Properties

Label 760.2.p.b
Level $760$
Weight $2$
Character orbit 760.p
Analytic conductor $6.069$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(379,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{2} - 2 \beta_{2} q^{3} + ( - \beta_{3} - 1) q^{4} + (\beta_{3} - \beta_{2}) q^{5} + (2 \beta_{3} - 2) q^{6} + 3 \beta_{2} q^{7} - 2 \beta_{2} q^{8} + 5 q^{9} + (\beta_{3} + \beta_{2} - \beta_1 - 1) q^{10}+ \cdots + (11 \beta_{2} + 11 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{6} + 20 q^{9} - 4 q^{10} + 12 q^{14} + 16 q^{15} - 8 q^{16} + 16 q^{19} + 12 q^{20} - 48 q^{21} + 32 q^{24} - 4 q^{25} - 12 q^{26} - 24 q^{29} - 24 q^{30} + 8 q^{31} - 24 q^{34} - 24 q^{35}+ \cdots - 32 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 1.22474i
−0.707107 + 1.22474i
−0.707107 1.22474i 2.82843 −1.00000 + 1.73205i 1.41421 1.73205i −2.00000 3.46410i −4.24264 2.82843 5.00000 −3.12132 0.507306i
379.2 −0.707107 + 1.22474i 2.82843 −1.00000 1.73205i 1.41421 + 1.73205i −2.00000 + 3.46410i −4.24264 2.82843 5.00000 −3.12132 + 0.507306i
379.3 0.707107 1.22474i −2.82843 −1.00000 1.73205i −1.41421 + 1.73205i −2.00000 + 3.46410i 4.24264 −2.82843 5.00000 1.12132 + 2.95680i
379.4 0.707107 + 1.22474i −2.82843 −1.00000 + 1.73205i −1.41421 1.73205i −2.00000 3.46410i 4.24264 −2.82843 5.00000 1.12132 2.95680i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
152.b even 2 1 inner
760.p even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 760.2.p.b 4
5.b even 2 1 inner 760.2.p.b 4
8.d odd 2 1 760.2.p.c yes 4
19.b odd 2 1 760.2.p.c yes 4
40.e odd 2 1 760.2.p.c yes 4
95.d odd 2 1 760.2.p.c yes 4
152.b even 2 1 inner 760.2.p.b 4
760.p even 2 1 inner 760.2.p.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.p.b 4 1.a even 1 1 trivial
760.2.p.b 4 5.b even 2 1 inner
760.2.p.b 4 152.b even 2 1 inner
760.2.p.b 4 760.p even 2 1 inner
760.2.p.c yes 4 8.d odd 2 1
760.2.p.c yes 4 19.b odd 2 1
760.2.p.c yes 4 40.e odd 2 1
760.2.p.c yes 4 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(760, [\chi])\):

\( T_{3}^{2} - 8 \) Copy content Toggle raw display
\( T_{7}^{2} - 18 \) Copy content Toggle raw display
\( T_{29} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 8 T + 19)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{4} \) Copy content Toggle raw display
$31$ \( (T - 2)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 192)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 192)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T - 6)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T + 10)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 150)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
show more
show less