Properties

Label 7569.2.a.u.1.4
Level 75697569
Weight 22
Character 7569.1
Self dual yes
Analytic conductor 60.43960.439
Analytic rank 11
Dimension 44
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7569=32292 7569 = 3^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.438769289960.4387692899
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ15)+\Q(\zeta_{15})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x34x2+4x+1 x^{4} - x^{3} - 4x^{2} + 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.4
Root 1.338261.33826 of defining polynomial
Character χ\chi == 7569.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.00000q4+4.63282q75.69033q13+4.00000q16+4.28135q195.00000q259.26564q288.64760q31+11.9534q3713.0760q43+14.4630q49+11.3807q524.21917q618.00000q641.77267q6716.2348q738.56271q763.39070q7926.3623q9117.5045q97+O(q100)q-2.00000 q^{4} +4.63282 q^{7} -5.69033 q^{13} +4.00000 q^{16} +4.28135 q^{19} -5.00000 q^{25} -9.26564 q^{28} -8.64760 q^{31} +11.9534 q^{37} -13.0760 q^{43} +14.4630 q^{49} +11.3807 q^{52} -4.21917 q^{61} -8.00000 q^{64} -1.77267 q^{67} -16.2348 q^{73} -8.56271 q^{76} -3.39070 q^{79} -26.3623 q^{91} -17.5045 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q4+q72q13+16q16q1920q252q284q31+11q37+5q43+41q49+4q5213q6132q6411q6710q73+2q7613q79++14q97+O(q100) 4 q - 8 q^{4} + q^{7} - 2 q^{13} + 16 q^{16} - q^{19} - 20 q^{25} - 2 q^{28} - 4 q^{31} + 11 q^{37} + 5 q^{43} + 41 q^{49} + 4 q^{52} - 13 q^{61} - 32 q^{64} - 11 q^{67} - 10 q^{73} + 2 q^{76} - 13 q^{79}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
33 0 0
44 −2.00000 −1.00000
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 0 0
77 4.63282 1.75104 0.875520 0.483181i 0.160519π-0.160519\pi
0.875520 + 0.483181i 0.160519π0.160519\pi
88 0 0
99 0 0
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 −5.69033 −1.57821 −0.789107 0.614256i 0.789456π-0.789456\pi
−0.789107 + 0.614256i 0.789456π0.789456\pi
1414 0 0
1515 0 0
1616 4.00000 1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 4.28135 0.982210 0.491105 0.871100i 0.336593π-0.336593\pi
0.491105 + 0.871100i 0.336593π0.336593\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −5.00000 −1.00000
2626 0 0
2727 0 0
2828 −9.26564 −1.75104
2929 0 0
3030 0 0
3131 −8.64760 −1.55316 −0.776578 0.630022i 0.783046π-0.783046\pi
−0.776578 + 0.630022i 0.783046π0.783046\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 11.9534 1.96513 0.982564 0.185924i 0.0595278π-0.0595278\pi
0.982564 + 0.185924i 0.0595278π0.0595278\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 −13.0760 −1.99408 −0.997038 0.0769089i 0.975495π-0.975495\pi
−0.997038 + 0.0769089i 0.975495π0.975495\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 14.4630 2.06614
5050 0 0
5151 0 0
5252 11.3807 1.57821
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 −4.21917 −0.540209 −0.270105 0.962831i 0.587058π-0.587058\pi
−0.270105 + 0.962831i 0.587058π0.587058\pi
6262 0 0
6363 0 0
6464 −8.00000 −1.00000
6565 0 0
6666 0 0
6767 −1.77267 −0.216566 −0.108283 0.994120i 0.534535π-0.534535\pi
−0.108283 + 0.994120i 0.534535π0.534535\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 −16.2348 −1.90014 −0.950068 0.312044i 0.898986π-0.898986\pi
−0.950068 + 0.312044i 0.898986π0.898986\pi
7474 0 0
7575 0 0
7676 −8.56271 −0.982210
7777 0 0
7878 0 0
7979 −3.39070 −0.381484 −0.190742 0.981640i 0.561089π-0.561089\pi
−0.190742 + 0.981640i 0.561089π0.561089\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 −26.3623 −2.76352
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −17.5045 −1.77731 −0.888654 0.458577i 0.848359π-0.848359\pi
−0.888654 + 0.458577i 0.848359π0.848359\pi
9898 0 0
9999 0 0
100100 10.0000 1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 2.88578 0.284345 0.142172 0.989842i 0.454591π-0.454591\pi
0.142172 + 0.989842i 0.454591π0.454591\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 16.7842 1.60764 0.803819 0.594874i 0.202798π-0.202798\pi
0.803819 + 0.594874i 0.202798π0.202798\pi
110110 0 0
111111 0 0
112112 18.5313 1.75104
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 0 0
123123 0 0
124124 17.2952 1.55316
125125 0 0
126126 0 0
127127 21.7236 1.92766 0.963830 0.266516i 0.0858726π-0.0858726\pi
0.963830 + 0.266516i 0.0858726π0.0858726\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 19.8347 1.71989
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 −21.4171 −1.81657 −0.908285 0.418351i 0.862608π-0.862608\pi
−0.908285 + 0.418351i 0.862608π0.862608\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −23.9068 −1.96513
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 24.5340 1.99655 0.998274 0.0587314i 0.0187055π-0.0187055\pi
0.998274 + 0.0587314i 0.0187055π0.0187055\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −0.890649 −0.0710815 −0.0355408 0.999368i 0.511315π-0.511315\pi
−0.0355408 + 0.999368i 0.511315π0.511315\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 12.8668 1.00780 0.503902 0.863761i 0.331897π-0.331897\pi
0.503902 + 0.863761i 0.331897π0.331897\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 19.3799 1.49076
170170 0 0
171171 0 0
172172 26.1521 1.99408
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 −23.1641 −1.75104
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −9.60799 −0.714156 −0.357078 0.934075i 0.616227π-0.616227\pi
−0.357078 + 0.934075i 0.616227π0.616227\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −21.9329 −1.57876 −0.789382 0.613902i 0.789599π-0.789599\pi
−0.789382 + 0.613902i 0.789599π0.789599\pi
194194 0 0
195195 0 0
196196 −28.9260 −2.06614
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 20.6163 1.46145 0.730726 0.682670i 0.239182π-0.239182\pi
0.730726 + 0.682670i 0.239182π0.239182\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 −22.7613 −1.57821
209209 0 0
210210 0 0
211211 −29.0000 −1.99644 −0.998221 0.0596196i 0.981011π-0.981011\pi
−0.998221 + 0.0596196i 0.981011π0.981011\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −40.0628 −2.71964
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −11.0127 −0.737463 −0.368731 0.929536i 0.620208π-0.620208\pi
−0.368731 + 0.929536i 0.620208π0.620208\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −29.0000 −1.91637 −0.958187 0.286143i 0.907627π-0.907627\pi
−0.958187 + 0.286143i 0.907627π0.907627\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 30.6827 1.97645 0.988223 0.153021i 0.0489003π-0.0489003\pi
0.988223 + 0.153021i 0.0489003π0.0489003\pi
242242 0 0
243243 0 0
244244 8.43834 0.540209
245245 0 0
246246 0 0
247247 −24.3623 −1.55014
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 16.0000 1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 55.3780 3.44102
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 3.54534 0.216566
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 −29.0000 −1.76162 −0.880812 0.473466i 0.843003π-0.843003\pi
−0.880812 + 0.473466i 0.843003π0.843003\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 15.2983 0.919187 0.459593 0.888129i 0.347995π-0.347995\pi
0.459593 + 0.888129i 0.347995π0.347995\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 −31.9970 −1.90202 −0.951012 0.309155i 0.899954π-0.899954\pi
−0.951012 + 0.309155i 0.899954π0.899954\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0 0
292292 32.4695 1.90014
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −60.5789 −3.49171
302302 0 0
303303 0 0
304304 17.1254 0.982210
305305 0 0
306306 0 0
307307 27.2975 1.55795 0.778976 0.627054i 0.215739π-0.215739\pi
0.778976 + 0.627054i 0.215739π0.215739\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −35.3155 −1.99615 −0.998075 0.0620147i 0.980247π-0.980247\pi
−0.998075 + 0.0620147i 0.980247π0.980247\pi
314314 0 0
315315 0 0
316316 6.78141 0.381484
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 28.4516 1.57821
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −26.3613 −1.44895 −0.724475 0.689301i 0.757918π-0.757918\pi
−0.724475 + 0.689301i 0.757918π0.757918\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −29.0000 −1.57973 −0.789865 0.613280i 0.789850π-0.789850\pi
−0.789865 + 0.613280i 0.789850π0.789850\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 34.5747 1.86686
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 −35.9146 −1.92247 −0.961234 0.275736i 0.911079π-0.911079\pi
−0.961234 + 0.275736i 0.911079π0.911079\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −0.670020 −0.0352642
362362 0 0
363363 0 0
364364 52.7245 2.76352
365365 0 0
366366 0 0
367367 4.00991 0.209316 0.104658 0.994508i 0.466625π-0.466625\pi
0.104658 + 0.994508i 0.466625π0.466625\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 20.2783 1.04997 0.524985 0.851111i 0.324071π-0.324071\pi
0.524985 + 0.851111i 0.324071π0.324071\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −29.0000 −1.48963 −0.744815 0.667271i 0.767462π-0.767462\pi
−0.744815 + 0.667271i 0.767462π0.767462\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 35.0089 1.77731
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 28.9357 1.45224 0.726119 0.687569i 0.241322π-0.241322\pi
0.726119 + 0.687569i 0.241322π0.241322\pi
398398 0 0
399399 0 0
400400 −20.0000 −1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 49.2077 2.45121
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −29.0788 −1.43786 −0.718928 0.695085i 0.755367π-0.755367\pi
−0.718928 + 0.695085i 0.755367π0.755367\pi
410410 0 0
411411 0 0
412412 −5.77157 −0.284345
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −36.7509 −1.79113 −0.895564 0.444933i 0.853228π-0.853228\pi
−0.895564 + 0.444933i 0.853228π0.853228\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −19.5466 −0.945928
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −18.7348 −0.900338 −0.450169 0.892943i 0.648636π-0.648636\pi
−0.450169 + 0.892943i 0.648636π0.648636\pi
434434 0 0
435435 0 0
436436 −33.5685 −1.60764
437437 0 0
438438 0 0
439439 −28.0793 −1.34015 −0.670077 0.742292i 0.733739π-0.733739\pi
−0.670077 + 0.742292i 0.733739π0.733739\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −37.0625 −1.75104
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.13875 0.0532684 0.0266342 0.999645i 0.491521π-0.491521\pi
0.0266342 + 0.999645i 0.491521π0.491521\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 33.7697 1.56941 0.784705 0.619870i 0.212815π-0.212815\pi
0.784705 + 0.619870i 0.212815π0.212815\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 −8.21245 −0.379216
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −21.4068 −0.982210
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 −68.0188 −3.10139
482482 0 0
483483 0 0
484484 22.0000 1.00000
485485 0 0
486486 0 0
487487 41.6050 1.88530 0.942651 0.333781i 0.108325π-0.108325\pi
0.942651 + 0.333781i 0.108325π0.108325\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −34.5904 −1.55316
497497 0 0
498498 0 0
499499 44.5811 1.99573 0.997863 0.0653408i 0.0208135π-0.0208135\pi
0.997863 + 0.0653408i 0.0208135π0.0208135\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 −43.4473 −1.92766
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 −75.2127 −3.32721
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 −11.0083 −0.481361 −0.240681 0.970604i 0.577371π-0.577371\pi
−0.240681 + 0.970604i 0.577371π0.577371\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 −39.6695 −1.71989
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −29.0000 −1.24681 −0.623404 0.781900i 0.714251π-0.714251\pi
−0.623404 + 0.781900i 0.714251π0.714251\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −26.6790 −1.14071 −0.570355 0.821398i 0.693195π-0.693195\pi
−0.570355 + 0.821398i 0.693195π0.693195\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 −15.7085 −0.667994
554554 0 0
555555 0 0
556556 42.8341 1.81657
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 74.4069 3.14708
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 −13.5257 −0.566031 −0.283015 0.959115i 0.591335π-0.591335\pi
−0.283015 + 0.959115i 0.591335π0.591335\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −47.8757 −1.99309 −0.996546 0.0830461i 0.973535π-0.973535\pi
−0.996546 + 0.0830461i 0.973535π0.973535\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 −37.0234 −1.52552
590590 0 0
591591 0 0
592592 47.8136 1.96513
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 13.4946 0.550454 0.275227 0.961379i 0.411247π-0.411247\pi
0.275227 + 0.961379i 0.411247π0.411247\pi
602602 0 0
603603 0 0
604604 −49.0680 −1.99655
605605 0 0
606606 0 0
607607 −29.0000 −1.17707 −0.588537 0.808470i 0.700296π-0.700296\pi
−0.588537 + 0.808470i 0.700296π0.700296\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −49.2140 −1.98773 −0.993867 0.110586i 0.964727π-0.964727\pi
−0.993867 + 0.110586i 0.964727π0.964727\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 −13.7347 −0.552044 −0.276022 0.961151i 0.589016π-0.589016\pi
−0.276022 + 0.961151i 0.589016π0.589016\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 1.78130 0.0710815
629629 0 0
630630 0 0
631631 −1.00000 −0.0398094 −0.0199047 0.999802i 0.506336π-0.506336\pi
−0.0199047 + 0.999802i 0.506336π0.506336\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −82.2992 −3.26081
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 −7.00000 −0.276053 −0.138027 0.990429i 0.544076π-0.544076\pi
−0.138027 + 0.990429i 0.544076π0.544076\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −25.7335 −1.00780
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 11.0000 0.427850 0.213925 0.976850i 0.431375π-0.431375\pi
0.213925 + 0.976850i 0.431375π0.431375\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −13.0000 −0.501113 −0.250557 0.968102i 0.580614π-0.580614\pi
−0.250557 + 0.968102i 0.580614π0.580614\pi
674674 0 0
675675 0 0
676676 −38.7597 −1.49076
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 −81.0950 −3.11214
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 −52.3041 −1.99408
689689 0 0
690690 0 0
691691 50.8406 1.93407 0.967035 0.254645i 0.0819585π-0.0819585\pi
0.967035 + 0.254645i 0.0819585π0.0819585\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 46.3282 1.75104
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 51.1768 1.93017
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.372321 −0.0139828 −0.00699141 0.999976i 0.502225π-0.502225\pi
−0.00699141 + 0.999976i 0.502225π0.502225\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 13.3693 0.497899
722722 0 0
723723 0 0
724724 19.2160 0.714156
725725 0 0
726726 0 0
727727 −26.4069 −0.979377 −0.489688 0.871898i 0.662889π-0.662889\pi
−0.489688 + 0.871898i 0.662889π0.662889\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −35.2182 −1.30081 −0.650407 0.759586i 0.725402π-0.725402\pi
−0.650407 + 0.759586i 0.725402π0.725402\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −4.84695 −0.178298 −0.0891490 0.996018i 0.528415π-0.528415\pi
−0.0891490 + 0.996018i 0.528415π0.528415\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 47.6664 1.73937 0.869687 0.493604i 0.164321π-0.164321\pi
0.869687 + 0.493604i 0.164321π0.164321\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −29.0000 −1.05402 −0.527011 0.849858i 0.676688π-0.676688\pi
−0.527011 + 0.849858i 0.676688π0.676688\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 77.7583 2.81504
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 52.0949 1.87859 0.939295 0.343112i 0.111481π-0.111481\pi
0.939295 + 0.343112i 0.111481π0.111481\pi
770770 0 0
771771 0 0
772772 43.8658 1.57876
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 43.2380 1.55316
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 57.8520 2.06614
785785 0 0
786786 0 0
787787 −25.0000 −0.891154 −0.445577 0.895244i 0.647001π-0.647001\pi
−0.445577 + 0.895244i 0.647001π0.647001\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 24.0085 0.852566
794794 0 0
795795 0 0
796796 −41.2327 −1.46145
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 27.1886 0.954722 0.477361 0.878707i 0.341593π-0.341593\pi
0.477361 + 0.878707i 0.341593π0.341593\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −55.9831 −1.95860
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 37.6415 1.31210 0.656051 0.754717i 0.272226π-0.272226\pi
0.656051 + 0.754717i 0.272226π0.272226\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 56.5233 1.96314 0.981568 0.191115i 0.0612103π-0.0612103\pi
0.981568 + 0.191115i 0.0612103π0.0612103\pi
830830 0 0
831831 0 0
832832 45.5226 1.57821
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 0 0
842842 0 0
843843 0 0
844844 58.0000 1.99644
845845 0 0
846846 0 0
847847 −50.9610 −1.75104
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 58.0000 1.98588 0.992941 0.118609i 0.0378434π-0.0378434\pi
0.992941 + 0.118609i 0.0378434π0.0378434\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 55.4857 1.89315 0.946574 0.322488i 0.104519π-0.104519\pi
0.946574 + 0.322488i 0.104519π0.104519\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 80.1255 2.71964
869869 0 0
870870 0 0
871871 10.0871 0.341787
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 13.2902 0.448777 0.224389 0.974500i 0.427962π-0.427962\pi
0.224389 + 0.974500i 0.427962π0.427962\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 58.4796 1.96800 0.983998 0.178182i 0.0570216π-0.0570216\pi
0.983998 + 0.178182i 0.0570216π0.0570216\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 100.642 3.37541
890890 0 0
891891 0 0
892892 22.0253 0.737463
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −5.89076 −0.195599 −0.0977997 0.995206i 0.531180π-0.531180\pi
−0.0977997 + 0.995206i 0.531180π0.531180\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 58.0000 1.91637
917917 0 0
918918 0 0
919919 −45.7199 −1.50816 −0.754080 0.656783i 0.771917π-0.771917\pi
−0.754080 + 0.656783i 0.771917π0.771917\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −59.7670 −1.96513
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 61.9212 2.02939
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 35.0000 1.14340 0.571700 0.820463i 0.306284π-0.306284\pi
0.571700 + 0.820463i 0.306284π0.306284\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 92.3811 2.99882
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 43.7810 1.41229
962962 0 0
963963 0 0
964964 −61.3654 −1.97645
965965 0 0
966966 0 0
967967 60.6577 1.95062 0.975310 0.220840i 0.0708800π-0.0708800\pi
0.975310 + 0.220840i 0.0708800π0.0708800\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 −99.2213 −3.18089
974974 0 0
975975 0 0
976976 −16.8767 −0.540209
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 48.7246 1.55014
989989 0 0
990990 0 0
991991 −4.02453 −0.127843 −0.0639217 0.997955i 0.520361π-0.520361\pi
−0.0639217 + 0.997955i 0.520361π0.520361\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −39.6466 −1.25562 −0.627811 0.778366i 0.716049π-0.716049\pi
−0.627811 + 0.778366i 0.716049π0.716049\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.u.1.4 4
3.2 odd 2 CM 7569.2.a.u.1.4 4
29.28 even 2 7569.2.a.v.1.4 yes 4
87.86 odd 2 7569.2.a.v.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.u.1.4 4 1.1 even 1 trivial
7569.2.a.u.1.4 4 3.2 odd 2 CM
7569.2.a.v.1.4 yes 4 29.28 even 2
7569.2.a.v.1.4 yes 4 87.86 odd 2