Properties

Label 76.1.c.a.37.1
Level 7676
Weight 11
Character 76.37
Self dual yes
Analytic conductor 0.0380.038
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -19
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [76,1,Mod(37,76)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(76, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("76.37");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 76=2219 76 = 2^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 76.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.03792894096010.0379289409601
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.76.1
Artin image: S3S_3
Artin field: Galois closure of 3.1.76.1
Stark unit: Root of x33x2+x1x^{3} - 3x^{2} + x - 1

Embedding invariants

Embedding label 37.1
Character χ\chi == 76.37

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q51.00000q7+1.00000q91.00000q111.00000q17+1.00000q19+2.00000q23+1.00000q351.00000q431.00000q451.00000q47+1.00000q551.00000q611.00000q631.00000q73+1.00000q77+1.00000q81+2.00000q83+1.00000q851.00000q951.00000q99+O(q100)q-1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} -1.00000 q^{17} +1.00000 q^{19} +2.00000 q^{23} +1.00000 q^{35} -1.00000 q^{43} -1.00000 q^{45} -1.00000 q^{47} +1.00000 q^{55} -1.00000 q^{61} -1.00000 q^{63} -1.00000 q^{73} +1.00000 q^{77} +1.00000 q^{81} +2.00000 q^{83} +1.00000 q^{85} -1.00000 q^{95} -1.00000 q^{99} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/76Z)×\left(\mathbb{Z}/76\mathbb{Z}\right)^\times.

nn 2121 3939
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 1.00000 00
−1.00000 π\pi
44 0 0
55 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
66 0 0
77 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 0 0
99 1.00000 1.00000
1010 0 0
1111 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 0 0
1616 0 0
1717 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 0 0
1919 1.00000 1.00000
2020 0 0
2121 0 0
2222 0 0
2323 2.00000 2.00000 1.00000 00
1.00000 00
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 0 0
3434 0 0
3535 1.00000 1.00000
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 −1.00000 −1.00000
4646 0 0
4747 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 1.00000 1.00000
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 0 0
6363 −1.00000 −1.00000
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0 0
7575 0 0
7676 0 0
7777 1.00000 1.00000
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 1.00000 1.00000
8282 0 0
8383 2.00000 2.00000 1.00000 00
1.00000 00
8484 0 0
8585 1.00000 1.00000
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 −1.00000 −1.00000
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 −1.00000 −1.00000
100100 0 0
101101 2.00000 2.00000 1.00000 00
1.00000 00
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 −2.00000 −2.00000
116116 0 0
117117 0 0
118118 0 0
119119 1.00000 1.00000
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 1.00000 1.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 0 0
130130 0 0
131131 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 −1.00000 −1.00000
134134 0 0
135135 0 0
136136 0 0
137137 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −1.00000 −1.00000
154154 0 0
155155 0 0
156156 0 0
157157 2.00000 2.00000 1.00000 00
1.00000 00
158158 0 0
159159 0 0
160160 0 0
161161 −2.00000 −2.00000
162162 0 0
163163 2.00000 2.00000 1.00000 00
1.00000 00
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.00000 1.00000
170170 0 0
171171 1.00000 1.00000
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 1.00000 1.00000
188188 0 0
189189 0 0
190190 0 0
191191 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 2.00000 2.00000 1.00000 00
1.00000 00
198198 0 0
199199 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 2.00000 2.00000
208208 0 0
209209 −1.00000 −1.00000
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.00000 1.00000
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 1.00000 1.00000
236236 0 0
237237 0 0
238238 0 0
239239 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 −2.00000 −2.00000
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 2.00000 2.00000 1.00000 00
1.00000 00
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 1.00000 1.00000
302302 0 0
303303 0 0
304304 0 0
305305 1.00000 1.00000
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 2.00000 2.00000 1.00000 00
1.00000 00
314314 0 0
315315 1.00000 1.00000
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 −1.00000 −1.00000
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 1.00000 1.00000
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0 0
346346 0 0
347347 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 2.00000 2.00000 1.00000 00
1.00000 00
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 1.00000 1.00000
366366 0 0
367367 2.00000 2.00000 1.00000 00
1.00000 00
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 −1.00000 −1.00000
386386 0 0
387387 −1.00000 −1.00000
388388 0 0
389389 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 −2.00000 −2.00000
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 −1.00000 −1.00000
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −2.00000 −2.00000
416416 0 0
417417 0 0
418418 0 0
419419 2.00000 2.00000 1.00000 00
1.00000 00
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 −1.00000 −1.00000
424424 0 0
425425 0 0
426426 0 0
427427 1.00000 1.00000
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 2.00000 2.00000
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 0 0
459459 0 0
460460 0 0
461461 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
464464 0 0
465465 0 0
466466 0 0
467467 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 1.00000 1.00000
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 2.00000 2.00000 1.00000 00
1.00000 00
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 2.00000 2.00000 1.00000 00
1.00000 00
492492 0 0
493493 0 0
494494 0 0
495495 1.00000 1.00000
496496 0 0
497497 0 0
498498 0 0
499499 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 0 0
502502 0 0
503503 2.00000 2.00000 1.00000 00
1.00000 00
504504 0 0
505505 −2.00000 −2.00000
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 1.00000 1.00000
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 1.00000 1.00000
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 3.00000 3.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 −1.00000 −1.00000
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0 0
567567 −1.00000 −1.00000
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 2.00000 2.00000 1.00000 00
1.00000 00
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 0 0
580580 0 0
581581 −2.00000 −2.00000
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 2.00000 2.00000 1.00000 00
1.00000 00
594594 0 0
595595 −1.00000 −1.00000
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 0 0
619619 2.00000 2.00000 1.00000 00
1.00000 00
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −1.00000 −1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0 0
646646 0 0
647647 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 1.00000 1.00000
656656 0 0
657657 −1.00000 −1.00000
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 1.00000 1.00000
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 1.00000 1.00000
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 1.00000 1.00000
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 1.00000 1.00000
694694 0 0
695695 1.00000 1.00000
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 2.00000 2.00000 1.00000 00
1.00000 00
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 −2.00000 −2.00000
708708 0 0
709709 2.00000 2.00000 1.00000 00
1.00000 00
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 1.00000 1.00000
732732 0 0
733733 2.00000 2.00000 1.00000 00
1.00000 00
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 1.00000 1.00000
746746 0 0
747747 2.00000 2.00000
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 0 0
765765 1.00000 1.00000
766766 0 0
767767 0 0
768768 0 0
769769 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −2.00000 −2.00000
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 1.00000 1.00000
800800 0 0
801801 0 0
802802 0 0
803803 1.00000 1.00000
804804 0 0
805805 2.00000 2.00000
806806 0 0
807807 0 0
808808 0 0
809809 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 −2.00000 −2.00000
816816 0 0
817817 −1.00000 −1.00000
818818 0 0
819819 0 0
820820 0 0
821821 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 0 0
823823 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 −1.00000 −1.00000
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 2.00000 2.00000 1.00000 00
1.00000 00
854854 0 0
855855 −1.00000 −1.00000
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1.00000 −1.00000
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 0 0
883883 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 −1.00000 −1.00000
892892 0 0
893893 −1.00000 −1.00000
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 2.00000 2.00000
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 −2.00000 −2.00000
914914 0 0
915915 0 0
916916 0 0
917917 1.00000 1.00000
918918 0 0
919919 2.00000 2.00000 1.00000 00
1.00000 00
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 2.00000 2.00000 1.00000 00
1.00000 00
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 −1.00000 −1.00000
936936 0 0
937937 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 2.00000 2.00000 1.00000 00
1.00000 00
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 1.00000 1.00000
956956 0 0
957957 0 0
958958 0 0
959959 1.00000 1.00000
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 2.00000 2.00000 1.00000 00
1.00000 00
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 1.00000 1.00000
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 −2.00000 −2.00000
986986 0 0
987987 0 0
988988 0 0
989989 −2.00000 −2.00000
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 1.00000 1.00000
996996 0 0
997997 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 76.1.c.a.37.1 1
3.2 odd 2 684.1.h.a.37.1 1
4.3 odd 2 304.1.e.a.113.1 1
5.2 odd 4 1900.1.g.a.949.1 2
5.3 odd 4 1900.1.g.a.949.2 2
5.4 even 2 1900.1.e.a.1101.1 1
7.2 even 3 3724.1.bc.c.949.1 2
7.3 odd 6 3724.1.bc.b.569.1 2
7.4 even 3 3724.1.bc.c.569.1 2
7.5 odd 6 3724.1.bc.b.949.1 2
7.6 odd 2 3724.1.e.c.1177.1 1
8.3 odd 2 1216.1.e.b.1025.1 1
8.5 even 2 1216.1.e.a.1025.1 1
12.11 even 2 2736.1.o.b.721.1 1
19.2 odd 18 1444.1.j.a.1345.1 6
19.3 odd 18 1444.1.j.a.333.1 6
19.4 even 9 1444.1.j.a.1029.1 6
19.5 even 9 1444.1.j.a.849.1 6
19.6 even 9 1444.1.j.a.477.1 6
19.7 even 3 1444.1.h.a.293.1 2
19.8 odd 6 1444.1.h.a.69.1 2
19.9 even 9 1444.1.j.a.1021.1 6
19.10 odd 18 1444.1.j.a.1021.1 6
19.11 even 3 1444.1.h.a.69.1 2
19.12 odd 6 1444.1.h.a.293.1 2
19.13 odd 18 1444.1.j.a.477.1 6
19.14 odd 18 1444.1.j.a.849.1 6
19.15 odd 18 1444.1.j.a.1029.1 6
19.16 even 9 1444.1.j.a.333.1 6
19.17 even 9 1444.1.j.a.1345.1 6
19.18 odd 2 CM 76.1.c.a.37.1 1
57.56 even 2 684.1.h.a.37.1 1
76.75 even 2 304.1.e.a.113.1 1
95.18 even 4 1900.1.g.a.949.2 2
95.37 even 4 1900.1.g.a.949.1 2
95.94 odd 2 1900.1.e.a.1101.1 1
133.18 odd 6 3724.1.bc.c.569.1 2
133.37 odd 6 3724.1.bc.c.949.1 2
133.75 even 6 3724.1.bc.b.949.1 2
133.94 even 6 3724.1.bc.b.569.1 2
133.132 even 2 3724.1.e.c.1177.1 1
152.37 odd 2 1216.1.e.a.1025.1 1
152.75 even 2 1216.1.e.b.1025.1 1
228.227 odd 2 2736.1.o.b.721.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.1.c.a.37.1 1 1.1 even 1 trivial
76.1.c.a.37.1 1 19.18 odd 2 CM
304.1.e.a.113.1 1 4.3 odd 2
304.1.e.a.113.1 1 76.75 even 2
684.1.h.a.37.1 1 3.2 odd 2
684.1.h.a.37.1 1 57.56 even 2
1216.1.e.a.1025.1 1 8.5 even 2
1216.1.e.a.1025.1 1 152.37 odd 2
1216.1.e.b.1025.1 1 8.3 odd 2
1216.1.e.b.1025.1 1 152.75 even 2
1444.1.h.a.69.1 2 19.8 odd 6
1444.1.h.a.69.1 2 19.11 even 3
1444.1.h.a.293.1 2 19.7 even 3
1444.1.h.a.293.1 2 19.12 odd 6
1444.1.j.a.333.1 6 19.3 odd 18
1444.1.j.a.333.1 6 19.16 even 9
1444.1.j.a.477.1 6 19.6 even 9
1444.1.j.a.477.1 6 19.13 odd 18
1444.1.j.a.849.1 6 19.5 even 9
1444.1.j.a.849.1 6 19.14 odd 18
1444.1.j.a.1021.1 6 19.9 even 9
1444.1.j.a.1021.1 6 19.10 odd 18
1444.1.j.a.1029.1 6 19.4 even 9
1444.1.j.a.1029.1 6 19.15 odd 18
1444.1.j.a.1345.1 6 19.2 odd 18
1444.1.j.a.1345.1 6 19.17 even 9
1900.1.e.a.1101.1 1 5.4 even 2
1900.1.e.a.1101.1 1 95.94 odd 2
1900.1.g.a.949.1 2 5.2 odd 4
1900.1.g.a.949.1 2 95.37 even 4
1900.1.g.a.949.2 2 5.3 odd 4
1900.1.g.a.949.2 2 95.18 even 4
2736.1.o.b.721.1 1 12.11 even 2
2736.1.o.b.721.1 1 228.227 odd 2
3724.1.e.c.1177.1 1 7.6 odd 2
3724.1.e.c.1177.1 1 133.132 even 2
3724.1.bc.b.569.1 2 7.3 odd 6
3724.1.bc.b.569.1 2 133.94 even 6
3724.1.bc.b.949.1 2 7.5 odd 6
3724.1.bc.b.949.1 2 133.75 even 6
3724.1.bc.c.569.1 2 7.4 even 3
3724.1.bc.c.569.1 2 133.18 odd 6
3724.1.bc.c.949.1 2 7.2 even 3
3724.1.bc.c.949.1 2 133.37 odd 6