649182 0.760633i \(-0.275111\pi\)
0.649182 + 0.760633i \(0.275111\pi\)
\(48\) 0 0
\(49\) 3.38347 0.483353
\(50\) −0.983089 −0.139030
\(51\) 0 0
\(52\) 5.27652 0.731721
\(53\) 12.6243 1.73408 0.867041 0.498237i \(-0.166019\pi\)
0.867041 + 0.498237i \(0.166019\pi\)
\(54\) 0 0
\(55\) −5.67490 −0.765204
\(56\) −3.08435 −0.412163
\(57\) 0 0
\(58\) 0 0
\(59\) 1.44348 0.187925 0.0939624 0.995576i \(-0.470047\pi\)
0.0939624 + 0.995576i \(0.470047\pi\)
\(60\) 0 0
\(61\) −6.78143 −0.868273 −0.434136 0.900847i \(-0.642946\pi\)
−0.434136 + 0.900847i \(0.642946\pi\)
\(62\) −1.83607 −0.233181
\(63\) 0 0
\(64\) −6.61886 −0.827358
\(65\) 2.65281 0.329040
\(66\) 0 0
\(67\) −6.15519 −0.751976 −0.375988 0.926624i \(-0.622697\pi\)
−0.375988 + 0.926624i \(0.622697\pi\)
\(68\) 0.0894923 0.0108525
\(69\) 0 0
\(70\) −0.763733 −0.0912836
\(71\) −11.2594 −1.33625 −0.668123 0.744051i \(-0.732902\pi\)
−0.668123 + 0.744051i \(0.732902\pi\)
\(72\) 0 0
\(73\) 5.12818 0.600208 0.300104 0.953906i \(-0.402979\pi\)
0.300104 + 0.953906i \(0.402979\pi\)
\(74\) −0.782540 −0.0909684
\(75\) 0 0
\(76\) 6.09312 0.698929
\(77\) 18.7389 2.13549
\(78\) 0 0
\(79\) 10.1502 1.14199 0.570993 0.820955i \(-0.306558\pi\)
0.570993 + 0.820955i \(0.306558\pi\)
\(80\) −3.56144 −0.398181
\(81\) 0 0
\(82\) −2.60855 −0.288066
\(83\) −8.06599 −0.885358 −0.442679 0.896680i \(-0.645972\pi\)
−0.442679 + 0.896680i \(0.645972\pi\)
\(84\) 0 0
\(85\) 0.0449929 0.00488016
\(86\) −0.0788560 −0.00850327
\(87\) 0 0
\(88\) −5.56627 −0.593366
\(89\) 3.21940 0.341255 0.170628 0.985336i \(-0.445420\pi\)
0.170628 + 0.985336i \(0.445420\pi\)
\(90\) 0 0
\(91\) −8.75973 −0.918269
\(92\) 0.615402 0.0641601
\(93\) 0 0
\(94\) 2.16187 0.222980
\(95\) 3.06336 0.314294
\(96\) 0 0
\(97\) −14.2107 −1.44288 −0.721440 0.692477i \(-0.756519\pi\)
−0.721440 + 0.692477i \(0.756519\pi\)
\(98\) 0.821763 0.0830106
\(99\) 0 0
\(100\) 7.85664 0.785664
\(101\) −2.48892 −0.247657 −0.123828 0.992304i \(-0.539517\pi\)
−0.123828 + 0.992304i \(0.539517\pi\)
\(102\) 0 0
\(103\) 14.2892 1.40795 0.703977 0.710223i \(-0.251406\pi\)
0.703977 + 0.710223i \(0.251406\pi\)
\(104\) 2.60202 0.255149
\(105\) 0 0
\(106\) 3.06614 0.297810
\(107\) −14.5407 −1.40570 −0.702851 0.711337i \(-0.748090\pi\)
−0.702851 + 0.711337i \(0.748090\pi\)
\(108\) 0 0
\(109\) −3.85519 −0.369260 −0.184630 0.982808i \(-0.559109\pi\)
−0.184630 + 0.982808i \(0.559109\pi\)
\(110\) −1.37830 −0.131415
\(111\) 0 0
\(112\) 11.7601 1.11122
\(113\) 8.41550 0.791664 0.395832 0.918323i \(-0.370456\pi\)
0.395832 + 0.918323i \(0.370456\pi\)
\(114\) 0 0
\(115\) 0.309398 0.0288515
\(116\) 0 0
\(117\) 0 0
\(118\) 0.350586 0.0322740
\(119\) −0.148569 −0.0136193
\(120\) 0 0
\(121\) 22.8177 2.07434
\(122\) −1.64704 −0.149116
\(123\) 0 0
\(124\) 14.6735 1.31772
\(125\) 8.82927 0.789714
\(126\) 0 0
\(127\) −2.19393 −0.194680 −0.0973400 0.995251i \(-0.531033\pi\)
−0.0973400 + 0.995251i \(0.531033\pi\)
\(128\) −7.20904 −0.637195
\(129\) 0 0
\(130\) 0.644303 0.0565091
\(131\) 18.3171 1.60037 0.800184 0.599754i \(-0.204735\pi\)
0.800184 + 0.599754i \(0.204735\pi\)
\(132\) 0 0
\(133\) −10.1154 −0.877116
\(134\) −1.49495 −0.129144
\(135\) 0 0
\(136\) 0.0441316 0.00378425
\(137\) 0.362343 0.0309571 0.0154785 0.999880i \(-0.495073\pi\)
0.0154785 + 0.999880i \(0.495073\pi\)
\(138\) 0 0
\(139\) 9.39836 0.797158 0.398579 0.917134i \(-0.369503\pi\)
0.398579 + 0.917134i \(0.369503\pi\)
\(140\) 6.10359 0.515848
\(141\) 0 0
\(142\) −2.73464 −0.229486
\(143\) −15.8085 −1.32198
\(144\) 0 0
\(145\) 0 0
\(146\) 1.24551 0.103079
\(147\) 0 0
\(148\) 6.25389 0.514067
\(149\) 2.89876 0.237476 0.118738 0.992926i \(-0.462115\pi\)
0.118738 + 0.992926i \(0.462115\pi\)
\(150\) 0 0
\(151\) −10.8109 −0.879780 −0.439890 0.898052i \(-0.644982\pi\)
−0.439890 + 0.898052i \(0.644982\pi\)
\(152\) 3.00472 0.243715
\(153\) 0 0
\(154\) 4.55122 0.366747
\(155\) 7.37720 0.592551
\(156\) 0 0
\(157\) −20.7432 −1.65549 −0.827743 0.561107i \(-0.810375\pi\)
−0.827743 + 0.561107i \(0.810375\pi\)
\(158\) 2.46523 0.196124
\(159\) 0 0
\(160\) −2.73312 −0.216072
\(161\) −1.02165 −0.0805173
\(162\) 0 0
\(163\) −24.2502 −1.89942 −0.949712 0.313125i \(-0.898624\pi\)
−0.949712 + 0.313125i \(0.898624\pi\)
\(164\) 20.8470 1.62787
\(165\) 0 0
\(166\) −1.95903 −0.152051
\(167\) 5.34975 0.413976 0.206988 0.978343i \(-0.433634\pi\)
0.206988 + 0.978343i \(0.433634\pi\)
\(168\) 0 0
\(169\) −5.61010 −0.431546
\(170\) 0.0109277 0.000838115 0
\(171\) 0 0
\(172\) 0.630201 0.0480524
\(173\) −9.02908 −0.686469 −0.343234 0.939250i \(-0.611522\pi\)
−0.343234 + 0.939250i \(0.611522\pi\)
\(174\) 0 0
\(175\) −13.0431 −0.985963
\(176\) 21.2232 1.59976
\(177\) 0 0
\(178\) 0.781914 0.0586069
\(179\) 23.8270 1.78092 0.890459 0.455064i \(-0.150384\pi\)
0.890459 + 0.455064i \(0.150384\pi\)
\(180\) 0 0
\(181\) −18.1286 −1.34749 −0.673743 0.738966i \(-0.735314\pi\)
−0.673743 + 0.738966i \(0.735314\pi\)
\(182\) −2.12753 −0.157703
\(183\) 0 0
\(184\) 0.303475 0.0223725
\(185\) 3.14419 0.231165
\(186\) 0 0
\(187\) −0.268120 −0.0196069
\(188\) −17.2772 −1.26007
\(189\) 0 0
\(190\) 0.744016 0.0539766
\(191\) 11.5710 0.837249 0.418625 0.908159i \(-0.362512\pi\)
0.418625 + 0.908159i \(0.362512\pi\)
\(192\) 0 0
\(193\) 1.34897 0.0971013 0.0485507 0.998821i \(-0.484540\pi\)
0.0485507 + 0.998821i \(0.484540\pi\)
\(194\) −3.45144 −0.247799
\(195\) 0 0
\(196\) −6.56736 −0.469097
\(197\) −18.8288 −1.34150 −0.670748 0.741686i \(-0.734027\pi\)
−0.670748 + 0.741686i \(0.734027\pi\)
\(198\) 0 0
\(199\) −4.97851 −0.352917 −0.176459 0.984308i \(-0.556464\pi\)
−0.176459 + 0.984308i \(0.556464\pi\)
\(200\) 3.87436 0.273959
\(201\) 0 0
\(202\) −0.604498 −0.0425324
\(203\) 0 0
\(204\) 0 0
\(205\) 10.4810 0.732022
\(206\) 3.47049 0.241801
\(207\) 0 0
\(208\) −9.92107 −0.687902
\(209\) −18.2551 −1.26273
\(210\) 0 0
\(211\) 0.601335 0.0413976 0.0206988 0.999786i \(-0.493411\pi\)
0.0206988 + 0.999786i \(0.493411\pi\)
\(212\) −24.5039 −1.68294
\(213\) 0 0
\(214\) −3.53158 −0.241414
\(215\) 0.316838 0.0216082
\(216\) 0 0
\(217\) −24.3600 −1.65366
\(218\) −0.936332 −0.0634164
\(219\) 0 0
\(220\) 11.0151 0.742635
\(221\) 0.125336 0.00843103
\(222\) 0 0
\(223\) −6.11125 −0.409240 −0.204620 0.978842i \(-0.565596\pi\)
−0.204620 + 0.978842i \(0.565596\pi\)
\(224\) 9.02493 0.603004
\(225\) 0 0
\(226\) 2.04392 0.135960
\(227\) 9.40550 0.624265 0.312132 0.950039i \(-0.398957\pi\)
0.312132 + 0.950039i \(0.398957\pi\)
\(228\) 0 0
\(229\) 0.392271 0.0259220 0.0129610 0.999916i \(-0.495874\pi\)
0.0129610 + 0.999916i \(0.495874\pi\)
\(230\) 0.0751452 0.00495493
\(231\) 0 0
\(232\) 0 0
\(233\) −22.9385 −1.50275 −0.751376 0.659874i \(-0.770609\pi\)
−0.751376 + 0.659874i \(0.770609\pi\)
\(234\) 0 0
\(235\) −8.68623 −0.566627
\(236\) −2.80181 −0.182382
\(237\) 0 0
\(238\) −0.0360838 −0.00233897
\(239\) 1.66088 0.107434 0.0537168 0.998556i \(-0.482893\pi\)
0.0537168 + 0.998556i \(0.482893\pi\)
\(240\) 0 0
\(241\) −23.2131 −1.49529 −0.747645 0.664099i \(-0.768815\pi\)
−0.747645 + 0.664099i \(0.768815\pi\)
\(242\) 5.54187 0.356245
\(243\) 0 0
\(244\) 13.1628 0.842664
\(245\) −3.30178 −0.210943
\(246\) 0 0
\(247\) 8.53358 0.542978
\(248\) 7.23598 0.459485
\(249\) 0 0
\(250\) 2.14441 0.135625
\(251\) −5.21093 −0.328911 −0.164455 0.986385i \(-0.552587\pi\)
−0.164455 + 0.986385i \(0.552587\pi\)
\(252\) 0 0
\(253\) −1.84375 −0.115916
\(254\) −0.532853 −0.0334342
\(255\) 0 0
\(256\) 11.4868 0.717927
\(257\) −5.19998 −0.324366 −0.162183 0.986761i \(-0.551853\pi\)
−0.162183 + 0.986761i \(0.551853\pi\)
\(258\) 0 0
\(259\) −10.3823 −0.645124
\(260\) −5.14913 −0.319335
\(261\) 0 0
\(262\) 4.44877 0.274846
\(263\) 8.96684 0.552919 0.276459 0.961026i \(-0.410839\pi\)
0.276459 + 0.961026i \(0.410839\pi\)
\(264\) 0 0
\(265\) −12.3195 −0.756782
\(266\) −2.45678 −0.150635
\(267\) 0 0
\(268\) 11.9473 0.729797
\(269\) −4.42050 −0.269523 −0.134761 0.990878i \(-0.543027\pi\)
−0.134761 + 0.990878i \(0.543027\pi\)
\(270\) 0 0
\(271\) 26.6551 1.61918 0.809592 0.586993i \(-0.199688\pi\)
0.809592 + 0.586993i \(0.199688\pi\)
\(272\) −0.168266 −0.0102026
\(273\) 0 0
\(274\) 0.0880043 0.00531654
\(275\) −23.5386 −1.41943
\(276\) 0 0
\(277\) −2.55670 −0.153617 −0.0768087 0.997046i \(-0.524473\pi\)
−0.0768087 + 0.997046i \(0.524473\pi\)
\(278\) 2.28263 0.136903
\(279\) 0 0
\(280\) 3.00988 0.179875
\(281\) −21.4241 −1.27805 −0.639026 0.769185i \(-0.720663\pi\)
−0.639026 + 0.769185i \(0.720663\pi\)
\(282\) 0 0
\(283\) 16.7062 0.993079 0.496539 0.868014i \(-0.334604\pi\)
0.496539 + 0.868014i \(0.334604\pi\)
\(284\) 21.8546 1.29683
\(285\) 0 0
\(286\) −3.83951 −0.227035
\(287\) −34.6088 −2.04289
\(288\) 0 0
\(289\) −16.9979 −0.999875
\(290\) 0 0
\(291\) 0 0
\(292\) −9.95386 −0.582505
\(293\) −24.0034 −1.40229 −0.701146 0.713018i \(-0.747328\pi\)
−0.701146 + 0.713018i \(0.747328\pi\)
\(294\) 0 0
\(295\) −1.40863 −0.0820135
\(296\) 3.08400 0.179254
\(297\) 0 0
\(298\) 0.704038 0.0407838
\(299\) 0.861887 0.0498442
\(300\) 0 0
\(301\) −1.04622 −0.0603030
\(302\) −2.62571 −0.151093
\(303\) 0 0
\(304\) −11.4565 −0.657073
\(305\) 6.61770 0.378929
\(306\) 0 0
\(307\) 9.02358 0.515003 0.257502 0.966278i \(-0.417101\pi\)
0.257502 + 0.966278i \(0.417101\pi\)
\(308\) −36.3724 −2.07251
\(309\) 0 0
\(310\) 1.79174 0.101764
\(311\) −26.6145 −1.50917 −0.754586 0.656201i \(-0.772162\pi\)
−0.754586 + 0.656201i \(0.772162\pi\)
\(312\) 0 0
\(313\) −13.2311 −0.747864 −0.373932 0.927456i \(-0.621991\pi\)
−0.373932 + 0.927456i \(0.621991\pi\)
\(314\) −5.03802 −0.284312
\(315\) 0 0
\(316\) −19.7016 −1.10830
\(317\) 5.57496 0.313121 0.156561 0.987668i \(-0.449959\pi\)
0.156561 + 0.987668i \(0.449959\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 6.45907 0.361073
\(321\) 0 0
\(322\) −0.248134 −0.0138280
\(323\) 0.144734 0.00805319
\(324\) 0 0
\(325\) 11.0034 0.610360
\(326\) −5.88979 −0.326205
\(327\) 0 0
\(328\) 10.2803 0.567636
\(329\) 28.6825 1.58132
\(330\) 0 0
\(331\) 9.86617 0.542294 0.271147 0.962538i \(-0.412597\pi\)
0.271147 + 0.962538i \(0.412597\pi\)
\(332\) 15.6562 0.859245
\(333\) 0 0
\(334\) 1.29933 0.0710959
\(335\) 6.00659 0.328175
\(336\) 0 0
\(337\) 10.7438 0.585252 0.292626 0.956227i \(-0.405471\pi\)
0.292626 + 0.956227i \(0.405471\pi\)
\(338\) −1.36256 −0.0741133
\(339\) 0 0
\(340\) −0.0873317 −0.00473623
\(341\) −43.9620 −2.38067
\(342\) 0 0
\(343\) −11.6537 −0.629240
\(344\) 0.310773 0.0167557
\(345\) 0 0
\(346\) −2.19295 −0.117893
\(347\) −29.6747 −1.59302 −0.796510 0.604625i \(-0.793323\pi\)
−0.796510 + 0.604625i \(0.793323\pi\)
\(348\) 0 0
\(349\) 15.6483 0.837632 0.418816 0.908071i \(-0.362445\pi\)
0.418816 + 0.908071i \(0.362445\pi\)
\(350\) −3.16785 −0.169328
\(351\) 0 0
\(352\) 16.2871 0.868107
\(353\) −4.26989 −0.227264 −0.113632 0.993523i \(-0.536248\pi\)
−0.113632 + 0.993523i \(0.536248\pi\)
\(354\) 0 0
\(355\) 10.9876 0.583160
\(356\) −6.24889 −0.331190
\(357\) 0 0
\(358\) 5.78701 0.305853
\(359\) 25.9811 1.37123 0.685615 0.727964i \(-0.259533\pi\)
0.685615 + 0.727964i \(0.259533\pi\)
\(360\) 0 0
\(361\) −9.14575 −0.481356
\(362\) −4.40299 −0.231416
\(363\) 0 0
\(364\) 17.0027 0.891185
\(365\) −5.00437 −0.261941
\(366\) 0 0
\(367\) 14.5300 0.758462 0.379231 0.925302i \(-0.376189\pi\)
0.379231 + 0.925302i \(0.376189\pi\)
\(368\) −1.15710 −0.0603179
\(369\) 0 0
\(370\) 0.763647 0.0397001
\(371\) 40.6798 2.11199
\(372\) 0 0
\(373\) −23.5680 −1.22031 −0.610153 0.792284i \(-0.708892\pi\)
−0.610153 + 0.792284i \(0.708892\pi\)
\(374\) −0.0651199 −0.00336727
\(375\) 0 0
\(376\) −8.51995 −0.439383
\(377\) 0 0
\(378\) 0 0
\(379\) 18.1033 0.929902 0.464951 0.885336i \(-0.346072\pi\)
0.464951 + 0.885336i \(0.346072\pi\)
\(380\) −5.94602 −0.305024
\(381\) 0 0
\(382\) 2.81032 0.143788
\(383\) −27.4106 −1.40062 −0.700309 0.713840i \(-0.746954\pi\)
−0.700309 + 0.713840i \(0.746954\pi\)
\(384\) 0 0
\(385\) −18.2865 −0.931964
\(386\) 0.327633 0.0166761
\(387\) 0 0
\(388\) 27.5832 1.40032
\(389\) −6.98440 −0.354123 −0.177062 0.984200i \(-0.556659\pi\)
−0.177062 + 0.984200i \(0.556659\pi\)
\(390\) 0 0
\(391\) 0.0146180 0.000739265 0
\(392\) −3.23858 −0.163573
\(393\) 0 0
\(394\) −4.57305 −0.230387
\(395\) −9.90514 −0.498381
\(396\) 0 0
\(397\) −9.45477 −0.474522 −0.237261 0.971446i \(-0.576250\pi\)
−0.237261 + 0.971446i \(0.576250\pi\)
\(398\) −1.20916 −0.0606096
\(399\) 0 0
\(400\) −14.7723 −0.738614
\(401\) −29.4747 −1.47190 −0.735948 0.677038i \(-0.763263\pi\)
−0.735948 + 0.677038i \(0.763263\pi\)
\(402\) 0 0
\(403\) 20.5506 1.02370
\(404\) 4.83102 0.240352
\(405\) 0 0
\(406\) 0 0
\(407\) −18.7367 −0.928746
\(408\) 0 0
\(409\) −13.9350 −0.689039 −0.344520 0.938779i \(-0.611958\pi\)
−0.344520 + 0.938779i \(0.611958\pi\)
\(410\) 2.54557 0.125717
\(411\) 0 0
\(412\) −27.7354 −1.36643
\(413\) 4.65138 0.228879
\(414\) 0 0
\(415\) 7.87126 0.386385
\(416\) −7.61363 −0.373289
\(417\) 0 0
\(418\) −4.43372 −0.216860
\(419\) 2.66976 0.130426 0.0652132 0.997871i \(-0.479227\pi\)
0.0652132 + 0.997871i \(0.479227\pi\)
\(420\) 0 0
\(421\) −5.55692 −0.270828 −0.135414 0.990789i \(-0.543236\pi\)
−0.135414 + 0.990789i \(0.543236\pi\)
\(422\) 0.146050 0.00710959
\(423\) 0 0
\(424\) −12.0837 −0.586835
\(425\) 0.186623 0.00905256
\(426\) 0 0
\(427\) −21.8521 −1.05750
\(428\) 28.2237 1.36424
\(429\) 0 0
\(430\) 0.0769523 0.00371097
\(431\) −16.6060 −0.799883 −0.399942 0.916541i \(-0.630970\pi\)
−0.399942 + 0.916541i \(0.630970\pi\)
\(432\) 0 0
\(433\) 10.2686 0.493480 0.246740 0.969082i \(-0.420641\pi\)
0.246740 + 0.969082i \(0.420641\pi\)
\(434\) −5.91644 −0.283998
\(435\) 0 0
\(436\) 7.48297 0.358369
\(437\) 0.995274 0.0476104
\(438\) 0 0
\(439\) 4.26072 0.203353 0.101677 0.994818i \(-0.467579\pi\)
0.101677 + 0.994818i \(0.467579\pi\)
\(440\) 5.43188 0.258955
\(441\) 0 0
\(442\) 0.0304411 0.00144794
\(443\) 26.9235 1.27917 0.639587 0.768719i \(-0.279105\pi\)
0.639587 + 0.768719i \(0.279105\pi\)
\(444\) 0 0
\(445\) −3.14167 −0.148930
\(446\) −1.48428 −0.0702825
\(447\) 0 0
\(448\) −21.3282 −1.00766
\(449\) −27.9572 −1.31938 −0.659691 0.751537i \(-0.729313\pi\)
−0.659691 + 0.751537i \(0.729313\pi\)
\(450\) 0 0
\(451\) −62.4578 −2.94102
\(452\) −16.3346 −0.768315
\(453\) 0 0
\(454\) 2.28437 0.107211
\(455\) 8.54824 0.400748
\(456\) 0 0
\(457\) −26.5876 −1.24371 −0.621857 0.783131i \(-0.713622\pi\)
−0.621857 + 0.783131i \(0.713622\pi\)
\(458\) 0.0952730 0.00445182
\(459\) 0 0
\(460\) −0.600545 −0.0280005
\(461\) −16.1451 −0.751951 −0.375975 0.926630i \(-0.622692\pi\)
−0.375975 + 0.926630i \(0.622692\pi\)
\(462\) 0 0
\(463\) 13.9805 0.649729 0.324865 0.945761i \(-0.394681\pi\)
0.324865 + 0.945761i \(0.394681\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −5.57121 −0.258081
\(467\) −17.4597 −0.807937 −0.403968 0.914773i \(-0.632369\pi\)
−0.403968 + 0.914773i \(0.632369\pi\)
\(468\) 0 0
\(469\) −19.8341 −0.915854
\(470\) −2.10968 −0.0973121
\(471\) 0 0
\(472\) −1.38166 −0.0635962
\(473\) −1.88809 −0.0868145
\(474\) 0 0
\(475\) 12.7063 0.583007
\(476\) 0.288374 0.0132176
\(477\) 0 0
\(478\) 0.403388 0.0184505
\(479\) 23.7399 1.08470 0.542352 0.840152i \(-0.317534\pi\)
0.542352 + 0.840152i \(0.317534\pi\)
\(480\) 0 0
\(481\) 8.75874 0.399364
\(482\) −5.63791 −0.256800
\(483\) 0 0
\(484\) −44.2894 −2.01316
\(485\) 13.8676 0.629697
\(486\) 0 0
\(487\) 28.7264 1.30172 0.650859 0.759199i \(-0.274409\pi\)
0.650859 + 0.759199i \(0.274409\pi\)
\(488\) 6.49102 0.293835
\(489\) 0 0
\(490\) −0.801923 −0.0362272
\(491\) −12.0365 −0.543201 −0.271600 0.962410i \(-0.587553\pi\)
−0.271600 + 0.962410i \(0.587553\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 2.07260 0.0932506
\(495\) 0 0
\(496\) −27.5895 −1.23881
\(497\) −36.2816 −1.62745
\(498\) 0 0
\(499\) 18.4422 0.825584 0.412792 0.910825i \(-0.364554\pi\)
0.412792 + 0.910825i \(0.364554\pi\)
\(500\) −17.1377 −0.766422
\(501\) 0 0
\(502\) −1.26561 −0.0564868
\(503\) −26.7470 −1.19259 −0.596294 0.802766i \(-0.703361\pi\)
−0.596294 + 0.802766i \(0.703361\pi\)
\(504\) 0 0
\(505\) 2.42883 0.108082
\(506\) −0.447803 −0.0199073
\(507\) 0 0
\(508\) 4.25845 0.188938
\(509\) 34.9643 1.54976 0.774882 0.632106i \(-0.217809\pi\)
0.774882 + 0.632106i \(0.217809\pi\)
\(510\) 0 0
\(511\) 16.5247 0.731011
\(512\) 17.2080 0.760491
\(513\) 0 0
\(514\) −1.26295 −0.0557062
\(515\) −13.9442 −0.614455
\(516\) 0 0
\(517\) 51.7627 2.27652
\(518\) −2.52161 −0.110793
\(519\) 0 0
\(520\) −2.53920 −0.111351
\(521\) −19.6126 −0.859243 −0.429621 0.903009i \(-0.641353\pi\)
−0.429621 + 0.903009i \(0.641353\pi\)
\(522\) 0 0
\(523\) −39.2690 −1.71711 −0.858556 0.512720i \(-0.828638\pi\)
−0.858556 + 0.512720i \(0.828638\pi\)
\(524\) −35.5536 −1.55317
\(525\) 0 0
\(526\) 2.17783 0.0949578
\(527\) 0.348548 0.0151830
\(528\) 0 0
\(529\) −22.8995 −0.995629
\(530\) −2.99211 −0.129969
\(531\) 0 0
\(532\) 19.6341 0.851246
\(533\) 29.1967 1.26465
\(534\) 0 0
\(535\) 14.1897 0.613472
\(536\) 5.89160 0.254478
\(537\) 0 0
\(538\) −1.07363 −0.0462876
\(539\) 19.6759 0.847501
\(540\) 0 0
\(541\) 8.46210 0.363814 0.181907 0.983316i \(-0.441773\pi\)
0.181907 + 0.983316i \(0.441773\pi\)
\(542\) 6.47389 0.278077
\(543\) 0 0
\(544\) −0.129131 −0.00553644
\(545\) 3.76212 0.161151
\(546\) 0 0
\(547\) −10.4695 −0.447646 −0.223823 0.974630i \(-0.571854\pi\)
−0.223823 + 0.974630i \(0.571854\pi\)
\(548\) −0.703312 −0.0300440
\(549\) 0 0
\(550\) −5.71696 −0.243772
\(551\) 0 0
\(552\) 0 0
\(553\) 32.7073 1.39086
\(554\) −0.620962 −0.0263821
\(555\) 0 0
\(556\) −18.2423 −0.773647
\(557\) −8.77203 −0.371683 −0.185841 0.982580i \(-0.559501\pi\)
−0.185841 + 0.982580i \(0.559501\pi\)
\(558\) 0 0
\(559\) 0.882613 0.0373305
\(560\) −11.4762 −0.484956
\(561\) 0 0
\(562\) −5.20339 −0.219492
\(563\) 11.5047 0.484867 0.242433 0.970168i \(-0.422054\pi\)
0.242433 + 0.970168i \(0.422054\pi\)
\(564\) 0 0
\(565\) −8.21233 −0.345495
\(566\) 4.05752 0.170550
\(567\) 0 0
\(568\) 10.7772 0.452203
\(569\) 29.3623 1.23093 0.615466 0.788163i \(-0.288968\pi\)
0.615466 + 0.788163i \(0.288968\pi\)
\(570\) 0 0
\(571\) 10.1743 0.425782 0.212891 0.977076i \(-0.431712\pi\)
0.212891 + 0.977076i \(0.431712\pi\)
\(572\) 30.6845 1.28298
\(573\) 0 0
\(574\) −8.40563 −0.350844
\(575\) 1.28333 0.0535187
\(576\) 0 0
\(577\) 19.9508 0.830562 0.415281 0.909693i \(-0.363683\pi\)
0.415281 + 0.909693i \(0.363683\pi\)
\(578\) −4.12837 −0.171718
\(579\) 0 0
\(580\) 0 0
\(581\) −25.9914 −1.07830
\(582\) 0 0
\(583\) 73.4141 3.04050
\(584\) −4.90857 −0.203118
\(585\) 0 0
\(586\) −5.82984 −0.240828
\(587\) −28.2713 −1.16688 −0.583441 0.812155i \(-0.698294\pi\)
−0.583441 + 0.812155i \(0.698294\pi\)
\(588\) 0 0
\(589\) 23.7310 0.977821
\(590\) −0.342122 −0.0140849
\(591\) 0 0
\(592\) −11.7588 −0.483282
\(593\) −3.94837 −0.162140 −0.0810700 0.996708i \(-0.525834\pi\)
−0.0810700 + 0.996708i \(0.525834\pi\)
\(594\) 0 0
\(595\) 0.144982 0.00594370
\(596\) −5.62652 −0.230471
\(597\) 0 0
\(598\) 0.209331 0.00856020
\(599\) 3.49455 0.142783 0.0713917 0.997448i \(-0.477256\pi\)
0.0713917 + 0.997448i \(0.477256\pi\)
\(600\) 0 0
\(601\) −1.79919 −0.0733905 −0.0366953 0.999327i \(-0.511683\pi\)
−0.0366953 + 0.999327i \(0.511683\pi\)
\(602\) −0.254101 −0.0103564
\(603\) 0 0
\(604\) 20.9841 0.853831
\(605\) −22.2668 −0.905275
\(606\) 0 0
\(607\) 1.86238 0.0755916 0.0377958 0.999285i \(-0.487966\pi\)
0.0377958 + 0.999285i \(0.487966\pi\)
\(608\) −8.79193 −0.356560
\(609\) 0 0
\(610\) 1.60728 0.0650769
\(611\) −24.1972 −0.978913
\(612\) 0 0
\(613\) 9.37869 0.378802 0.189401 0.981900i \(-0.439345\pi\)
0.189401 + 0.981900i \(0.439345\pi\)
\(614\) 2.19161 0.0884462
\(615\) 0 0
\(616\) −17.9364 −0.722678
\(617\) 10.2686 0.413398 0.206699 0.978405i \(-0.433728\pi\)
0.206699 + 0.978405i \(0.433728\pi\)
\(618\) 0 0
\(619\) −20.4500 −0.821956 −0.410978 0.911645i \(-0.634813\pi\)
−0.410978 + 0.911645i \(0.634813\pi\)
\(620\) −14.3192 −0.575074
\(621\) 0 0
\(622\) −6.46402 −0.259184
\(623\) 10.3740 0.415625
\(624\) 0 0
\(625\) 11.6224 0.464896
\(626\) −3.21351 −0.128438
\(627\) 0 0
\(628\) 40.2627 1.60666
\(629\) 0.148552 0.00592317
\(630\) 0 0
\(631\) −20.2476 −0.806045 −0.403022 0.915190i \(-0.632040\pi\)
−0.403022 + 0.915190i \(0.632040\pi\)
\(632\) −9.71552 −0.386463
\(633\) 0 0
\(634\) 1.35402 0.0537752
\(635\) 2.14097 0.0849616
\(636\) 0 0
\(637\) −9.19775 −0.364428
\(638\) 0 0
\(639\) 0 0
\(640\) 7.03499 0.278083
\(641\) −1.97133 −0.0778630 −0.0389315 0.999242i \(-0.512395\pi\)
−0.0389315 + 0.999242i \(0.512395\pi\)
\(642\) 0 0
\(643\) 36.3376 1.43301 0.716507 0.697580i \(-0.245740\pi\)
0.716507 + 0.697580i \(0.245740\pi\)
\(644\) 1.98303 0.0781425
\(645\) 0 0
\(646\) 0.0351523 0.00138305
\(647\) −1.77749 −0.0698803 −0.0349402 0.999389i \(-0.511124\pi\)
−0.0349402 + 0.999389i \(0.511124\pi\)
\(648\) 0 0
\(649\) 8.39426 0.329503
\(650\) 2.67247 0.104823
\(651\) 0 0
\(652\) 47.0699 1.84340
\(653\) 21.1086 0.826043 0.413021 0.910721i \(-0.364474\pi\)
0.413021 + 0.910721i \(0.364474\pi\)
\(654\) 0 0
\(655\) −17.8748 −0.698428
\(656\) −39.1971 −1.53039
\(657\) 0 0
\(658\) 6.96628 0.271574
\(659\) 18.7017 0.728516 0.364258 0.931298i \(-0.381323\pi\)
0.364258 + 0.931298i \(0.381323\pi\)
\(660\) 0 0
\(661\) −13.6054 −0.529189 −0.264594 0.964360i \(-0.585238\pi\)
−0.264594 + 0.964360i \(0.585238\pi\)
\(662\) 2.39625 0.0931330
\(663\) 0 0
\(664\) 7.72058 0.299617
\(665\) 9.87119 0.382788
\(666\) 0 0
\(667\) 0 0
\(668\) −10.3839 −0.401766
\(669\) 0 0
\(670\) 1.45885 0.0563605
\(671\) −39.4360 −1.52241
\(672\) 0 0
\(673\) −15.4327 −0.594888 −0.297444 0.954739i \(-0.596134\pi\)
−0.297444 + 0.954739i \(0.596134\pi\)
\(674\) 2.60941 0.100511
\(675\) 0 0
\(676\) 10.8893 0.418818
\(677\) 7.35606 0.282716 0.141358 0.989959i \(-0.454853\pi\)
0.141358 + 0.989959i \(0.454853\pi\)
\(678\) 0 0
\(679\) −45.7918 −1.75733
\(680\) −0.0430661 −0.00165151
\(681\) 0 0
\(682\) −10.6773 −0.408855
\(683\) 12.4365 0.475870 0.237935 0.971281i \(-0.423530\pi\)
0.237935 + 0.971281i \(0.423530\pi\)
\(684\) 0 0
\(685\) −0.353595 −0.0135102
\(686\) −2.83040 −0.108065
\(687\) 0 0
\(688\) −1.18492 −0.0451747
\(689\) −34.3184 −1.30743
\(690\) 0 0
\(691\) −30.7572 −1.17006 −0.585030 0.811012i \(-0.698917\pi\)
−0.585030 + 0.811012i \(0.698917\pi\)
\(692\) 17.5256 0.666222
\(693\) 0 0
\(694\) −7.20726 −0.273584
\(695\) −9.17146 −0.347893
\(696\) 0 0
\(697\) 0.495190 0.0187567
\(698\) 3.80058 0.143854
\(699\) 0 0
\(700\) 25.3167 0.956883
\(701\) −28.3853 −1.07210 −0.536050 0.844186i \(-0.680084\pi\)
−0.536050 + 0.844186i \(0.680084\pi\)
\(702\) 0 0
\(703\) 10.1143 0.381466
\(704\) −38.4907 −1.45067
\(705\) 0 0
\(706\) −1.03705 −0.0390300
\(707\) −8.02014 −0.301629
\(708\) 0 0
\(709\) 21.2643 0.798597 0.399299 0.916821i \(-0.369254\pi\)
0.399299 + 0.916821i \(0.369254\pi\)
\(710\) 2.66862 0.100151
\(711\) 0 0
\(712\) −3.08153 −0.115485
\(713\) 2.39682 0.0897618
\(714\) 0 0
\(715\) 15.4269 0.576932
\(716\) −46.2486 −1.72839
\(717\) 0 0
\(718\) 6.31018 0.235494
\(719\) 24.6441 0.919070 0.459535 0.888160i \(-0.348016\pi\)
0.459535 + 0.888160i \(0.348016\pi\)
\(720\) 0 0
\(721\) 46.0446 1.71479
\(722\) −2.22128 −0.0826676
\(723\) 0 0
\(724\) 35.1877 1.30774
\(725\) 0 0
\(726\) 0 0
\(727\) −2.61086 −0.0968316 −0.0484158 0.998827i \(-0.515417\pi\)
−0.0484158 + 0.998827i \(0.515417\pi\)
\(728\) 8.38460 0.310754
\(729\) 0 0
\(730\) −1.21544 −0.0449855
\(731\) 0.0149695 0.000553668 0
\(732\) 0 0
\(733\) −8.31243 −0.307027 −0.153513 0.988147i \(-0.549059\pi\)
−0.153513 + 0.988147i \(0.549059\pi\)
\(734\) 3.52900 0.130258
\(735\) 0 0
\(736\) −0.887981 −0.0327314
\(737\) −35.7943 −1.31850
\(738\) 0 0
\(739\) 4.87707 0.179406 0.0897029 0.995969i \(-0.471408\pi\)
0.0897029 + 0.995969i \(0.471408\pi\)
\(740\) −6.10290 −0.224347
\(741\) 0 0
\(742\) 9.88013 0.362711
\(743\) −5.87529 −0.215544 −0.107772 0.994176i \(-0.534372\pi\)
−0.107772 + 0.994176i \(0.534372\pi\)
\(744\) 0 0
\(745\) −2.82877 −0.103638
\(746\) −5.72410 −0.209574
\(747\) 0 0
\(748\) 0.520424 0.0190286
\(749\) −46.8551 −1.71205
\(750\) 0 0
\(751\) −11.0687 −0.403904 −0.201952 0.979395i \(-0.564728\pi\)
−0.201952 + 0.979395i \(0.564728\pi\)
\(752\) 32.4851 1.18461
\(753\) 0 0
\(754\) 0 0
\(755\) 10.5499 0.383950
\(756\) 0 0
\(757\) −15.9704 −0.580455 −0.290227 0.956958i \(-0.593731\pi\)
−0.290227 + 0.956958i \(0.593731\pi\)
\(758\) 4.39684 0.159701
\(759\) 0 0
\(760\) −2.93218 −0.106361
\(761\) 35.0081 1.26904 0.634522 0.772905i \(-0.281197\pi\)
0.634522 + 0.772905i \(0.281197\pi\)
\(762\) 0 0
\(763\) −12.4227 −0.449733
\(764\) −22.4595 −0.812555
\(765\) 0 0
\(766\) −6.65738 −0.240541
\(767\) −3.92401 −0.141688
\(768\) 0 0
\(769\) −13.6731 −0.493066 −0.246533 0.969134i \(-0.579291\pi\)
−0.246533 + 0.969134i \(0.579291\pi\)
\(770\) −4.44134 −0.160055
\(771\) 0 0
\(772\) −2.61837 −0.0942374
\(773\) −27.7310 −0.997414 −0.498707 0.866771i \(-0.666192\pi\)
−0.498707 + 0.866771i \(0.666192\pi\)
\(774\) 0 0
\(775\) 30.5995 1.09917
\(776\) 13.6022 0.488289
\(777\) 0 0
\(778\) −1.69634 −0.0608168
\(779\) 33.7153 1.20797
\(780\) 0 0
\(781\) −65.4768 −2.34295
\(782\) 0.00355036 0.000126961 0
\(783\) 0 0
\(784\) 12.3481 0.441005
\(785\) 20.2424 0.722482
\(786\) 0 0
\(787\) −42.5533 −1.51686 −0.758431 0.651754i \(-0.774034\pi\)
−0.758431 + 0.651754i \(0.774034\pi\)
\(788\) 36.5469 1.30193
\(789\) 0 0
\(790\) −2.40572 −0.0855916
\(791\) 27.1176 0.964191
\(792\) 0 0
\(793\) 18.4349 0.654642
\(794\) −2.29634 −0.0814939
\(795\) 0 0
\(796\) 9.66334 0.342508
\(797\) 4.17550 0.147904 0.0739519 0.997262i \(-0.476439\pi\)
0.0739519 + 0.997262i \(0.476439\pi\)
\(798\) 0 0
\(799\) −0.410396 −0.0145187
\(800\) −11.3366 −0.400808
\(801\) 0 0
\(802\) −7.15869 −0.252782
\(803\) 29.8219 1.05239
\(804\) 0 0
\(805\) 0.996985 0.0351391
\(806\) 4.99124 0.175809
\(807\) 0 0
\(808\) 2.38233 0.0838102
\(809\) 25.7708 0.906053 0.453027 0.891497i \(-0.350344\pi\)
0.453027 + 0.891497i \(0.350344\pi\)
\(810\) 0 0
\(811\) −7.66158 −0.269035 −0.134517 0.990911i \(-0.542948\pi\)
−0.134517 + 0.990911i \(0.542948\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.55070 −0.159502
\(815\) 23.6648 0.828940
\(816\) 0 0
\(817\) 1.01921 0.0356575
\(818\) −3.38446 −0.118335
\(819\) 0 0
\(820\) −20.3437 −0.710432
\(821\) 7.67282 0.267783 0.133892 0.990996i \(-0.457253\pi\)
0.133892 + 0.990996i \(0.457253\pi\)
\(822\) 0 0
\(823\) 23.9251 0.833978 0.416989 0.908912i \(-0.363085\pi\)
0.416989 + 0.908912i \(0.363085\pi\)
\(824\) −13.6773 −0.476470
\(825\) 0 0
\(826\) 1.12971 0.0393075
\(827\) 1.24451 0.0432760 0.0216380 0.999766i \(-0.493112\pi\)
0.0216380 + 0.999766i \(0.493112\pi\)
\(828\) 0 0
\(829\) 1.48564 0.0515982 0.0257991 0.999667i \(-0.491787\pi\)
0.0257991 + 0.999667i \(0.491787\pi\)
\(830\) 1.91174 0.0663574
\(831\) 0 0
\(832\) 17.9930 0.623794
\(833\) −0.155998 −0.00540502
\(834\) 0 0
\(835\) −5.22060 −0.180666
\(836\) 35.4333 1.22549
\(837\) 0 0
\(838\) 0.648421 0.0223993
\(839\) −24.3023 −0.839007 −0.419504 0.907754i \(-0.637796\pi\)
−0.419504 + 0.907754i \(0.637796\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −1.34964 −0.0465117
\(843\) 0 0
\(844\) −1.16720 −0.0401766
\(845\) 5.47466 0.188334
\(846\) 0 0
\(847\) 73.5264 2.52640
\(848\) 46.0730 1.58215
\(849\) 0 0
\(850\) 0.0453263 0.00155468
\(851\) 1.02153 0.0350178
\(852\) 0 0
\(853\) 50.0864 1.71492 0.857462 0.514546i \(-0.172040\pi\)
0.857462 + 0.514546i \(0.172040\pi\)
\(854\) −5.30734 −0.181613
\(855\) 0 0
\(856\) 13.9180 0.475708
\(857\) 10.1152 0.345529 0.172764 0.984963i \(-0.444730\pi\)
0.172764 + 0.984963i \(0.444730\pi\)
\(858\) 0 0
\(859\) 2.06499 0.0704566 0.0352283 0.999379i \(-0.488784\pi\)
0.0352283 + 0.999379i \(0.488784\pi\)
\(860\) −0.614986 −0.0209708
\(861\) 0 0
\(862\) −4.03320 −0.137371
\(863\) 49.7775 1.69444 0.847222 0.531239i \(-0.178273\pi\)
0.847222 + 0.531239i \(0.178273\pi\)
\(864\) 0 0
\(865\) 8.81110 0.299586
\(866\) 2.49401 0.0847498
\(867\) 0 0
\(868\) 47.2830 1.60489
\(869\) 59.0264 2.00233
\(870\) 0 0
\(871\) 16.7325 0.566959
\(872\) 3.69010 0.124962
\(873\) 0 0
\(874\) 0.241728 0.00817657
\(875\) 28.4509 0.961816
\(876\) 0 0
\(877\) 16.6796 0.563230 0.281615 0.959527i \(-0.409130\pi\)
0.281615 + 0.959527i \(0.409130\pi\)
\(878\) 1.03483 0.0349237
\(879\) 0 0
\(880\) −20.7108 −0.698162
\(881\) −24.6163 −0.829344 −0.414672 0.909971i \(-0.636104\pi\)
−0.414672 + 0.909971i \(0.636104\pi\)
\(882\) 0 0
\(883\) −20.2292 −0.680767 −0.340384 0.940287i \(-0.610557\pi\)
−0.340384 + 0.940287i \(0.610557\pi\)
\(884\) −0.243279 −0.00818236
\(885\) 0 0
\(886\) 6.53907 0.219684
\(887\) −20.4379 −0.686238 −0.343119 0.939292i \(-0.611483\pi\)
−0.343119 + 0.939292i \(0.611483\pi\)
\(888\) 0 0
\(889\) −7.06960 −0.237107
\(890\) −0.763036 −0.0255770
\(891\) 0 0
\(892\) 11.8620 0.397169
\(893\) −27.9420 −0.935042
\(894\) 0 0
\(895\) −23.2518 −0.777222
\(896\) −23.2300 −0.776059
\(897\) 0 0
\(898\) −6.79013 −0.226590
\(899\) 0 0
\(900\) 0 0
\(901\) −0.582056 −0.0193911
\(902\) −15.1695 −0.505089
\(903\) 0 0
\(904\) −8.05512 −0.267909
\(905\) 17.6909 0.588065
\(906\) 0 0
\(907\) 34.5604 1.14756 0.573780 0.819010i \(-0.305477\pi\)
0.573780 + 0.819010i \(0.305477\pi\)
\(908\) −18.2562 −0.605853
\(909\) 0 0
\(910\) 2.07616 0.0688241
\(911\) −15.3718 −0.509290 −0.254645 0.967035i \(-0.581959\pi\)
−0.254645 + 0.967035i \(0.581959\pi\)
\(912\) 0 0
\(913\) −46.9062 −1.55237
\(914\) −6.45748 −0.213594
\(915\) 0 0
\(916\) −0.761402 −0.0251574
\(917\) 59.0238 1.94914
\(918\) 0 0
\(919\) 12.6545 0.417434 0.208717 0.977976i \(-0.433071\pi\)
0.208717 + 0.977976i \(0.433071\pi\)
\(920\) −0.296148 −0.00976372
\(921\) 0 0
\(922\) −3.92125 −0.129139
\(923\) 30.6080 1.00747
\(924\) 0 0
\(925\) 13.0416 0.428805
\(926\) 3.39553 0.111584
\(927\) 0 0
\(928\) 0 0
\(929\) 41.8885 1.37432 0.687158 0.726508i \(-0.258858\pi\)
0.687158 + 0.726508i \(0.258858\pi\)
\(930\) 0 0
\(931\) −10.6212 −0.348096
\(932\) 44.5239 1.45843
\(933\) 0 0
\(934\) −4.24053 −0.138754
\(935\) 0.261647 0.00855677
\(936\) 0 0
\(937\) −25.5748 −0.835493 −0.417746 0.908564i \(-0.637180\pi\)
−0.417746 + 0.908564i \(0.637180\pi\)
\(938\) −4.81723 −0.157288
\(939\) 0 0
\(940\) 16.8601 0.549915
\(941\) −3.86852 −0.126110 −0.0630551 0.998010i \(-0.520084\pi\)
−0.0630551 + 0.998010i \(0.520084\pi\)
\(942\) 0 0
\(943\) 3.40522 0.110889
\(944\) 5.26804 0.171460
\(945\) 0 0
\(946\) −0.458572 −0.0149094
\(947\) −9.17000 −0.297985 −0.148992 0.988838i \(-0.547603\pi\)
−0.148992 + 0.988838i \(0.547603\pi\)
\(948\) 0 0
\(949\) −13.9406 −0.452532
\(950\) 3.08606 0.100125
\(951\) 0 0
\(952\) 0.142207 0.00460895
\(953\) −11.8876 −0.385078 −0.192539 0.981289i \(-0.561672\pi\)
−0.192539 + 0.981289i \(0.561672\pi\)
\(954\) 0 0
\(955\) −11.2917 −0.365389
\(956\) −3.22379 −0.104265
\(957\) 0 0
\(958\) 5.76584 0.186286
\(959\) 1.16759 0.0377035
\(960\) 0 0
\(961\) 26.1492 0.843524
\(962\) 2.12728 0.0685864
\(963\) 0 0
\(964\) 45.0570 1.45119
\(965\) −1.31641 −0.0423766
\(966\) 0 0
\(967\) 52.6637 1.69355 0.846775 0.531951i \(-0.178541\pi\)
0.846775 + 0.531951i \(0.178541\pi\)
\(968\) −21.8406 −0.701982
\(969\) 0 0
\(970\) 3.36811 0.108144
\(971\) 30.6487 0.983565 0.491783 0.870718i \(-0.336345\pi\)
0.491783 + 0.870718i \(0.336345\pi\)
\(972\) 0 0
\(973\) 30.2847 0.970883
\(974\) 6.97695 0.223556
\(975\) 0 0
\(976\) −24.7491 −0.792201
\(977\) 32.0309 1.02476 0.512379 0.858759i \(-0.328764\pi\)
0.512379 + 0.858759i \(0.328764\pi\)
\(978\) 0 0
\(979\) 18.7218 0.598350
\(980\) 6.40880 0.204722
\(981\) 0 0
\(982\) −2.92338 −0.0932888
\(983\) −8.72525 −0.278292 −0.139146 0.990272i \(-0.544436\pi\)
−0.139146 + 0.990272i \(0.544436\pi\)
\(984\) 0 0
\(985\) 18.3742 0.585451
\(986\) 0 0
\(987\) 0 0
\(988\) −16.5638 −0.526964
\(989\) 0.102939 0.00327328
\(990\) 0 0
\(991\) −6.42765 −0.204181 −0.102090 0.994775i \(-0.532553\pi\)
−0.102090 + 0.994775i \(0.532553\pi\)
\(992\) −21.1728 −0.672236
\(993\) 0 0
\(994\) −8.81193 −0.279497
\(995\) 4.85831 0.154019
\(996\) 0 0
\(997\) −59.4725 −1.88351 −0.941757 0.336294i \(-0.890826\pi\)
−0.941757 + 0.336294i \(0.890826\pi\)
\(998\) 4.47915 0.141785
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bt.1.5 12
3.2 odd 2 2523.2.a.s.1.8 12
29.19 odd 28 261.2.o.b.100.3 24
29.26 odd 28 261.2.o.b.154.3 24
29.28 even 2 7569.2.a.bn.1.8 12
87.26 even 28 87.2.i.a.67.2 yes 24
87.77 even 28 87.2.i.a.13.2 24
87.86 odd 2 2523.2.a.v.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.13.2 24 87.77 even 28
87.2.i.a.67.2 yes 24 87.26 even 28
261.2.o.b.100.3 24 29.19 odd 28
261.2.o.b.154.3 24 29.26 odd 28
2523.2.a.s.1.8 12 3.2 odd 2
2523.2.a.v.1.5 12 87.86 odd 2
7569.2.a.bn.1.8 12 29.28 even 2
7569.2.a.bt.1.5 12 1.1 even 1 trivial