Properties

Label 7569.2.a.c.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.414214 q^{2} -1.82843 q^{4} +1.00000 q^{5} +2.82843 q^{7} -1.58579 q^{8} +0.414214 q^{10} +2.41421 q^{11} +1.82843 q^{13} +1.17157 q^{14} +3.00000 q^{16} -4.82843 q^{17} -6.00000 q^{19} -1.82843 q^{20} +1.00000 q^{22} +7.65685 q^{23} -4.00000 q^{25} +0.757359 q^{26} -5.17157 q^{28} +4.07107 q^{31} +4.41421 q^{32} -2.00000 q^{34} +2.82843 q^{35} +4.00000 q^{37} -2.48528 q^{38} -1.58579 q^{40} +12.4853 q^{41} -6.41421 q^{43} -4.41421 q^{44} +3.17157 q^{46} +5.24264 q^{47} +1.00000 q^{49} -1.65685 q^{50} -3.34315 q^{52} +7.48528 q^{53} +2.41421 q^{55} -4.48528 q^{56} -7.65685 q^{59} -0.828427 q^{61} +1.68629 q^{62} -4.17157 q^{64} +1.82843 q^{65} -5.65685 q^{67} +8.82843 q^{68} +1.17157 q^{70} +3.17157 q^{71} -4.00000 q^{73} +1.65685 q^{74} +10.9706 q^{76} +6.82843 q^{77} -0.414214 q^{79} +3.00000 q^{80} +5.17157 q^{82} +3.65685 q^{83} -4.82843 q^{85} -2.65685 q^{86} -3.82843 q^{88} +4.48528 q^{89} +5.17157 q^{91} -14.0000 q^{92} +2.17157 q^{94} -6.00000 q^{95} +12.4853 q^{97} +0.414214 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 6 q^{8} - 2 q^{10} + 2 q^{11} - 2 q^{13} + 8 q^{14} + 6 q^{16} - 4 q^{17} - 12 q^{19} + 2 q^{20} + 2 q^{22} + 4 q^{23} - 8 q^{25} + 10 q^{26} - 16 q^{28} - 6 q^{31} + 6 q^{32}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.414214 0.292893 0.146447 0.989219i \(-0.453216\pi\)
0.146447 + 0.989219i \(0.453216\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 2.82843 1.06904 0.534522 0.845154i \(-0.320491\pi\)
0.534522 + 0.845154i \(0.320491\pi\)
\(8\) −1.58579 −0.560660
\(9\) 0 0
\(10\) 0.414214 0.130986
\(11\) 2.41421 0.727913 0.363956 0.931416i \(-0.381426\pi\)
0.363956 + 0.931416i \(0.381426\pi\)
\(12\) 0 0
\(13\) 1.82843 0.507114 0.253557 0.967320i \(-0.418399\pi\)
0.253557 + 0.967320i \(0.418399\pi\)
\(14\) 1.17157 0.313116
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −4.82843 −1.17107 −0.585533 0.810649i \(-0.699115\pi\)
−0.585533 + 0.810649i \(0.699115\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −1.82843 −0.408849
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 7.65685 1.59656 0.798282 0.602284i \(-0.205742\pi\)
0.798282 + 0.602284i \(0.205742\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0.757359 0.148530
\(27\) 0 0
\(28\) −5.17157 −0.977335
\(29\) 0 0
\(30\) 0 0
\(31\) 4.07107 0.731185 0.365593 0.930775i \(-0.380866\pi\)
0.365593 + 0.930775i \(0.380866\pi\)
\(32\) 4.41421 0.780330
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 2.82843 0.478091
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −2.48528 −0.403166
\(39\) 0 0
\(40\) −1.58579 −0.250735
\(41\) 12.4853 1.94987 0.974937 0.222483i \(-0.0714160\pi\)
0.974937 + 0.222483i \(0.0714160\pi\)
\(42\) 0 0
\(43\) −6.41421 −0.978158 −0.489079 0.872239i \(-0.662667\pi\)
−0.489079 + 0.872239i \(0.662667\pi\)
\(44\) −4.41421 −0.665468
\(45\) 0 0
\(46\) 3.17157 0.467623
\(47\) 5.24264 0.764718 0.382359 0.924014i \(-0.375112\pi\)
0.382359 + 0.924014i \(0.375112\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.65685 −0.234315
\(51\) 0 0
\(52\) −3.34315 −0.463611
\(53\) 7.48528 1.02818 0.514091 0.857736i \(-0.328129\pi\)
0.514091 + 0.857736i \(0.328129\pi\)
\(54\) 0 0
\(55\) 2.41421 0.325532
\(56\) −4.48528 −0.599371
\(57\) 0 0
\(58\) 0 0
\(59\) −7.65685 −0.996838 −0.498419 0.866936i \(-0.666086\pi\)
−0.498419 + 0.866936i \(0.666086\pi\)
\(60\) 0 0
\(61\) −0.828427 −0.106069 −0.0530346 0.998593i \(-0.516889\pi\)
−0.0530346 + 0.998593i \(0.516889\pi\)
\(62\) 1.68629 0.214159
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) 1.82843 0.226788
\(66\) 0 0
\(67\) −5.65685 −0.691095 −0.345547 0.938401i \(-0.612307\pi\)
−0.345547 + 0.938401i \(0.612307\pi\)
\(68\) 8.82843 1.07060
\(69\) 0 0
\(70\) 1.17157 0.140030
\(71\) 3.17157 0.376396 0.188198 0.982131i \(-0.439735\pi\)
0.188198 + 0.982131i \(0.439735\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 1.65685 0.192605
\(75\) 0 0
\(76\) 10.9706 1.25841
\(77\) 6.82843 0.778171
\(78\) 0 0
\(79\) −0.414214 −0.0466027 −0.0233013 0.999728i \(-0.507418\pi\)
−0.0233013 + 0.999728i \(0.507418\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) 5.17157 0.571105
\(83\) 3.65685 0.401392 0.200696 0.979654i \(-0.435680\pi\)
0.200696 + 0.979654i \(0.435680\pi\)
\(84\) 0 0
\(85\) −4.82843 −0.523716
\(86\) −2.65685 −0.286496
\(87\) 0 0
\(88\) −3.82843 −0.408112
\(89\) 4.48528 0.475439 0.237719 0.971334i \(-0.423600\pi\)
0.237719 + 0.971334i \(0.423600\pi\)
\(90\) 0 0
\(91\) 5.17157 0.542128
\(92\) −14.0000 −1.45960
\(93\) 0 0
\(94\) 2.17157 0.223981
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 12.4853 1.26769 0.633844 0.773461i \(-0.281476\pi\)
0.633844 + 0.773461i \(0.281476\pi\)
\(98\) 0.414214 0.0418419
\(99\) 0 0
\(100\) 7.31371 0.731371
\(101\) −13.6569 −1.35891 −0.679454 0.733718i \(-0.737783\pi\)
−0.679454 + 0.733718i \(0.737783\pi\)
\(102\) 0 0
\(103\) 0.828427 0.0816274 0.0408137 0.999167i \(-0.487005\pi\)
0.0408137 + 0.999167i \(0.487005\pi\)
\(104\) −2.89949 −0.284319
\(105\) 0 0
\(106\) 3.10051 0.301148
\(107\) 9.17157 0.886649 0.443325 0.896361i \(-0.353799\pi\)
0.443325 + 0.896361i \(0.353799\pi\)
\(108\) 0 0
\(109\) 1.34315 0.128650 0.0643250 0.997929i \(-0.479511\pi\)
0.0643250 + 0.997929i \(0.479511\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 8.48528 0.801784
\(113\) 9.31371 0.876160 0.438080 0.898936i \(-0.355659\pi\)
0.438080 + 0.898936i \(0.355659\pi\)
\(114\) 0 0
\(115\) 7.65685 0.714005
\(116\) 0 0
\(117\) 0 0
\(118\) −3.17157 −0.291967
\(119\) −13.6569 −1.25192
\(120\) 0 0
\(121\) −5.17157 −0.470143
\(122\) −0.343146 −0.0310670
\(123\) 0 0
\(124\) −7.44365 −0.668460
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 15.6569 1.38932 0.694661 0.719338i \(-0.255555\pi\)
0.694661 + 0.719338i \(0.255555\pi\)
\(128\) −10.5563 −0.933058
\(129\) 0 0
\(130\) 0.757359 0.0664248
\(131\) −1.31371 −0.114779 −0.0573896 0.998352i \(-0.518278\pi\)
−0.0573896 + 0.998352i \(0.518278\pi\)
\(132\) 0 0
\(133\) −16.9706 −1.47153
\(134\) −2.34315 −0.202417
\(135\) 0 0
\(136\) 7.65685 0.656570
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) −5.17157 −0.437078
\(141\) 0 0
\(142\) 1.31371 0.110244
\(143\) 4.41421 0.369135
\(144\) 0 0
\(145\) 0 0
\(146\) −1.65685 −0.137122
\(147\) 0 0
\(148\) −7.31371 −0.601183
\(149\) 2.17157 0.177902 0.0889511 0.996036i \(-0.471649\pi\)
0.0889511 + 0.996036i \(0.471649\pi\)
\(150\) 0 0
\(151\) 14.1421 1.15087 0.575435 0.817847i \(-0.304833\pi\)
0.575435 + 0.817847i \(0.304833\pi\)
\(152\) 9.51472 0.771746
\(153\) 0 0
\(154\) 2.82843 0.227921
\(155\) 4.07107 0.326996
\(156\) 0 0
\(157\) 8.48528 0.677199 0.338600 0.940931i \(-0.390047\pi\)
0.338600 + 0.940931i \(0.390047\pi\)
\(158\) −0.171573 −0.0136496
\(159\) 0 0
\(160\) 4.41421 0.348974
\(161\) 21.6569 1.70680
\(162\) 0 0
\(163\) −18.0711 −1.41544 −0.707718 0.706495i \(-0.750275\pi\)
−0.707718 + 0.706495i \(0.750275\pi\)
\(164\) −22.8284 −1.78260
\(165\) 0 0
\(166\) 1.51472 0.117565
\(167\) 8.82843 0.683164 0.341582 0.939852i \(-0.389037\pi\)
0.341582 + 0.939852i \(0.389037\pi\)
\(168\) 0 0
\(169\) −9.65685 −0.742835
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) 11.7279 0.894246
\(173\) −23.6569 −1.79860 −0.899299 0.437335i \(-0.855922\pi\)
−0.899299 + 0.437335i \(0.855922\pi\)
\(174\) 0 0
\(175\) −11.3137 −0.855236
\(176\) 7.24264 0.545935
\(177\) 0 0
\(178\) 1.85786 0.139253
\(179\) −10.4853 −0.783707 −0.391853 0.920028i \(-0.628166\pi\)
−0.391853 + 0.920028i \(0.628166\pi\)
\(180\) 0 0
\(181\) −14.3137 −1.06393 −0.531965 0.846766i \(-0.678546\pi\)
−0.531965 + 0.846766i \(0.678546\pi\)
\(182\) 2.14214 0.158786
\(183\) 0 0
\(184\) −12.1421 −0.895130
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) −11.6569 −0.852434
\(188\) −9.58579 −0.699115
\(189\) 0 0
\(190\) −2.48528 −0.180301
\(191\) 2.68629 0.194373 0.0971866 0.995266i \(-0.469016\pi\)
0.0971866 + 0.995266i \(0.469016\pi\)
\(192\) 0 0
\(193\) 10.8284 0.779447 0.389724 0.920932i \(-0.372571\pi\)
0.389724 + 0.920932i \(0.372571\pi\)
\(194\) 5.17157 0.371297
\(195\) 0 0
\(196\) −1.82843 −0.130602
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 16.4853 1.16861 0.584305 0.811534i \(-0.301367\pi\)
0.584305 + 0.811534i \(0.301367\pi\)
\(200\) 6.34315 0.448528
\(201\) 0 0
\(202\) −5.65685 −0.398015
\(203\) 0 0
\(204\) 0 0
\(205\) 12.4853 0.872010
\(206\) 0.343146 0.0239081
\(207\) 0 0
\(208\) 5.48528 0.380336
\(209\) −14.4853 −1.00197
\(210\) 0 0
\(211\) −17.3848 −1.19682 −0.598409 0.801191i \(-0.704200\pi\)
−0.598409 + 0.801191i \(0.704200\pi\)
\(212\) −13.6863 −0.939978
\(213\) 0 0
\(214\) 3.79899 0.259694
\(215\) −6.41421 −0.437446
\(216\) 0 0
\(217\) 11.5147 0.781670
\(218\) 0.556349 0.0376807
\(219\) 0 0
\(220\) −4.41421 −0.297606
\(221\) −8.82843 −0.593864
\(222\) 0 0
\(223\) −8.82843 −0.591195 −0.295598 0.955313i \(-0.595519\pi\)
−0.295598 + 0.955313i \(0.595519\pi\)
\(224\) 12.4853 0.834208
\(225\) 0 0
\(226\) 3.85786 0.256621
\(227\) −20.1421 −1.33688 −0.668440 0.743766i \(-0.733038\pi\)
−0.668440 + 0.743766i \(0.733038\pi\)
\(228\) 0 0
\(229\) 20.4853 1.35371 0.676853 0.736118i \(-0.263343\pi\)
0.676853 + 0.736118i \(0.263343\pi\)
\(230\) 3.17157 0.209127
\(231\) 0 0
\(232\) 0 0
\(233\) 4.31371 0.282600 0.141300 0.989967i \(-0.454872\pi\)
0.141300 + 0.989967i \(0.454872\pi\)
\(234\) 0 0
\(235\) 5.24264 0.341992
\(236\) 14.0000 0.911322
\(237\) 0 0
\(238\) −5.65685 −0.366679
\(239\) 8.34315 0.539673 0.269837 0.962906i \(-0.413030\pi\)
0.269837 + 0.962906i \(0.413030\pi\)
\(240\) 0 0
\(241\) 4.31371 0.277870 0.138935 0.990301i \(-0.455632\pi\)
0.138935 + 0.990301i \(0.455632\pi\)
\(242\) −2.14214 −0.137702
\(243\) 0 0
\(244\) 1.51472 0.0969699
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −10.9706 −0.698040
\(248\) −6.45584 −0.409947
\(249\) 0 0
\(250\) −3.72792 −0.235774
\(251\) 5.92893 0.374231 0.187115 0.982338i \(-0.440086\pi\)
0.187115 + 0.982338i \(0.440086\pi\)
\(252\) 0 0
\(253\) 18.4853 1.16216
\(254\) 6.48528 0.406923
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 23.8284 1.48638 0.743188 0.669082i \(-0.233313\pi\)
0.743188 + 0.669082i \(0.233313\pi\)
\(258\) 0 0
\(259\) 11.3137 0.703000
\(260\) −3.34315 −0.207333
\(261\) 0 0
\(262\) −0.544156 −0.0336181
\(263\) 11.2426 0.693251 0.346625 0.938004i \(-0.387327\pi\)
0.346625 + 0.938004i \(0.387327\pi\)
\(264\) 0 0
\(265\) 7.48528 0.459817
\(266\) −7.02944 −0.431002
\(267\) 0 0
\(268\) 10.3431 0.631808
\(269\) −19.4558 −1.18624 −0.593122 0.805113i \(-0.702105\pi\)
−0.593122 + 0.805113i \(0.702105\pi\)
\(270\) 0 0
\(271\) 14.5563 0.884235 0.442118 0.896957i \(-0.354227\pi\)
0.442118 + 0.896957i \(0.354227\pi\)
\(272\) −14.4853 −0.878299
\(273\) 0 0
\(274\) 4.97056 0.300283
\(275\) −9.65685 −0.582330
\(276\) 0 0
\(277\) 5.31371 0.319270 0.159635 0.987176i \(-0.448968\pi\)
0.159635 + 0.987176i \(0.448968\pi\)
\(278\) 5.79899 0.347800
\(279\) 0 0
\(280\) −4.48528 −0.268047
\(281\) 1.97056 0.117554 0.0587770 0.998271i \(-0.481280\pi\)
0.0587770 + 0.998271i \(0.481280\pi\)
\(282\) 0 0
\(283\) 0.343146 0.0203979 0.0101989 0.999948i \(-0.496754\pi\)
0.0101989 + 0.999948i \(0.496754\pi\)
\(284\) −5.79899 −0.344107
\(285\) 0 0
\(286\) 1.82843 0.108117
\(287\) 35.3137 2.08450
\(288\) 0 0
\(289\) 6.31371 0.371395
\(290\) 0 0
\(291\) 0 0
\(292\) 7.31371 0.428002
\(293\) −3.65685 −0.213636 −0.106818 0.994279i \(-0.534066\pi\)
−0.106818 + 0.994279i \(0.534066\pi\)
\(294\) 0 0
\(295\) −7.65685 −0.445799
\(296\) −6.34315 −0.368688
\(297\) 0 0
\(298\) 0.899495 0.0521063
\(299\) 14.0000 0.809641
\(300\) 0 0
\(301\) −18.1421 −1.04570
\(302\) 5.85786 0.337082
\(303\) 0 0
\(304\) −18.0000 −1.03237
\(305\) −0.828427 −0.0474356
\(306\) 0 0
\(307\) 16.8995 0.964505 0.482253 0.876032i \(-0.339819\pi\)
0.482253 + 0.876032i \(0.339819\pi\)
\(308\) −12.4853 −0.711415
\(309\) 0 0
\(310\) 1.68629 0.0957749
\(311\) 25.3137 1.43541 0.717704 0.696348i \(-0.245193\pi\)
0.717704 + 0.696348i \(0.245193\pi\)
\(312\) 0 0
\(313\) 4.17157 0.235791 0.117896 0.993026i \(-0.462385\pi\)
0.117896 + 0.993026i \(0.462385\pi\)
\(314\) 3.51472 0.198347
\(315\) 0 0
\(316\) 0.757359 0.0426048
\(317\) 19.4558 1.09275 0.546375 0.837541i \(-0.316008\pi\)
0.546375 + 0.837541i \(0.316008\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −4.17157 −0.233198
\(321\) 0 0
\(322\) 8.97056 0.499910
\(323\) 28.9706 1.61197
\(324\) 0 0
\(325\) −7.31371 −0.405692
\(326\) −7.48528 −0.414571
\(327\) 0 0
\(328\) −19.7990 −1.09322
\(329\) 14.8284 0.817518
\(330\) 0 0
\(331\) −0.414214 −0.0227672 −0.0113836 0.999935i \(-0.503624\pi\)
−0.0113836 + 0.999935i \(0.503624\pi\)
\(332\) −6.68629 −0.366958
\(333\) 0 0
\(334\) 3.65685 0.200094
\(335\) −5.65685 −0.309067
\(336\) 0 0
\(337\) 17.7990 0.969573 0.484786 0.874633i \(-0.338897\pi\)
0.484786 + 0.874633i \(0.338897\pi\)
\(338\) −4.00000 −0.217571
\(339\) 0 0
\(340\) 8.82843 0.478789
\(341\) 9.82843 0.532239
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 10.1716 0.548414
\(345\) 0 0
\(346\) −9.79899 −0.526797
\(347\) 14.4853 0.777611 0.388805 0.921320i \(-0.372888\pi\)
0.388805 + 0.921320i \(0.372888\pi\)
\(348\) 0 0
\(349\) 23.1421 1.23877 0.619385 0.785087i \(-0.287382\pi\)
0.619385 + 0.785087i \(0.287382\pi\)
\(350\) −4.68629 −0.250493
\(351\) 0 0
\(352\) 10.6569 0.568012
\(353\) 6.97056 0.371006 0.185503 0.982644i \(-0.440609\pi\)
0.185503 + 0.982644i \(0.440609\pi\)
\(354\) 0 0
\(355\) 3.17157 0.168330
\(356\) −8.20101 −0.434653
\(357\) 0 0
\(358\) −4.34315 −0.229542
\(359\) 18.0711 0.953754 0.476877 0.878970i \(-0.341769\pi\)
0.476877 + 0.878970i \(0.341769\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −5.92893 −0.311618
\(363\) 0 0
\(364\) −9.45584 −0.495621
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 22.9706 1.19742
\(369\) 0 0
\(370\) 1.65685 0.0861358
\(371\) 21.1716 1.09917
\(372\) 0 0
\(373\) −3.68629 −0.190869 −0.0954345 0.995436i \(-0.530424\pi\)
−0.0954345 + 0.995436i \(0.530424\pi\)
\(374\) −4.82843 −0.249672
\(375\) 0 0
\(376\) −8.31371 −0.428747
\(377\) 0 0
\(378\) 0 0
\(379\) −26.9706 −1.38538 −0.692692 0.721233i \(-0.743576\pi\)
−0.692692 + 0.721233i \(0.743576\pi\)
\(380\) 10.9706 0.562778
\(381\) 0 0
\(382\) 1.11270 0.0569306
\(383\) 20.4853 1.04675 0.523374 0.852103i \(-0.324673\pi\)
0.523374 + 0.852103i \(0.324673\pi\)
\(384\) 0 0
\(385\) 6.82843 0.348009
\(386\) 4.48528 0.228295
\(387\) 0 0
\(388\) −22.8284 −1.15894
\(389\) 36.9706 1.87448 0.937241 0.348682i \(-0.113371\pi\)
0.937241 + 0.348682i \(0.113371\pi\)
\(390\) 0 0
\(391\) −36.9706 −1.86968
\(392\) −1.58579 −0.0800943
\(393\) 0 0
\(394\) −0.828427 −0.0417356
\(395\) −0.414214 −0.0208413
\(396\) 0 0
\(397\) 30.6569 1.53862 0.769312 0.638874i \(-0.220599\pi\)
0.769312 + 0.638874i \(0.220599\pi\)
\(398\) 6.82843 0.342278
\(399\) 0 0
\(400\) −12.0000 −0.600000
\(401\) 7.34315 0.366699 0.183350 0.983048i \(-0.441306\pi\)
0.183350 + 0.983048i \(0.441306\pi\)
\(402\) 0 0
\(403\) 7.44365 0.370795
\(404\) 24.9706 1.24233
\(405\) 0 0
\(406\) 0 0
\(407\) 9.65685 0.478672
\(408\) 0 0
\(409\) −14.9706 −0.740247 −0.370123 0.928983i \(-0.620685\pi\)
−0.370123 + 0.928983i \(0.620685\pi\)
\(410\) 5.17157 0.255406
\(411\) 0 0
\(412\) −1.51472 −0.0746248
\(413\) −21.6569 −1.06566
\(414\) 0 0
\(415\) 3.65685 0.179508
\(416\) 8.07107 0.395717
\(417\) 0 0
\(418\) −6.00000 −0.293470
\(419\) 26.4853 1.29389 0.646945 0.762536i \(-0.276046\pi\)
0.646945 + 0.762536i \(0.276046\pi\)
\(420\) 0 0
\(421\) 25.1127 1.22392 0.611959 0.790889i \(-0.290382\pi\)
0.611959 + 0.790889i \(0.290382\pi\)
\(422\) −7.20101 −0.350540
\(423\) 0 0
\(424\) −11.8701 −0.576461
\(425\) 19.3137 0.936852
\(426\) 0 0
\(427\) −2.34315 −0.113393
\(428\) −16.7696 −0.810587
\(429\) 0 0
\(430\) −2.65685 −0.128125
\(431\) −8.34315 −0.401875 −0.200938 0.979604i \(-0.564399\pi\)
−0.200938 + 0.979604i \(0.564399\pi\)
\(432\) 0 0
\(433\) 14.6274 0.702949 0.351474 0.936197i \(-0.385680\pi\)
0.351474 + 0.936197i \(0.385680\pi\)
\(434\) 4.76955 0.228946
\(435\) 0 0
\(436\) −2.45584 −0.117614
\(437\) −45.9411 −2.19766
\(438\) 0 0
\(439\) −11.6569 −0.556351 −0.278176 0.960530i \(-0.589730\pi\)
−0.278176 + 0.960530i \(0.589730\pi\)
\(440\) −3.82843 −0.182513
\(441\) 0 0
\(442\) −3.65685 −0.173939
\(443\) −35.6569 −1.69411 −0.847054 0.531507i \(-0.821626\pi\)
−0.847054 + 0.531507i \(0.821626\pi\)
\(444\) 0 0
\(445\) 4.48528 0.212623
\(446\) −3.65685 −0.173157
\(447\) 0 0
\(448\) −11.7990 −0.557450
\(449\) −1.02944 −0.0485821 −0.0242911 0.999705i \(-0.507733\pi\)
−0.0242911 + 0.999705i \(0.507733\pi\)
\(450\) 0 0
\(451\) 30.1421 1.41934
\(452\) −17.0294 −0.800997
\(453\) 0 0
\(454\) −8.34315 −0.391563
\(455\) 5.17157 0.242447
\(456\) 0 0
\(457\) 34.9706 1.63585 0.817927 0.575322i \(-0.195123\pi\)
0.817927 + 0.575322i \(0.195123\pi\)
\(458\) 8.48528 0.396491
\(459\) 0 0
\(460\) −14.0000 −0.652753
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.78680 0.0827718
\(467\) 32.3553 1.49723 0.748613 0.663007i \(-0.230720\pi\)
0.748613 + 0.663007i \(0.230720\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 2.17157 0.100167
\(471\) 0 0
\(472\) 12.1421 0.558887
\(473\) −15.4853 −0.712014
\(474\) 0 0
\(475\) 24.0000 1.10120
\(476\) 24.9706 1.14452
\(477\) 0 0
\(478\) 3.45584 0.158067
\(479\) −12.8995 −0.589393 −0.294696 0.955591i \(-0.595219\pi\)
−0.294696 + 0.955591i \(0.595219\pi\)
\(480\) 0 0
\(481\) 7.31371 0.333476
\(482\) 1.78680 0.0813864
\(483\) 0 0
\(484\) 9.45584 0.429811
\(485\) 12.4853 0.566927
\(486\) 0 0
\(487\) −28.4853 −1.29079 −0.645396 0.763848i \(-0.723307\pi\)
−0.645396 + 0.763848i \(0.723307\pi\)
\(488\) 1.31371 0.0594688
\(489\) 0 0
\(490\) 0.414214 0.0187123
\(491\) −12.7574 −0.575732 −0.287866 0.957671i \(-0.592946\pi\)
−0.287866 + 0.957671i \(0.592946\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −4.54416 −0.204451
\(495\) 0 0
\(496\) 12.2132 0.548389
\(497\) 8.97056 0.402385
\(498\) 0 0
\(499\) −14.9706 −0.670174 −0.335087 0.942187i \(-0.608766\pi\)
−0.335087 + 0.942187i \(0.608766\pi\)
\(500\) 16.4558 0.735928
\(501\) 0 0
\(502\) 2.45584 0.109610
\(503\) 25.7279 1.14715 0.573576 0.819153i \(-0.305556\pi\)
0.573576 + 0.819153i \(0.305556\pi\)
\(504\) 0 0
\(505\) −13.6569 −0.607722
\(506\) 7.65685 0.340389
\(507\) 0 0
\(508\) −28.6274 −1.27014
\(509\) 27.4853 1.21826 0.609132 0.793069i \(-0.291518\pi\)
0.609132 + 0.793069i \(0.291518\pi\)
\(510\) 0 0
\(511\) −11.3137 −0.500489
\(512\) 22.7574 1.00574
\(513\) 0 0
\(514\) 9.87006 0.435350
\(515\) 0.828427 0.0365049
\(516\) 0 0
\(517\) 12.6569 0.556648
\(518\) 4.68629 0.205904
\(519\) 0 0
\(520\) −2.89949 −0.127151
\(521\) 0.857864 0.0375837 0.0187919 0.999823i \(-0.494018\pi\)
0.0187919 + 0.999823i \(0.494018\pi\)
\(522\) 0 0
\(523\) 27.3137 1.19435 0.597173 0.802113i \(-0.296291\pi\)
0.597173 + 0.802113i \(0.296291\pi\)
\(524\) 2.40202 0.104933
\(525\) 0 0
\(526\) 4.65685 0.203048
\(527\) −19.6569 −0.856266
\(528\) 0 0
\(529\) 35.6274 1.54902
\(530\) 3.10051 0.134677
\(531\) 0 0
\(532\) 31.0294 1.34530
\(533\) 22.8284 0.988809
\(534\) 0 0
\(535\) 9.17157 0.396522
\(536\) 8.97056 0.387469
\(537\) 0 0
\(538\) −8.05887 −0.347443
\(539\) 2.41421 0.103988
\(540\) 0 0
\(541\) 21.6569 0.931101 0.465550 0.885021i \(-0.345856\pi\)
0.465550 + 0.885021i \(0.345856\pi\)
\(542\) 6.02944 0.258987
\(543\) 0 0
\(544\) −21.3137 −0.913818
\(545\) 1.34315 0.0575340
\(546\) 0 0
\(547\) −3.79899 −0.162433 −0.0812165 0.996696i \(-0.525881\pi\)
−0.0812165 + 0.996696i \(0.525881\pi\)
\(548\) −21.9411 −0.937278
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 0 0
\(552\) 0 0
\(553\) −1.17157 −0.0498203
\(554\) 2.20101 0.0935120
\(555\) 0 0
\(556\) −25.5980 −1.08560
\(557\) −5.31371 −0.225149 −0.112575 0.993643i \(-0.535910\pi\)
−0.112575 + 0.993643i \(0.535910\pi\)
\(558\) 0 0
\(559\) −11.7279 −0.496038
\(560\) 8.48528 0.358569
\(561\) 0 0
\(562\) 0.816234 0.0344307
\(563\) −9.24264 −0.389531 −0.194765 0.980850i \(-0.562395\pi\)
−0.194765 + 0.980850i \(0.562395\pi\)
\(564\) 0 0
\(565\) 9.31371 0.391831
\(566\) 0.142136 0.00597441
\(567\) 0 0
\(568\) −5.02944 −0.211030
\(569\) −28.3431 −1.18821 −0.594103 0.804389i \(-0.702493\pi\)
−0.594103 + 0.804389i \(0.702493\pi\)
\(570\) 0 0
\(571\) −30.6274 −1.28172 −0.640859 0.767659i \(-0.721422\pi\)
−0.640859 + 0.767659i \(0.721422\pi\)
\(572\) −8.07107 −0.337468
\(573\) 0 0
\(574\) 14.6274 0.610537
\(575\) −30.6274 −1.27725
\(576\) 0 0
\(577\) −9.79899 −0.407937 −0.203969 0.978977i \(-0.565384\pi\)
−0.203969 + 0.978977i \(0.565384\pi\)
\(578\) 2.61522 0.108779
\(579\) 0 0
\(580\) 0 0
\(581\) 10.3431 0.429106
\(582\) 0 0
\(583\) 18.0711 0.748427
\(584\) 6.34315 0.262481
\(585\) 0 0
\(586\) −1.51472 −0.0625724
\(587\) 3.65685 0.150935 0.0754673 0.997148i \(-0.475955\pi\)
0.0754673 + 0.997148i \(0.475955\pi\)
\(588\) 0 0
\(589\) −24.4264 −1.00647
\(590\) −3.17157 −0.130572
\(591\) 0 0
\(592\) 12.0000 0.493197
\(593\) 2.51472 0.103267 0.0516336 0.998666i \(-0.483557\pi\)
0.0516336 + 0.998666i \(0.483557\pi\)
\(594\) 0 0
\(595\) −13.6569 −0.559876
\(596\) −3.97056 −0.162641
\(597\) 0 0
\(598\) 5.79899 0.237138
\(599\) −43.8701 −1.79248 −0.896241 0.443567i \(-0.853713\pi\)
−0.896241 + 0.443567i \(0.853713\pi\)
\(600\) 0 0
\(601\) 22.8284 0.931191 0.465595 0.884998i \(-0.345840\pi\)
0.465595 + 0.884998i \(0.345840\pi\)
\(602\) −7.51472 −0.306277
\(603\) 0 0
\(604\) −25.8579 −1.05214
\(605\) −5.17157 −0.210254
\(606\) 0 0
\(607\) −17.7279 −0.719554 −0.359777 0.933038i \(-0.617147\pi\)
−0.359777 + 0.933038i \(0.617147\pi\)
\(608\) −26.4853 −1.07412
\(609\) 0 0
\(610\) −0.343146 −0.0138936
\(611\) 9.58579 0.387799
\(612\) 0 0
\(613\) −9.00000 −0.363507 −0.181753 0.983344i \(-0.558177\pi\)
−0.181753 + 0.983344i \(0.558177\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) −10.8284 −0.436290
\(617\) 23.3137 0.938575 0.469287 0.883046i \(-0.344511\pi\)
0.469287 + 0.883046i \(0.344511\pi\)
\(618\) 0 0
\(619\) −36.4142 −1.46361 −0.731805 0.681514i \(-0.761322\pi\)
−0.731805 + 0.681514i \(0.761322\pi\)
\(620\) −7.44365 −0.298944
\(621\) 0 0
\(622\) 10.4853 0.420421
\(623\) 12.6863 0.508266
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 1.72792 0.0690617
\(627\) 0 0
\(628\) −15.5147 −0.619105
\(629\) −19.3137 −0.770088
\(630\) 0 0
\(631\) −31.1716 −1.24092 −0.620460 0.784238i \(-0.713054\pi\)
−0.620460 + 0.784238i \(0.713054\pi\)
\(632\) 0.656854 0.0261283
\(633\) 0 0
\(634\) 8.05887 0.320059
\(635\) 15.6569 0.621323
\(636\) 0 0
\(637\) 1.82843 0.0724449
\(638\) 0 0
\(639\) 0 0
\(640\) −10.5563 −0.417276
\(641\) −21.7990 −0.861008 −0.430504 0.902589i \(-0.641664\pi\)
−0.430504 + 0.902589i \(0.641664\pi\)
\(642\) 0 0
\(643\) 15.5147 0.611841 0.305920 0.952057i \(-0.401036\pi\)
0.305920 + 0.952057i \(0.401036\pi\)
\(644\) −39.5980 −1.56038
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −28.3431 −1.11428 −0.557142 0.830417i \(-0.688102\pi\)
−0.557142 + 0.830417i \(0.688102\pi\)
\(648\) 0 0
\(649\) −18.4853 −0.725611
\(650\) −3.02944 −0.118824
\(651\) 0 0
\(652\) 33.0416 1.29401
\(653\) −1.85786 −0.0727039 −0.0363519 0.999339i \(-0.511574\pi\)
−0.0363519 + 0.999339i \(0.511574\pi\)
\(654\) 0 0
\(655\) −1.31371 −0.0513308
\(656\) 37.4558 1.46241
\(657\) 0 0
\(658\) 6.14214 0.239445
\(659\) 11.5858 0.451318 0.225659 0.974206i \(-0.427546\pi\)
0.225659 + 0.974206i \(0.427546\pi\)
\(660\) 0 0
\(661\) 10.6863 0.415649 0.207824 0.978166i \(-0.433362\pi\)
0.207824 + 0.978166i \(0.433362\pi\)
\(662\) −0.171573 −0.00666837
\(663\) 0 0
\(664\) −5.79899 −0.225044
\(665\) −16.9706 −0.658090
\(666\) 0 0
\(667\) 0 0
\(668\) −16.1421 −0.624558
\(669\) 0 0
\(670\) −2.34315 −0.0905236
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) 23.6274 0.910770 0.455385 0.890295i \(-0.349502\pi\)
0.455385 + 0.890295i \(0.349502\pi\)
\(674\) 7.37258 0.283981
\(675\) 0 0
\(676\) 17.6569 0.679110
\(677\) −22.0000 −0.845529 −0.422764 0.906240i \(-0.638940\pi\)
−0.422764 + 0.906240i \(0.638940\pi\)
\(678\) 0 0
\(679\) 35.3137 1.35522
\(680\) 7.65685 0.293627
\(681\) 0 0
\(682\) 4.07107 0.155889
\(683\) 12.9706 0.496305 0.248152 0.968721i \(-0.420177\pi\)
0.248152 + 0.968721i \(0.420177\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) −7.02944 −0.268385
\(687\) 0 0
\(688\) −19.2426 −0.733619
\(689\) 13.6863 0.521406
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) 43.2548 1.64430
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) 14.0000 0.531050
\(696\) 0 0
\(697\) −60.2843 −2.28343
\(698\) 9.58579 0.362827
\(699\) 0 0
\(700\) 20.6863 0.781868
\(701\) −22.1127 −0.835185 −0.417593 0.908634i \(-0.637126\pi\)
−0.417593 + 0.908634i \(0.637126\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) −10.0711 −0.379568
\(705\) 0 0
\(706\) 2.88730 0.108665
\(707\) −38.6274 −1.45273
\(708\) 0 0
\(709\) 0.857864 0.0322178 0.0161089 0.999870i \(-0.494872\pi\)
0.0161089 + 0.999870i \(0.494872\pi\)
\(710\) 1.31371 0.0493026
\(711\) 0 0
\(712\) −7.11270 −0.266560
\(713\) 31.1716 1.16738
\(714\) 0 0
\(715\) 4.41421 0.165082
\(716\) 19.1716 0.716475
\(717\) 0 0
\(718\) 7.48528 0.279348
\(719\) −8.14214 −0.303650 −0.151825 0.988407i \(-0.548515\pi\)
−0.151825 + 0.988407i \(0.548515\pi\)
\(720\) 0 0
\(721\) 2.34315 0.0872633
\(722\) 7.04163 0.262062
\(723\) 0 0
\(724\) 26.1716 0.972659
\(725\) 0 0
\(726\) 0 0
\(727\) 21.3137 0.790482 0.395241 0.918578i \(-0.370661\pi\)
0.395241 + 0.918578i \(0.370661\pi\)
\(728\) −8.20101 −0.303950
\(729\) 0 0
\(730\) −1.65685 −0.0613229
\(731\) 30.9706 1.14549
\(732\) 0 0
\(733\) −49.2548 −1.81927 −0.909634 0.415410i \(-0.863638\pi\)
−0.909634 + 0.415410i \(0.863638\pi\)
\(734\) −7.45584 −0.275200
\(735\) 0 0
\(736\) 33.7990 1.24585
\(737\) −13.6569 −0.503057
\(738\) 0 0
\(739\) 10.0711 0.370470 0.185235 0.982694i \(-0.440695\pi\)
0.185235 + 0.982694i \(0.440695\pi\)
\(740\) −7.31371 −0.268857
\(741\) 0 0
\(742\) 8.76955 0.321940
\(743\) 12.3431 0.452826 0.226413 0.974031i \(-0.427300\pi\)
0.226413 + 0.974031i \(0.427300\pi\)
\(744\) 0 0
\(745\) 2.17157 0.0795603
\(746\) −1.52691 −0.0559042
\(747\) 0 0
\(748\) 21.3137 0.779306
\(749\) 25.9411 0.947868
\(750\) 0 0
\(751\) −2.68629 −0.0980242 −0.0490121 0.998798i \(-0.515607\pi\)
−0.0490121 + 0.998798i \(0.515607\pi\)
\(752\) 15.7279 0.573538
\(753\) 0 0
\(754\) 0 0
\(755\) 14.1421 0.514685
\(756\) 0 0
\(757\) −42.4853 −1.54415 −0.772077 0.635529i \(-0.780782\pi\)
−0.772077 + 0.635529i \(0.780782\pi\)
\(758\) −11.1716 −0.405770
\(759\) 0 0
\(760\) 9.51472 0.345135
\(761\) 33.5980 1.21793 0.608963 0.793199i \(-0.291586\pi\)
0.608963 + 0.793199i \(0.291586\pi\)
\(762\) 0 0
\(763\) 3.79899 0.137533
\(764\) −4.91169 −0.177699
\(765\) 0 0
\(766\) 8.48528 0.306586
\(767\) −14.0000 −0.505511
\(768\) 0 0
\(769\) −13.1127 −0.472856 −0.236428 0.971649i \(-0.575977\pi\)
−0.236428 + 0.971649i \(0.575977\pi\)
\(770\) 2.82843 0.101929
\(771\) 0 0
\(772\) −19.7990 −0.712581
\(773\) −36.4853 −1.31228 −0.656142 0.754637i \(-0.727813\pi\)
−0.656142 + 0.754637i \(0.727813\pi\)
\(774\) 0 0
\(775\) −16.2843 −0.584948
\(776\) −19.7990 −0.710742
\(777\) 0 0
\(778\) 15.3137 0.549023
\(779\) −74.9117 −2.68399
\(780\) 0 0
\(781\) 7.65685 0.273984
\(782\) −15.3137 −0.547617
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 8.48528 0.302853
\(786\) 0 0
\(787\) 42.0833 1.50011 0.750053 0.661378i \(-0.230028\pi\)
0.750053 + 0.661378i \(0.230028\pi\)
\(788\) 3.65685 0.130270
\(789\) 0 0
\(790\) −0.171573 −0.00610429
\(791\) 26.3431 0.936654
\(792\) 0 0
\(793\) −1.51472 −0.0537892
\(794\) 12.6985 0.450652
\(795\) 0 0
\(796\) −30.1421 −1.06836
\(797\) −55.7401 −1.97442 −0.987208 0.159437i \(-0.949032\pi\)
−0.987208 + 0.159437i \(0.949032\pi\)
\(798\) 0 0
\(799\) −25.3137 −0.895535
\(800\) −17.6569 −0.624264
\(801\) 0 0
\(802\) 3.04163 0.107404
\(803\) −9.65685 −0.340783
\(804\) 0 0
\(805\) 21.6569 0.763304
\(806\) 3.08326 0.108603
\(807\) 0 0
\(808\) 21.6569 0.761885
\(809\) −20.2843 −0.713157 −0.356578 0.934265i \(-0.616057\pi\)
−0.356578 + 0.934265i \(0.616057\pi\)
\(810\) 0 0
\(811\) 5.17157 0.181598 0.0907992 0.995869i \(-0.471058\pi\)
0.0907992 + 0.995869i \(0.471058\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.00000 0.140200
\(815\) −18.0711 −0.633002
\(816\) 0 0
\(817\) 38.4853 1.34643
\(818\) −6.20101 −0.216813
\(819\) 0 0
\(820\) −22.8284 −0.797203
\(821\) −15.4853 −0.540440 −0.270220 0.962799i \(-0.587096\pi\)
−0.270220 + 0.962799i \(0.587096\pi\)
\(822\) 0 0
\(823\) −2.28427 −0.0796247 −0.0398123 0.999207i \(-0.512676\pi\)
−0.0398123 + 0.999207i \(0.512676\pi\)
\(824\) −1.31371 −0.0457652
\(825\) 0 0
\(826\) −8.97056 −0.312126
\(827\) 13.1005 0.455549 0.227775 0.973714i \(-0.426855\pi\)
0.227775 + 0.973714i \(0.426855\pi\)
\(828\) 0 0
\(829\) −9.79899 −0.340333 −0.170166 0.985415i \(-0.554431\pi\)
−0.170166 + 0.985415i \(0.554431\pi\)
\(830\) 1.51472 0.0525767
\(831\) 0 0
\(832\) −7.62742 −0.264433
\(833\) −4.82843 −0.167295
\(834\) 0 0
\(835\) 8.82843 0.305520
\(836\) 26.4853 0.916013
\(837\) 0 0
\(838\) 10.9706 0.378972
\(839\) −22.0711 −0.761978 −0.380989 0.924580i \(-0.624416\pi\)
−0.380989 + 0.924580i \(0.624416\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 10.4020 0.358477
\(843\) 0 0
\(844\) 31.7868 1.09415
\(845\) −9.65685 −0.332206
\(846\) 0 0
\(847\) −14.6274 −0.502604
\(848\) 22.4558 0.771137
\(849\) 0 0
\(850\) 8.00000 0.274398
\(851\) 30.6274 1.04989
\(852\) 0 0
\(853\) −10.9706 −0.375625 −0.187812 0.982205i \(-0.560140\pi\)
−0.187812 + 0.982205i \(0.560140\pi\)
\(854\) −0.970563 −0.0332120
\(855\) 0 0
\(856\) −14.5442 −0.497109
\(857\) 11.8284 0.404051 0.202026 0.979380i \(-0.435248\pi\)
0.202026 + 0.979380i \(0.435248\pi\)
\(858\) 0 0
\(859\) 5.72792 0.195434 0.0977171 0.995214i \(-0.468846\pi\)
0.0977171 + 0.995214i \(0.468846\pi\)
\(860\) 11.7279 0.399919
\(861\) 0 0
\(862\) −3.45584 −0.117707
\(863\) 45.1127 1.53565 0.767827 0.640657i \(-0.221338\pi\)
0.767827 + 0.640657i \(0.221338\pi\)
\(864\) 0 0
\(865\) −23.6569 −0.804357
\(866\) 6.05887 0.205889
\(867\) 0 0
\(868\) −21.0538 −0.714613
\(869\) −1.00000 −0.0339227
\(870\) 0 0
\(871\) −10.3431 −0.350464
\(872\) −2.12994 −0.0721289
\(873\) 0 0
\(874\) −19.0294 −0.643680
\(875\) −25.4558 −0.860565
\(876\) 0 0
\(877\) −8.85786 −0.299109 −0.149554 0.988753i \(-0.547784\pi\)
−0.149554 + 0.988753i \(0.547784\pi\)
\(878\) −4.82843 −0.162952
\(879\) 0 0
\(880\) 7.24264 0.244149
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −46.4264 −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(884\) 16.1421 0.542919
\(885\) 0 0
\(886\) −14.7696 −0.496193
\(887\) 36.8995 1.23896 0.619482 0.785011i \(-0.287343\pi\)
0.619482 + 0.785011i \(0.287343\pi\)
\(888\) 0 0
\(889\) 44.2843 1.48525
\(890\) 1.85786 0.0622758
\(891\) 0 0
\(892\) 16.1421 0.540479
\(893\) −31.4558 −1.05263
\(894\) 0 0
\(895\) −10.4853 −0.350484
\(896\) −29.8579 −0.997481
\(897\) 0 0
\(898\) −0.426407 −0.0142294
\(899\) 0 0
\(900\) 0 0
\(901\) −36.1421 −1.20407
\(902\) 12.4853 0.415714
\(903\) 0 0
\(904\) −14.7696 −0.491228
\(905\) −14.3137 −0.475804
\(906\) 0 0
\(907\) 34.2843 1.13839 0.569195 0.822202i \(-0.307255\pi\)
0.569195 + 0.822202i \(0.307255\pi\)
\(908\) 36.8284 1.22219
\(909\) 0 0
\(910\) 2.14214 0.0710111
\(911\) −46.5563 −1.54248 −0.771240 0.636544i \(-0.780363\pi\)
−0.771240 + 0.636544i \(0.780363\pi\)
\(912\) 0 0
\(913\) 8.82843 0.292178
\(914\) 14.4853 0.479131
\(915\) 0 0
\(916\) −37.4558 −1.23758
\(917\) −3.71573 −0.122704
\(918\) 0 0
\(919\) −20.1421 −0.664428 −0.332214 0.943204i \(-0.607796\pi\)
−0.332214 + 0.943204i \(0.607796\pi\)
\(920\) −12.1421 −0.400314
\(921\) 0 0
\(922\) 5.79899 0.190980
\(923\) 5.79899 0.190876
\(924\) 0 0
\(925\) −16.0000 −0.526077
\(926\) −10.7696 −0.353909
\(927\) 0 0
\(928\) 0 0
\(929\) −41.3137 −1.35546 −0.677729 0.735311i \(-0.737036\pi\)
−0.677729 + 0.735311i \(0.737036\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −7.88730 −0.258357
\(933\) 0 0
\(934\) 13.4020 0.438527
\(935\) −11.6569 −0.381220
\(936\) 0 0
\(937\) 28.6274 0.935217 0.467608 0.883936i \(-0.345116\pi\)
0.467608 + 0.883936i \(0.345116\pi\)
\(938\) −6.62742 −0.216393
\(939\) 0 0
\(940\) −9.58579 −0.312654
\(941\) −22.5980 −0.736673 −0.368337 0.929693i \(-0.620073\pi\)
−0.368337 + 0.929693i \(0.620073\pi\)
\(942\) 0 0
\(943\) 95.5980 3.11310
\(944\) −22.9706 −0.747628
\(945\) 0 0
\(946\) −6.41421 −0.208544
\(947\) 39.3848 1.27983 0.639917 0.768444i \(-0.278969\pi\)
0.639917 + 0.768444i \(0.278969\pi\)
\(948\) 0 0
\(949\) −7.31371 −0.237413
\(950\) 9.94113 0.322533
\(951\) 0 0
\(952\) 21.6569 0.701903
\(953\) −9.62742 −0.311863 −0.155931 0.987768i \(-0.549838\pi\)
−0.155931 + 0.987768i \(0.549838\pi\)
\(954\) 0 0
\(955\) 2.68629 0.0869264
\(956\) −15.2548 −0.493377
\(957\) 0 0
\(958\) −5.34315 −0.172629
\(959\) 33.9411 1.09602
\(960\) 0 0
\(961\) −14.4264 −0.465368
\(962\) 3.02944 0.0976730
\(963\) 0 0
\(964\) −7.88730 −0.254033
\(965\) 10.8284 0.348579
\(966\) 0 0
\(967\) 26.7574 0.860459 0.430229 0.902720i \(-0.358433\pi\)
0.430229 + 0.902720i \(0.358433\pi\)
\(968\) 8.20101 0.263590
\(969\) 0 0
\(970\) 5.17157 0.166049
\(971\) −4.34315 −0.139378 −0.0696891 0.997569i \(-0.522201\pi\)
−0.0696891 + 0.997569i \(0.522201\pi\)
\(972\) 0 0
\(973\) 39.5980 1.26945
\(974\) −11.7990 −0.378064
\(975\) 0 0
\(976\) −2.48528 −0.0795519
\(977\) −41.8284 −1.33821 −0.669105 0.743168i \(-0.733322\pi\)
−0.669105 + 0.743168i \(0.733322\pi\)
\(978\) 0 0
\(979\) 10.8284 0.346078
\(980\) −1.82843 −0.0584070
\(981\) 0 0
\(982\) −5.28427 −0.168628
\(983\) 31.8701 1.01650 0.508248 0.861210i \(-0.330293\pi\)
0.508248 + 0.861210i \(0.330293\pi\)
\(984\) 0 0
\(985\) −2.00000 −0.0637253
\(986\) 0 0
\(987\) 0 0
\(988\) 20.0589 0.638158
\(989\) −49.1127 −1.56169
\(990\) 0 0
\(991\) −7.17157 −0.227813 −0.113906 0.993492i \(-0.536336\pi\)
−0.113906 + 0.993492i \(0.536336\pi\)
\(992\) 17.9706 0.570566
\(993\) 0 0
\(994\) 3.71573 0.117856
\(995\) 16.4853 0.522619
\(996\) 0 0
\(997\) 28.2843 0.895772 0.447886 0.894091i \(-0.352177\pi\)
0.447886 + 0.894091i \(0.352177\pi\)
\(998\) −6.20101 −0.196290
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.c.1.2 2
3.2 odd 2 841.2.a.d.1.1 2
29.28 even 2 261.2.a.d.1.1 2
87.2 even 28 841.2.e.k.236.2 24
87.5 odd 14 841.2.d.j.605.1 12
87.8 even 28 841.2.e.k.267.2 24
87.11 even 28 841.2.e.k.63.2 24
87.14 even 28 841.2.e.k.196.3 24
87.17 even 4 841.2.b.a.840.3 4
87.20 odd 14 841.2.d.f.574.1 12
87.23 odd 14 841.2.d.f.645.2 12
87.26 even 28 841.2.e.k.270.3 24
87.32 even 28 841.2.e.k.270.2 24
87.35 odd 14 841.2.d.j.645.1 12
87.38 odd 14 841.2.d.j.574.2 12
87.41 even 4 841.2.b.a.840.2 4
87.44 even 28 841.2.e.k.196.2 24
87.47 even 28 841.2.e.k.63.3 24
87.50 even 28 841.2.e.k.267.3 24
87.53 odd 14 841.2.d.f.605.2 12
87.56 even 28 841.2.e.k.236.3 24
87.62 odd 14 841.2.d.j.190.1 12
87.65 odd 14 841.2.d.f.571.2 12
87.68 even 28 841.2.e.k.651.2 24
87.71 odd 14 841.2.d.j.778.2 12
87.74 odd 14 841.2.d.f.778.1 12
87.77 even 28 841.2.e.k.651.3 24
87.80 odd 14 841.2.d.j.571.1 12
87.83 odd 14 841.2.d.f.190.2 12
87.86 odd 2 29.2.a.a.1.2 2
116.115 odd 2 4176.2.a.bq.1.1 2
145.144 even 2 6525.2.a.o.1.2 2
348.347 even 2 464.2.a.h.1.2 2
435.173 even 4 725.2.b.b.349.2 4
435.347 even 4 725.2.b.b.349.3 4
435.434 odd 2 725.2.a.b.1.1 2
609.608 even 2 1421.2.a.j.1.2 2
696.173 odd 2 1856.2.a.r.1.2 2
696.347 even 2 1856.2.a.w.1.1 2
957.956 even 2 3509.2.a.j.1.1 2
1131.1130 odd 2 4901.2.a.g.1.1 2
1479.1478 odd 2 8381.2.a.e.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.2 2 87.86 odd 2
261.2.a.d.1.1 2 29.28 even 2
464.2.a.h.1.2 2 348.347 even 2
725.2.a.b.1.1 2 435.434 odd 2
725.2.b.b.349.2 4 435.173 even 4
725.2.b.b.349.3 4 435.347 even 4
841.2.a.d.1.1 2 3.2 odd 2
841.2.b.a.840.2 4 87.41 even 4
841.2.b.a.840.3 4 87.17 even 4
841.2.d.f.190.2 12 87.83 odd 14
841.2.d.f.571.2 12 87.65 odd 14
841.2.d.f.574.1 12 87.20 odd 14
841.2.d.f.605.2 12 87.53 odd 14
841.2.d.f.645.2 12 87.23 odd 14
841.2.d.f.778.1 12 87.74 odd 14
841.2.d.j.190.1 12 87.62 odd 14
841.2.d.j.571.1 12 87.80 odd 14
841.2.d.j.574.2 12 87.38 odd 14
841.2.d.j.605.1 12 87.5 odd 14
841.2.d.j.645.1 12 87.35 odd 14
841.2.d.j.778.2 12 87.71 odd 14
841.2.e.k.63.2 24 87.11 even 28
841.2.e.k.63.3 24 87.47 even 28
841.2.e.k.196.2 24 87.44 even 28
841.2.e.k.196.3 24 87.14 even 28
841.2.e.k.236.2 24 87.2 even 28
841.2.e.k.236.3 24 87.56 even 28
841.2.e.k.267.2 24 87.8 even 28
841.2.e.k.267.3 24 87.50 even 28
841.2.e.k.270.2 24 87.32 even 28
841.2.e.k.270.3 24 87.26 even 28
841.2.e.k.651.2 24 87.68 even 28
841.2.e.k.651.3 24 87.77 even 28
1421.2.a.j.1.2 2 609.608 even 2
1856.2.a.r.1.2 2 696.173 odd 2
1856.2.a.w.1.1 2 696.347 even 2
3509.2.a.j.1.1 2 957.956 even 2
4176.2.a.bq.1.1 2 116.115 odd 2
4901.2.a.g.1.1 2 1131.1130 odd 2
6525.2.a.o.1.2 2 145.144 even 2
7569.2.a.c.1.2 2 1.1 even 1 trivial
8381.2.a.e.1.2 2 1479.1478 odd 2