Properties

Label 76.3.g.b
Level 7676
Weight 33
Character orbit 76.g
Analytic conductor 2.0712.071
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [76,3,Mod(7,76)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(76, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("76.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 76=2219 76 = 2^{2} \cdot 19
Weight: k k == 3 3
Character orbit: [χ][\chi] == 76.g (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.070850009142.07085000914
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(3,10)\Q(\sqrt{-3}, \sqrt{-10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x410x2+100 x^{4} - 10x^{2} + 100 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2q2+(β2+β11)q3+4q4+(2β3+2β2β12)q5+(2β2+2β12)q6+(β38β2+4)q7+8q8+(2β3+4β22β1)q9++(26β3+104β2+208)q99+O(q100) q + 2 q^{2} + ( - \beta_{2} + \beta_1 - 1) q^{3} + 4 q^{4} + (2 \beta_{3} + 2 \beta_{2} - \beta_1 - 2) q^{5} + ( - 2 \beta_{2} + 2 \beta_1 - 2) q^{6} + (\beta_{3} - 8 \beta_{2} + 4) q^{7} + 8 q^{8} + ( - 2 \beta_{3} + 4 \beta_{2} - 2 \beta_1) q^{9}+ \cdots + ( - 26 \beta_{3} + 104 \beta_{2} + \cdots - 208) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q26q3+16q44q512q6+32q8+8q98q1024q1212q1348q15+64q1632q17+16q18+42q1916q2044q21+12q23+624q99+O(q100) 4 q + 8 q^{2} - 6 q^{3} + 16 q^{4} - 4 q^{5} - 12 q^{6} + 32 q^{8} + 8 q^{9} - 8 q^{10} - 24 q^{12} - 12 q^{13} - 48 q^{15} + 64 q^{16} - 32 q^{17} + 16 q^{18} + 42 q^{19} - 16 q^{20} - 44 q^{21} + 12 q^{23}+ \cdots - 624 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x410x2+100 x^{4} - 10x^{2} + 100 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/10 ( \nu^{2} ) / 10 Copy content Toggle raw display
β3\beta_{3}== (ν3)/10 ( \nu^{3} ) / 10 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 10β2 10\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 10β3 10\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/76Z)×\left(\mathbb{Z}/76\mathbb{Z}\right)^\times.

nn 2121 3939
χ(n)\chi(n) β2-\beta_{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
−2.73861 + 1.58114i
2.73861 1.58114i
−2.73861 1.58114i
2.73861 + 1.58114i
2.00000 −4.23861 + 2.44716i 4.00000 1.73861 + 3.01137i −8.47723 + 4.89433i 10.0905i 8.00000 7.47723 12.9509i 3.47723 + 6.02273i
7.2 2.00000 1.23861 0.715113i 4.00000 −3.73861 6.47547i 2.47723 1.43023i 3.76593i 8.00000 −3.47723 + 6.02273i −7.47723 12.9509i
11.1 2.00000 −4.23861 2.44716i 4.00000 1.73861 3.01137i −8.47723 4.89433i 10.0905i 8.00000 7.47723 + 12.9509i 3.47723 6.02273i
11.2 2.00000 1.23861 + 0.715113i 4.00000 −3.73861 + 6.47547i 2.47723 + 1.43023i 3.76593i 8.00000 −3.47723 6.02273i −7.47723 + 12.9509i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
76.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.3.g.b yes 4
4.b odd 2 1 76.3.g.a 4
19.c even 3 1 76.3.g.a 4
76.g odd 6 1 inner 76.3.g.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.3.g.a 4 4.b odd 2 1
76.3.g.a 4 19.c even 3 1
76.3.g.b yes 4 1.a even 1 1 trivial
76.3.g.b yes 4 76.g odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+6T33+5T3242T3+49 T_{3}^{4} + 6T_{3}^{3} + 5T_{3}^{2} - 42T_{3} + 49 acting on S3new(76,[χ])S_{3}^{\mathrm{new}}(76, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2)4 (T - 2)^{4} Copy content Toggle raw display
33 T4+6T3++49 T^{4} + 6 T^{3} + \cdots + 49 Copy content Toggle raw display
55 T4+4T3++676 T^{4} + 4 T^{3} + \cdots + 676 Copy content Toggle raw display
77 T4+116T2+1444 T^{4} + 116T^{2} + 1444 Copy content Toggle raw display
1111 T4+506T2+61009 T^{4} + 506 T^{2} + 61009 Copy content Toggle raw display
1313 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
1717 T4+32T3++18496 T^{4} + 32 T^{3} + \cdots + 18496 Copy content Toggle raw display
1919 T442T3++130321 T^{4} - 42 T^{3} + \cdots + 130321 Copy content Toggle raw display
2323 T412T3++636804 T^{4} - 12 T^{3} + \cdots + 636804 Copy content Toggle raw display
2929 T4+4T3++676 T^{4} + 4 T^{3} + \cdots + 676 Copy content Toggle raw display
3131 T4+1580T2+36100 T^{4} + 1580 T^{2} + 36100 Copy content Toggle raw display
3737 (T2+48T174)2 (T^{2} + 48 T - 174)^{2} Copy content Toggle raw display
4141 T426T3++96721 T^{4} - 26 T^{3} + \cdots + 96721 Copy content Toggle raw display
4343 T4+72T3++322624 T^{4} + 72 T^{3} + \cdots + 322624 Copy content Toggle raw display
4747 T4490T2+240100 T^{4} - 490 T^{2} + 240100 Copy content Toggle raw display
5353 T4124T3++11316496 T^{4} - 124 T^{3} + \cdots + 11316496 Copy content Toggle raw display
5959 T4+78T3++247009 T^{4} + 78 T^{3} + \cdots + 247009 Copy content Toggle raw display
6161 T4+44T3++206116 T^{4} + 44 T^{3} + \cdots + 206116 Copy content Toggle raw display
6767 T4+102T3++12552849 T^{4} + 102 T^{3} + \cdots + 12552849 Copy content Toggle raw display
7171 T4204T3++2274064 T^{4} - 204 T^{3} + \cdots + 2274064 Copy content Toggle raw display
7373 T4+26T3++96721 T^{4} + 26 T^{3} + \cdots + 96721 Copy content Toggle raw display
7979 T4+360T3++103225600 T^{4} + 360 T^{3} + \cdots + 103225600 Copy content Toggle raw display
8383 T4+9386T2+6385729 T^{4} + 9386 T^{2} + 6385729 Copy content Toggle raw display
8989 T4+16T3++208975936 T^{4} + 16 T^{3} + \cdots + 208975936 Copy content Toggle raw display
9797 T4+234T3++184117761 T^{4} + 234 T^{3} + \cdots + 184117761 Copy content Toggle raw display
show more
show less