Properties

Label 7569.2.a.u.1.4
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $4$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.4
Root \(1.33826\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} +4.63282 q^{7} -5.69033 q^{13} +4.00000 q^{16} +4.28135 q^{19} -5.00000 q^{25} -9.26564 q^{28} -8.64760 q^{31} +11.9534 q^{37} -13.0760 q^{43} +14.4630 q^{49} +11.3807 q^{52} -4.21917 q^{61} -8.00000 q^{64} -1.77267 q^{67} -16.2348 q^{73} -8.56271 q^{76} -3.39070 q^{79} -26.3623 q^{91} -17.5045 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + q^{7} - 2 q^{13} + 16 q^{16} - q^{19} - 20 q^{25} - 2 q^{28} - 4 q^{31} + 11 q^{37} + 5 q^{43} + 41 q^{49} + 4 q^{52} - 13 q^{61} - 32 q^{64} - 11 q^{67} - 10 q^{73} + 2 q^{76} - 13 q^{79}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 4.63282 1.75104 0.875520 0.483181i \(-0.160519\pi\)
0.875520 + 0.483181i \(0.160519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −5.69033 −1.57821 −0.789107 0.614256i \(-0.789456\pi\)
−0.789107 + 0.614256i \(0.789456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 4.28135 0.982210 0.491105 0.871100i \(-0.336593\pi\)
0.491105 + 0.871100i \(0.336593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −9.26564 −1.75104
\(29\) 0 0
\(30\) 0 0
\(31\) −8.64760 −1.55316 −0.776578 0.630022i \(-0.783046\pi\)
−0.776578 + 0.630022i \(0.783046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.9534 1.96513 0.982564 0.185924i \(-0.0595278\pi\)
0.982564 + 0.185924i \(0.0595278\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −13.0760 −1.99408 −0.997038 0.0769089i \(-0.975495\pi\)
−0.997038 + 0.0769089i \(0.975495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 14.4630 2.06614
\(50\) 0 0
\(51\) 0 0
\(52\) 11.3807 1.57821
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −4.21917 −0.540209 −0.270105 0.962831i \(-0.587058\pi\)
−0.270105 + 0.962831i \(0.587058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.77267 −0.216566 −0.108283 0.994120i \(-0.534535\pi\)
−0.108283 + 0.994120i \(0.534535\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −16.2348 −1.90014 −0.950068 0.312044i \(-0.898986\pi\)
−0.950068 + 0.312044i \(0.898986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −8.56271 −0.982210
\(77\) 0 0
\(78\) 0 0
\(79\) −3.39070 −0.381484 −0.190742 0.981640i \(-0.561089\pi\)
−0.190742 + 0.981640i \(0.561089\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −26.3623 −2.76352
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.5045 −1.77731 −0.888654 0.458577i \(-0.848359\pi\)
−0.888654 + 0.458577i \(0.848359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 2.88578 0.284345 0.142172 0.989842i \(-0.454591\pi\)
0.142172 + 0.989842i \(0.454591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 16.7842 1.60764 0.803819 0.594874i \(-0.202798\pi\)
0.803819 + 0.594874i \(0.202798\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 18.5313 1.75104
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 17.2952 1.55316
\(125\) 0 0
\(126\) 0 0
\(127\) 21.7236 1.92766 0.963830 0.266516i \(-0.0858726\pi\)
0.963830 + 0.266516i \(0.0858726\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 19.8347 1.71989
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −21.4171 −1.81657 −0.908285 0.418351i \(-0.862608\pi\)
−0.908285 + 0.418351i \(0.862608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −23.9068 −1.96513
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 24.5340 1.99655 0.998274 0.0587314i \(-0.0187055\pi\)
0.998274 + 0.0587314i \(0.0187055\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.890649 −0.0710815 −0.0355408 0.999368i \(-0.511315\pi\)
−0.0355408 + 0.999368i \(0.511315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.8668 1.00780 0.503902 0.863761i \(-0.331897\pi\)
0.503902 + 0.863761i \(0.331897\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 19.3799 1.49076
\(170\) 0 0
\(171\) 0 0
\(172\) 26.1521 1.99408
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −23.1641 −1.75104
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −9.60799 −0.714156 −0.357078 0.934075i \(-0.616227\pi\)
−0.357078 + 0.934075i \(0.616227\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −21.9329 −1.57876 −0.789382 0.613902i \(-0.789599\pi\)
−0.789382 + 0.613902i \(0.789599\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −28.9260 −2.06614
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 20.6163 1.46145 0.730726 0.682670i \(-0.239182\pi\)
0.730726 + 0.682670i \(0.239182\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −22.7613 −1.57821
\(209\) 0 0
\(210\) 0 0
\(211\) −29.0000 −1.99644 −0.998221 0.0596196i \(-0.981011\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −40.0628 −2.71964
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −11.0127 −0.737463 −0.368731 0.929536i \(-0.620208\pi\)
−0.368731 + 0.929536i \(0.620208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −29.0000 −1.91637 −0.958187 0.286143i \(-0.907627\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 30.6827 1.97645 0.988223 0.153021i \(-0.0489003\pi\)
0.988223 + 0.153021i \(0.0489003\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 8.43834 0.540209
\(245\) 0 0
\(246\) 0 0
\(247\) −24.3623 −1.55014
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 55.3780 3.44102
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 3.54534 0.216566
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −29.0000 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 15.2983 0.919187 0.459593 0.888129i \(-0.347995\pi\)
0.459593 + 0.888129i \(0.347995\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −31.9970 −1.90202 −0.951012 0.309155i \(-0.899954\pi\)
−0.951012 + 0.309155i \(0.899954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 32.4695 1.90014
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −60.5789 −3.49171
\(302\) 0 0
\(303\) 0 0
\(304\) 17.1254 0.982210
\(305\) 0 0
\(306\) 0 0
\(307\) 27.2975 1.55795 0.778976 0.627054i \(-0.215739\pi\)
0.778976 + 0.627054i \(0.215739\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −35.3155 −1.99615 −0.998075 0.0620147i \(-0.980247\pi\)
−0.998075 + 0.0620147i \(0.980247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 6.78141 0.381484
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 28.4516 1.57821
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −26.3613 −1.44895 −0.724475 0.689301i \(-0.757918\pi\)
−0.724475 + 0.689301i \(0.757918\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 34.5747 1.86686
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −35.9146 −1.92247 −0.961234 0.275736i \(-0.911079\pi\)
−0.961234 + 0.275736i \(0.911079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −0.670020 −0.0352642
\(362\) 0 0
\(363\) 0 0
\(364\) 52.7245 2.76352
\(365\) 0 0
\(366\) 0 0
\(367\) 4.00991 0.209316 0.104658 0.994508i \(-0.466625\pi\)
0.104658 + 0.994508i \(0.466625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 20.2783 1.04997 0.524985 0.851111i \(-0.324071\pi\)
0.524985 + 0.851111i \(0.324071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 35.0089 1.77731
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 28.9357 1.45224 0.726119 0.687569i \(-0.241322\pi\)
0.726119 + 0.687569i \(0.241322\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 49.2077 2.45121
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −29.0788 −1.43786 −0.718928 0.695085i \(-0.755367\pi\)
−0.718928 + 0.695085i \(0.755367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −5.77157 −0.284345
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −36.7509 −1.79113 −0.895564 0.444933i \(-0.853228\pi\)
−0.895564 + 0.444933i \(0.853228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −19.5466 −0.945928
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −18.7348 −0.900338 −0.450169 0.892943i \(-0.648636\pi\)
−0.450169 + 0.892943i \(0.648636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −33.5685 −1.60764
\(437\) 0 0
\(438\) 0 0
\(439\) −28.0793 −1.34015 −0.670077 0.742292i \(-0.733739\pi\)
−0.670077 + 0.742292i \(0.733739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −37.0625 −1.75104
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.13875 0.0532684 0.0266342 0.999645i \(-0.491521\pi\)
0.0266342 + 0.999645i \(0.491521\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 33.7697 1.56941 0.784705 0.619870i \(-0.212815\pi\)
0.784705 + 0.619870i \(0.212815\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −8.21245 −0.379216
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −21.4068 −0.982210
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −68.0188 −3.10139
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 41.6050 1.88530 0.942651 0.333781i \(-0.108325\pi\)
0.942651 + 0.333781i \(0.108325\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −34.5904 −1.55316
\(497\) 0 0
\(498\) 0 0
\(499\) 44.5811 1.99573 0.997863 0.0653408i \(-0.0208135\pi\)
0.997863 + 0.0653408i \(0.0208135\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −43.4473 −1.92766
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −75.2127 −3.32721
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −11.0083 −0.481361 −0.240681 0.970604i \(-0.577371\pi\)
−0.240681 + 0.970604i \(0.577371\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −39.6695 −1.71989
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −29.0000 −1.24681 −0.623404 0.781900i \(-0.714251\pi\)
−0.623404 + 0.781900i \(0.714251\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −26.6790 −1.14071 −0.570355 0.821398i \(-0.693195\pi\)
−0.570355 + 0.821398i \(0.693195\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −15.7085 −0.667994
\(554\) 0 0
\(555\) 0 0
\(556\) 42.8341 1.81657
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 74.4069 3.14708
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −13.5257 −0.566031 −0.283015 0.959115i \(-0.591335\pi\)
−0.283015 + 0.959115i \(0.591335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −47.8757 −1.99309 −0.996546 0.0830461i \(-0.973535\pi\)
−0.996546 + 0.0830461i \(0.973535\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −37.0234 −1.52552
\(590\) 0 0
\(591\) 0 0
\(592\) 47.8136 1.96513
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 13.4946 0.550454 0.275227 0.961379i \(-0.411247\pi\)
0.275227 + 0.961379i \(0.411247\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −49.0680 −1.99655
\(605\) 0 0
\(606\) 0 0
\(607\) −29.0000 −1.17707 −0.588537 0.808470i \(-0.700296\pi\)
−0.588537 + 0.808470i \(0.700296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −49.2140 −1.98773 −0.993867 0.110586i \(-0.964727\pi\)
−0.993867 + 0.110586i \(0.964727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −13.7347 −0.552044 −0.276022 0.961151i \(-0.589016\pi\)
−0.276022 + 0.961151i \(0.589016\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 1.78130 0.0710815
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −82.2992 −3.26081
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −7.00000 −0.276053 −0.138027 0.990429i \(-0.544076\pi\)
−0.138027 + 0.990429i \(0.544076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −25.7335 −1.00780
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 11.0000 0.427850 0.213925 0.976850i \(-0.431375\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −38.7597 −1.49076
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −81.0950 −3.11214
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −52.3041 −1.99408
\(689\) 0 0
\(690\) 0 0
\(691\) 50.8406 1.93407 0.967035 0.254645i \(-0.0819585\pi\)
0.967035 + 0.254645i \(0.0819585\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 46.3282 1.75104
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 51.1768 1.93017
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.372321 −0.0139828 −0.00699141 0.999976i \(-0.502225\pi\)
−0.00699141 + 0.999976i \(0.502225\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 13.3693 0.497899
\(722\) 0 0
\(723\) 0 0
\(724\) 19.2160 0.714156
\(725\) 0 0
\(726\) 0 0
\(727\) −26.4069 −0.979377 −0.489688 0.871898i \(-0.662889\pi\)
−0.489688 + 0.871898i \(0.662889\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −35.2182 −1.30081 −0.650407 0.759586i \(-0.725402\pi\)
−0.650407 + 0.759586i \(0.725402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −4.84695 −0.178298 −0.0891490 0.996018i \(-0.528415\pi\)
−0.0891490 + 0.996018i \(0.528415\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 47.6664 1.73937 0.869687 0.493604i \(-0.164321\pi\)
0.869687 + 0.493604i \(0.164321\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29.0000 −1.05402 −0.527011 0.849858i \(-0.676688\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 77.7583 2.81504
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 52.0949 1.87859 0.939295 0.343112i \(-0.111481\pi\)
0.939295 + 0.343112i \(0.111481\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 43.8658 1.57876
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 43.2380 1.55316
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 57.8520 2.06614
\(785\) 0 0
\(786\) 0 0
\(787\) −25.0000 −0.891154 −0.445577 0.895244i \(-0.647001\pi\)
−0.445577 + 0.895244i \(0.647001\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 24.0085 0.852566
\(794\) 0 0
\(795\) 0 0
\(796\) −41.2327 −1.46145
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 27.1886 0.954722 0.477361 0.878707i \(-0.341593\pi\)
0.477361 + 0.878707i \(0.341593\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −55.9831 −1.95860
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 37.6415 1.31210 0.656051 0.754717i \(-0.272226\pi\)
0.656051 + 0.754717i \(0.272226\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 56.5233 1.96314 0.981568 0.191115i \(-0.0612103\pi\)
0.981568 + 0.191115i \(0.0612103\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 45.5226 1.57821
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 58.0000 1.99644
\(845\) 0 0
\(846\) 0 0
\(847\) −50.9610 −1.75104
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 58.0000 1.98588 0.992941 0.118609i \(-0.0378434\pi\)
0.992941 + 0.118609i \(0.0378434\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 55.4857 1.89315 0.946574 0.322488i \(-0.104519\pi\)
0.946574 + 0.322488i \(0.104519\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 80.1255 2.71964
\(869\) 0 0
\(870\) 0 0
\(871\) 10.0871 0.341787
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.2902 0.448777 0.224389 0.974500i \(-0.427962\pi\)
0.224389 + 0.974500i \(0.427962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 58.4796 1.96800 0.983998 0.178182i \(-0.0570216\pi\)
0.983998 + 0.178182i \(0.0570216\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 100.642 3.37541
\(890\) 0 0
\(891\) 0 0
\(892\) 22.0253 0.737463
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −5.89076 −0.195599 −0.0977997 0.995206i \(-0.531180\pi\)
−0.0977997 + 0.995206i \(0.531180\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 58.0000 1.91637
\(917\) 0 0
\(918\) 0 0
\(919\) −45.7199 −1.50816 −0.754080 0.656783i \(-0.771917\pi\)
−0.754080 + 0.656783i \(0.771917\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −59.7670 −1.96513
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 61.9212 2.02939
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 92.3811 2.99882
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 43.7810 1.41229
\(962\) 0 0
\(963\) 0 0
\(964\) −61.3654 −1.97645
\(965\) 0 0
\(966\) 0 0
\(967\) 60.6577 1.95062 0.975310 0.220840i \(-0.0708800\pi\)
0.975310 + 0.220840i \(0.0708800\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −99.2213 −3.18089
\(974\) 0 0
\(975\) 0 0
\(976\) −16.8767 −0.540209
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 48.7246 1.55014
\(989\) 0 0
\(990\) 0 0
\(991\) −4.02453 −0.127843 −0.0639217 0.997955i \(-0.520361\pi\)
−0.0639217 + 0.997955i \(0.520361\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −39.6466 −1.25562 −0.627811 0.778366i \(-0.716049\pi\)
−0.627811 + 0.778366i \(0.716049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.u.1.4 4
3.2 odd 2 CM 7569.2.a.u.1.4 4
29.28 even 2 7569.2.a.v.1.4 yes 4
87.86 odd 2 7569.2.a.v.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.u.1.4 4 1.1 even 1 trivial
7569.2.a.u.1.4 4 3.2 odd 2 CM
7569.2.a.v.1.4 yes 4 29.28 even 2
7569.2.a.v.1.4 yes 4 87.86 odd 2