Properties

Label 760.2.p.g.379.8
Level $760$
Weight $2$
Character 760.379
Analytic conductor $6.069$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(379,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1499238400.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 59x^{4} - 66x^{3} + 54x^{2} - 26x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.8
Root \(0.500000 + 1.41267i\) of defining polynomial
Character \(\chi\) \(=\) 760.379
Dual form 760.2.p.g.379.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +1.00000 q^{3} +2.00000i q^{4} +(1.91267 - 1.15831i) q^{5} +(1.00000 + 1.00000i) q^{6} +3.21974 q^{7} +(-2.00000 + 2.00000i) q^{8} -2.00000 q^{9} +(3.07098 + 0.754359i) q^{10} -2.31662 q^{11} +2.00000i q^{12} +3.31662i q^{13} +(3.21974 + 3.21974i) q^{14} +(1.91267 - 1.15831i) q^{15} -4.00000 q^{16} +0.605599i q^{17} +(-2.00000 - 2.00000i) q^{18} +(4.31662 + 0.605599i) q^{19} +(2.31662 + 3.82534i) q^{20} +3.21974 q^{21} +(-2.31662 - 2.31662i) q^{22} +4.43094 q^{23} +(-2.00000 + 2.00000i) q^{24} +(2.31662 - 4.43094i) q^{25} +(-3.31662 + 3.31662i) q^{26} -5.00000 q^{27} +6.43949i q^{28} +5.64214 q^{29} +(3.07098 + 0.754359i) q^{30} -5.03654 q^{31} +(-4.00000 - 4.00000i) q^{32} -2.31662 q^{33} +(-0.605599 + 0.605599i) q^{34} +(6.15831 - 3.72947i) q^{35} -4.00000i q^{36} -6.63325i q^{37} +(3.71103 + 4.92222i) q^{38} +3.31662i q^{39} +(-1.50872 + 6.14197i) q^{40} -2.61414i q^{41} +(3.21974 + 3.21974i) q^{42} -12.6872i q^{43} -4.63325i q^{44} +(-3.82534 + 2.31662i) q^{45} +(4.43094 + 4.43094i) q^{46} -7.65069 q^{47} -4.00000 q^{48} +3.36675 q^{49} +(6.74757 - 2.11432i) q^{50} +0.605599i q^{51} -6.63325 q^{52} +13.3166i q^{53} +(-5.00000 - 5.00000i) q^{54} +(-4.43094 + 2.68338i) q^{55} +(-6.43949 + 6.43949i) q^{56} +(4.31662 + 0.605599i) q^{57} +(5.64214 + 5.64214i) q^{58} +9.46748i q^{59} +(2.31662 + 3.82534i) q^{60} -4.31662i q^{61} +(-5.03654 - 5.03654i) q^{62} -6.43949 q^{63} -8.00000i q^{64} +(3.84169 + 6.34361i) q^{65} +(-2.31662 - 2.31662i) q^{66} -11.6332 q^{67} -1.21120 q^{68} +4.43094 q^{69} +(9.88778 + 2.42884i) q^{70} +6.24774 q^{71} +(4.00000 - 4.00000i) q^{72} -7.04509i q^{73} +(6.63325 - 6.63325i) q^{74} +(2.31662 - 4.43094i) q^{75} +(-1.21120 + 8.63325i) q^{76} -7.45894 q^{77} +(-3.31662 + 3.31662i) q^{78} -16.5126 q^{79} +(-7.65069 + 4.63325i) q^{80} +1.00000 q^{81} +(2.61414 - 2.61414i) q^{82} +6.43949i q^{83} +6.43949i q^{84} +(0.701473 + 1.15831i) q^{85} +(12.6872 - 12.6872i) q^{86} +5.64214 q^{87} +(4.63325 - 4.63325i) q^{88} -12.6872i q^{89} +(-6.14197 - 1.50872i) q^{90} +10.6787i q^{91} +8.86188i q^{92} -5.03654 q^{93} +(-7.65069 - 7.65069i) q^{94} +(8.95776 - 3.84169i) q^{95} +(-4.00000 - 4.00000i) q^{96} +2.00000 q^{97} +(3.36675 + 3.36675i) q^{98} +4.63325 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} + 8 q^{6} - 16 q^{8} - 16 q^{9} - 4 q^{10} + 8 q^{11} - 32 q^{16} - 16 q^{18} + 8 q^{19} - 8 q^{20} + 8 q^{22} - 16 q^{24} - 8 q^{25} - 40 q^{27} - 4 q^{30} - 32 q^{32} + 8 q^{33}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 1.91267 1.15831i 0.855373 0.518013i
\(6\) 1.00000 + 1.00000i 0.408248 + 0.408248i
\(7\) 3.21974 1.21695 0.608474 0.793574i \(-0.291782\pi\)
0.608474 + 0.793574i \(0.291782\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −2.00000 −0.666667
\(10\) 3.07098 + 0.754359i 0.971130 + 0.238549i
\(11\) −2.31662 −0.698489 −0.349244 0.937032i \(-0.613562\pi\)
−0.349244 + 0.937032i \(0.613562\pi\)
\(12\) 2.00000i 0.577350i
\(13\) 3.31662i 0.919866i 0.887954 + 0.459933i \(0.152127\pi\)
−0.887954 + 0.459933i \(0.847873\pi\)
\(14\) 3.21974 + 3.21974i 0.860513 + 0.860513i
\(15\) 1.91267 1.15831i 0.493850 0.299075i
\(16\) −4.00000 −1.00000
\(17\) 0.605599i 0.146879i 0.997300 + 0.0734397i \(0.0233976\pi\)
−0.997300 + 0.0734397i \(0.976602\pi\)
\(18\) −2.00000 2.00000i −0.471405 0.471405i
\(19\) 4.31662 + 0.605599i 0.990302 + 0.138934i
\(20\) 2.31662 + 3.82534i 0.518013 + 0.855373i
\(21\) 3.21974 0.702606
\(22\) −2.31662 2.31662i −0.493906 0.493906i
\(23\) 4.43094 0.923915 0.461958 0.886902i \(-0.347147\pi\)
0.461958 + 0.886902i \(0.347147\pi\)
\(24\) −2.00000 + 2.00000i −0.408248 + 0.408248i
\(25\) 2.31662 4.43094i 0.463325 0.886188i
\(26\) −3.31662 + 3.31662i −0.650444 + 0.650444i
\(27\) −5.00000 −0.962250
\(28\) 6.43949i 1.21695i
\(29\) 5.64214 1.04772 0.523860 0.851805i \(-0.324492\pi\)
0.523860 + 0.851805i \(0.324492\pi\)
\(30\) 3.07098 + 0.754359i 0.560682 + 0.137727i
\(31\) −5.03654 −0.904590 −0.452295 0.891869i \(-0.649395\pi\)
−0.452295 + 0.891869i \(0.649395\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) −2.31662 −0.403273
\(34\) −0.605599 + 0.605599i −0.103859 + 0.103859i
\(35\) 6.15831 3.72947i 1.04094 0.630395i
\(36\) 4.00000i 0.666667i
\(37\) 6.63325i 1.09050i −0.838274 0.545250i \(-0.816435\pi\)
0.838274 0.545250i \(-0.183565\pi\)
\(38\) 3.71103 + 4.92222i 0.602008 + 0.798490i
\(39\) 3.31662i 0.531085i
\(40\) −1.50872 + 6.14197i −0.238549 + 0.971130i
\(41\) 2.61414i 0.408261i −0.978944 0.204130i \(-0.934563\pi\)
0.978944 0.204130i \(-0.0654367\pi\)
\(42\) 3.21974 + 3.21974i 0.496817 + 0.496817i
\(43\) 12.6872i 1.93478i −0.253284 0.967392i \(-0.581511\pi\)
0.253284 0.967392i \(-0.418489\pi\)
\(44\) 4.63325i 0.698489i
\(45\) −3.82534 + 2.31662i −0.570248 + 0.345342i
\(46\) 4.43094 + 4.43094i 0.653307 + 0.653307i
\(47\) −7.65069 −1.11597 −0.557984 0.829852i \(-0.688425\pi\)
−0.557984 + 0.829852i \(0.688425\pi\)
\(48\) −4.00000 −0.577350
\(49\) 3.36675 0.480964
\(50\) 6.74757 2.11432i 0.954250 0.299010i
\(51\) 0.605599i 0.0848009i
\(52\) −6.63325 −0.919866
\(53\) 13.3166i 1.82918i 0.404383 + 0.914590i \(0.367486\pi\)
−0.404383 + 0.914590i \(0.632514\pi\)
\(54\) −5.00000 5.00000i −0.680414 0.680414i
\(55\) −4.43094 + 2.68338i −0.597468 + 0.361826i
\(56\) −6.43949 + 6.43949i −0.860513 + 0.860513i
\(57\) 4.31662 + 0.605599i 0.571751 + 0.0802136i
\(58\) 5.64214 + 5.64214i 0.740849 + 0.740849i
\(59\) 9.46748i 1.23256i 0.787527 + 0.616281i \(0.211361\pi\)
−0.787527 + 0.616281i \(0.788639\pi\)
\(60\) 2.31662 + 3.82534i 0.299075 + 0.493850i
\(61\) 4.31662i 0.552687i −0.961059 0.276344i \(-0.910877\pi\)
0.961059 0.276344i \(-0.0891228\pi\)
\(62\) −5.03654 5.03654i −0.639641 0.639641i
\(63\) −6.43949 −0.811299
\(64\) 8.00000i 1.00000i
\(65\) 3.84169 + 6.34361i 0.476503 + 0.786828i
\(66\) −2.31662 2.31662i −0.285157 0.285157i
\(67\) −11.6332 −1.42123 −0.710614 0.703582i \(-0.751583\pi\)
−0.710614 + 0.703582i \(0.751583\pi\)
\(68\) −1.21120 −0.146879
\(69\) 4.43094 0.533423
\(70\) 9.88778 + 2.42884i 1.18182 + 0.290302i
\(71\) 6.24774 0.741470 0.370735 0.928739i \(-0.379106\pi\)
0.370735 + 0.928739i \(0.379106\pi\)
\(72\) 4.00000 4.00000i 0.471405 0.471405i
\(73\) 7.04509i 0.824565i −0.911056 0.412283i \(-0.864732\pi\)
0.911056 0.412283i \(-0.135268\pi\)
\(74\) 6.63325 6.63325i 0.771100 0.771100i
\(75\) 2.31662 4.43094i 0.267501 0.511641i
\(76\) −1.21120 + 8.63325i −0.138934 + 0.990302i
\(77\) −7.45894 −0.850025
\(78\) −3.31662 + 3.31662i −0.375534 + 0.375534i
\(79\) −16.5126 −1.85781 −0.928905 0.370319i \(-0.879248\pi\)
−0.928905 + 0.370319i \(0.879248\pi\)
\(80\) −7.65069 + 4.63325i −0.855373 + 0.518013i
\(81\) 1.00000 0.111111
\(82\) 2.61414 2.61414i 0.288684 0.288684i
\(83\) 6.43949i 0.706826i 0.935467 + 0.353413i \(0.114979\pi\)
−0.935467 + 0.353413i \(0.885021\pi\)
\(84\) 6.43949i 0.702606i
\(85\) 0.701473 + 1.15831i 0.0760854 + 0.125637i
\(86\) 12.6872 12.6872i 1.36810 1.36810i
\(87\) 5.64214 0.604901
\(88\) 4.63325 4.63325i 0.493906 0.493906i
\(89\) 12.6872i 1.34484i −0.740168 0.672422i \(-0.765254\pi\)
0.740168 0.672422i \(-0.234746\pi\)
\(90\) −6.14197 1.50872i −0.647420 0.159033i
\(91\) 10.6787i 1.11943i
\(92\) 8.86188i 0.923915i
\(93\) −5.03654 −0.522265
\(94\) −7.65069 7.65069i −0.789108 0.789108i
\(95\) 8.95776 3.84169i 0.919047 0.394149i
\(96\) −4.00000 4.00000i −0.408248 0.408248i
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 3.36675 + 3.36675i 0.340093 + 0.340093i
\(99\) 4.63325 0.465659
\(100\) 8.86188 + 4.63325i 0.886188 + 0.463325i
\(101\) 4.31662i 0.429520i −0.976667 0.214760i \(-0.931103\pi\)
0.976667 0.214760i \(-0.0688970\pi\)
\(102\) −0.605599 + 0.605599i −0.0599633 + 0.0599633i
\(103\) 1.68338i 0.165868i −0.996555 0.0829339i \(-0.973571\pi\)
0.996555 0.0829339i \(-0.0264291\pi\)
\(104\) −6.63325 6.63325i −0.650444 0.650444i
\(105\) 6.15831 3.72947i 0.600990 0.363959i
\(106\) −13.3166 + 13.3166i −1.29342 + 1.29342i
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 10.0000i 0.962250i
\(109\) 10.8704 1.04120 0.520599 0.853801i \(-0.325709\pi\)
0.520599 + 0.853801i \(0.325709\pi\)
\(110\) −7.11432 1.74757i −0.678324 0.166624i
\(111\) 6.63325i 0.629600i
\(112\) −12.8790 −1.21695
\(113\) −8.31662 −0.782362 −0.391181 0.920314i \(-0.627933\pi\)
−0.391181 + 0.920314i \(0.627933\pi\)
\(114\) 3.71103 + 4.92222i 0.347569 + 0.461009i
\(115\) 8.47494 5.13242i 0.790292 0.478600i
\(116\) 11.2843i 1.04772i
\(117\) 6.63325i 0.613244i
\(118\) −9.46748 + 9.46748i −0.871553 + 0.871553i
\(119\) 1.94987i 0.178745i
\(120\) −1.50872 + 6.14197i −0.137727 + 0.560682i
\(121\) −5.63325 −0.512114
\(122\) 4.31662 4.31662i 0.390809 0.390809i
\(123\) 2.61414i 0.235709i
\(124\) 10.0731i 0.904590i
\(125\) −0.701473 11.1583i −0.0627417 0.998030i
\(126\) −6.43949 6.43949i −0.573675 0.573675i
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 12.6872i 1.11705i
\(130\) −2.50193 + 10.1853i −0.219433 + 0.893310i
\(131\) −6.63325 −0.579550 −0.289775 0.957095i \(-0.593580\pi\)
−0.289775 + 0.957095i \(0.593580\pi\)
\(132\) 4.63325i 0.403273i
\(133\) 13.8984 + 1.94987i 1.20515 + 0.169076i
\(134\) −11.6332 11.6332i −1.00496 1.00496i
\(135\) −9.56336 + 5.79156i −0.823083 + 0.498458i
\(136\) −1.21120 1.21120i −0.103859 0.103859i
\(137\) 15.9070i 1.35902i −0.733664 0.679512i \(-0.762191\pi\)
0.733664 0.679512i \(-0.237809\pi\)
\(138\) 4.43094 + 4.43094i 0.377187 + 0.377187i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 7.45894 + 12.3166i 0.630395 + 1.04094i
\(141\) −7.65069 −0.644304
\(142\) 6.24774 + 6.24774i 0.524299 + 0.524299i
\(143\) 7.68338i 0.642516i
\(144\) 8.00000 0.666667
\(145\) 10.7916 6.53536i 0.896190 0.542732i
\(146\) 7.04509 7.04509i 0.583056 0.583056i
\(147\) 3.36675 0.277685
\(148\) 13.2665 1.09050
\(149\) 14.0000i 1.14692i 0.819232 + 0.573462i \(0.194400\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 6.74757 2.11432i 0.550937 0.172633i
\(151\) −7.65069 −0.622604 −0.311302 0.950311i \(-0.600765\pi\)
−0.311302 + 0.950311i \(0.600765\pi\)
\(152\) −9.84445 + 7.42205i −0.798490 + 0.602008i
\(153\) 1.21120i 0.0979196i
\(154\) −7.45894 7.45894i −0.601058 0.601058i
\(155\) −9.63325 + 5.83389i −0.773761 + 0.468589i
\(156\) −6.63325 −0.531085
\(157\) 8.86188 0.707255 0.353628 0.935386i \(-0.384948\pi\)
0.353628 + 0.935386i \(0.384948\pi\)
\(158\) −16.5126 16.5126i −1.31367 1.31367i
\(159\) 13.3166i 1.05608i
\(160\) −12.2839 3.01744i −0.971130 0.238549i
\(161\) 14.2665 1.12436
\(162\) 1.00000 + 1.00000i 0.0785674 + 0.0785674i
\(163\) 9.05363i 0.709135i 0.935030 + 0.354568i \(0.115372\pi\)
−0.935030 + 0.354568i \(0.884628\pi\)
\(164\) 5.22829 0.408261
\(165\) −4.43094 + 2.68338i −0.344948 + 0.208900i
\(166\) −6.43949 + 6.43949i −0.499801 + 0.499801i
\(167\) 19.5831i 1.51539i −0.652610 0.757694i \(-0.726326\pi\)
0.652610 0.757694i \(-0.273674\pi\)
\(168\) −6.43949 + 6.43949i −0.496817 + 0.496817i
\(169\) 2.00000 0.153846
\(170\) −0.456839 + 1.85979i −0.0350380 + 0.142639i
\(171\) −8.63325 1.21120i −0.660201 0.0926227i
\(172\) 25.3745 1.93478
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) 5.64214 + 5.64214i 0.427730 + 0.427730i
\(175\) 7.45894 14.2665i 0.563843 1.07845i
\(176\) 9.26650 0.698489
\(177\) 9.46748i 0.711620i
\(178\) 12.6872 12.6872i 0.950948 0.950948i
\(179\) 22.9521i 1.71552i 0.514053 + 0.857759i \(0.328144\pi\)
−0.514053 + 0.857759i \(0.671856\pi\)
\(180\) −4.63325 7.65069i −0.345342 0.570248i
\(181\) 14.0902 1.04731 0.523657 0.851929i \(-0.324567\pi\)
0.523657 + 0.851929i \(0.324567\pi\)
\(182\) −10.6787 + 10.6787i −0.791557 + 0.791557i
\(183\) 4.31662i 0.319094i
\(184\) −8.86188 + 8.86188i −0.653307 + 0.653307i
\(185\) −7.68338 12.6872i −0.564893 0.932784i
\(186\) −5.03654 5.03654i −0.369297 0.369297i
\(187\) 1.40295i 0.102594i
\(188\) 15.3014i 1.11597i
\(189\) −16.0987 −1.17101
\(190\) 12.7994 + 5.11607i 0.928569 + 0.371159i
\(191\) 16.5831i 1.19991i 0.800033 + 0.599956i \(0.204815\pi\)
−0.800033 + 0.599956i \(0.795185\pi\)
\(192\) 8.00000i 0.577350i
\(193\) 16.0000 1.15171 0.575853 0.817554i \(-0.304670\pi\)
0.575853 + 0.817554i \(0.304670\pi\)
\(194\) 2.00000 + 2.00000i 0.143592 + 0.143592i
\(195\) 3.84169 + 6.34361i 0.275109 + 0.454276i
\(196\) 6.73350i 0.480964i
\(197\) 16.7043 1.19013 0.595067 0.803676i \(-0.297126\pi\)
0.595067 + 0.803676i \(0.297126\pi\)
\(198\) 4.63325 + 4.63325i 0.329271 + 0.329271i
\(199\) 11.9499i 0.847104i 0.905872 + 0.423552i \(0.139217\pi\)
−0.905872 + 0.423552i \(0.860783\pi\)
\(200\) 4.22864 + 13.4951i 0.299010 + 0.954250i
\(201\) −11.6332 −0.820546
\(202\) 4.31662 4.31662i 0.303717 0.303717i
\(203\) 18.1662 1.27502
\(204\) −1.21120 −0.0848009
\(205\) −3.02800 5.00000i −0.211484 0.349215i
\(206\) 1.68338 1.68338i 0.117286 0.117286i
\(207\) −8.86188 −0.615944
\(208\) 13.2665i 0.919866i
\(209\) −10.0000 1.40295i −0.691714 0.0970438i
\(210\) 9.88778 + 2.42884i 0.682322 + 0.167606i
\(211\) 8.25629i 0.568386i −0.958767 0.284193i \(-0.908274\pi\)
0.958767 0.284193i \(-0.0917257\pi\)
\(212\) −26.6332 −1.82918
\(213\) 6.24774 0.428088
\(214\) −3.00000 3.00000i −0.205076 0.205076i
\(215\) −14.6958 24.2665i −1.00224 1.65496i
\(216\) 10.0000 10.0000i 0.680414 0.680414i
\(217\) −16.2164 −1.10084
\(218\) 10.8704 + 10.8704i 0.736238 + 0.736238i
\(219\) 7.04509i 0.476063i
\(220\) −5.36675 8.86188i −0.361826 0.597468i
\(221\) −2.00855 −0.135109
\(222\) 6.63325 6.63325i 0.445195 0.445195i
\(223\) 3.26650i 0.218741i −0.994001 0.109370i \(-0.965117\pi\)
0.994001 0.109370i \(-0.0348835\pi\)
\(224\) −12.8790 12.8790i −0.860513 0.860513i
\(225\) −4.63325 + 8.86188i −0.308883 + 0.590792i
\(226\) −8.31662 8.31662i −0.553214 0.553214i
\(227\) −1.63325 −0.108403 −0.0542013 0.998530i \(-0.517261\pi\)
−0.0542013 + 0.998530i \(0.517261\pi\)
\(228\) −1.21120 + 8.63325i −0.0802136 + 0.571751i
\(229\) 29.8997i 1.97583i 0.154993 + 0.987916i \(0.450464\pi\)
−0.154993 + 0.987916i \(0.549536\pi\)
\(230\) 13.6074 + 3.34252i 0.897242 + 0.220399i
\(231\) −7.45894 −0.490762
\(232\) −11.2843 + 11.2843i −0.740849 + 0.740849i
\(233\) 12.4955i 0.818606i 0.912398 + 0.409303i \(0.134228\pi\)
−0.912398 + 0.409303i \(0.865772\pi\)
\(234\) 6.63325 6.63325i 0.433629 0.433629i
\(235\) −14.6332 + 8.86188i −0.954568 + 0.578086i
\(236\) −18.9350 −1.23256
\(237\) −16.5126 −1.07261
\(238\) −1.94987 + 1.94987i −0.126392 + 0.126392i
\(239\) 1.94987i 0.126127i 0.998010 + 0.0630634i \(0.0200870\pi\)
−0.998010 + 0.0630634i \(0.979913\pi\)
\(240\) −7.65069 + 4.63325i −0.493850 + 0.299075i
\(241\) 16.5126i 1.06367i −0.846849 0.531834i \(-0.821503\pi\)
0.846849 0.531834i \(-0.178497\pi\)
\(242\) −5.63325 5.63325i −0.362119 0.362119i
\(243\) 16.0000 1.02640
\(244\) 8.63325 0.552687
\(245\) 6.43949 3.89975i 0.411404 0.249146i
\(246\) 2.61414 2.61414i 0.166672 0.166672i
\(247\) −2.00855 + 14.3166i −0.127801 + 0.910945i
\(248\) 10.0731 10.0731i 0.639641 0.639641i
\(249\) 6.43949i 0.408086i
\(250\) 10.4568 11.8598i 0.661349 0.750079i
\(251\) 4.94987 0.312433 0.156217 0.987723i \(-0.450070\pi\)
0.156217 + 0.987723i \(0.450070\pi\)
\(252\) 12.8790i 0.811299i
\(253\) −10.2648 −0.645344
\(254\) 8.00000 8.00000i 0.501965 0.501965i
\(255\) 0.701473 + 1.15831i 0.0439279 + 0.0725363i
\(256\) 16.0000 1.00000
\(257\) −9.58312 −0.597779 −0.298889 0.954288i \(-0.596616\pi\)
−0.298889 + 0.954288i \(0.596616\pi\)
\(258\) 12.6872 12.6872i 0.789872 0.789872i
\(259\) 21.3574i 1.32708i
\(260\) −12.6872 + 7.68338i −0.786828 + 0.476503i
\(261\) −11.2843 −0.698479
\(262\) −6.63325 6.63325i −0.409804 0.409804i
\(263\) −1.21120 −0.0746857 −0.0373428 0.999303i \(-0.511889\pi\)
−0.0373428 + 0.999303i \(0.511889\pi\)
\(264\) 4.63325 4.63325i 0.285157 0.285157i
\(265\) 15.4248 + 25.4703i 0.947539 + 1.56463i
\(266\) 11.9486 + 15.8483i 0.732613 + 0.971722i
\(267\) 12.6872i 0.776446i
\(268\) 23.2665i 1.42123i
\(269\) 27.7969 1.69480 0.847402 0.530952i \(-0.178165\pi\)
0.847402 + 0.530952i \(0.178165\pi\)
\(270\) −15.3549 3.77180i −0.934471 0.229544i
\(271\) 9.31662i 0.565945i 0.959128 + 0.282972i \(0.0913205\pi\)
−0.959128 + 0.282972i \(0.908680\pi\)
\(272\) 2.42240i 0.146879i
\(273\) 10.6787i 0.646303i
\(274\) 15.9070 15.9070i 0.960975 0.960975i
\(275\) −5.36675 + 10.2648i −0.323627 + 0.618993i
\(276\) 8.86188i 0.533423i
\(277\) −7.65069 −0.459685 −0.229843 0.973228i \(-0.573821\pi\)
−0.229843 + 0.973228i \(0.573821\pi\)
\(278\) 0 0
\(279\) 10.0731 0.603060
\(280\) −4.85769 + 19.7756i −0.290302 + 1.18182i
\(281\) 8.67014i 0.517217i −0.965982 0.258609i \(-0.916736\pi\)
0.965982 0.258609i \(-0.0832640\pi\)
\(282\) −7.65069 7.65069i −0.455592 0.455592i
\(283\) 11.6678i 0.693577i 0.937943 + 0.346789i \(0.112728\pi\)
−0.937943 + 0.346789i \(0.887272\pi\)
\(284\) 12.4955i 0.741470i
\(285\) 8.95776 3.84169i 0.530612 0.227562i
\(286\) 7.68338 7.68338i 0.454328 0.454328i
\(287\) 8.41688i 0.496832i
\(288\) 8.00000 + 8.00000i 0.471405 + 0.471405i
\(289\) 16.6332 0.978426
\(290\) 17.3269 + 4.25620i 1.01747 + 0.249933i
\(291\) 2.00000 0.117242
\(292\) 14.0902 0.824565
\(293\) 3.31662i 0.193759i 0.995296 + 0.0968796i \(0.0308862\pi\)
−0.995296 + 0.0968796i \(0.969114\pi\)
\(294\) 3.36675 + 3.36675i 0.196353 + 0.196353i
\(295\) 10.9663 + 18.1082i 0.638483 + 1.05430i
\(296\) 13.2665 + 13.2665i 0.771100 + 0.771100i
\(297\) 11.5831 0.672121
\(298\) −14.0000 + 14.0000i −0.810998 + 0.810998i
\(299\) 14.6958i 0.849878i
\(300\) 8.86188 + 4.63325i 0.511641 + 0.267501i
\(301\) 40.8496i 2.35453i
\(302\) −7.65069 7.65069i −0.440248 0.440248i
\(303\) 4.31662i 0.247984i
\(304\) −17.2665 2.42240i −0.990302 0.138934i
\(305\) −5.00000 8.25629i −0.286299 0.472754i
\(306\) 1.21120 1.21120i 0.0692396 0.0692396i
\(307\) −26.6332 −1.52004 −0.760020 0.649900i \(-0.774811\pi\)
−0.760020 + 0.649900i \(0.774811\pi\)
\(308\) 14.9179i 0.850025i
\(309\) 1.68338i 0.0957639i
\(310\) −15.4671 3.79936i −0.878474 0.215789i
\(311\) 9.31662i 0.528297i −0.964482 0.264149i \(-0.914909\pi\)
0.964482 0.264149i \(-0.0850910\pi\)
\(312\) −6.63325 6.63325i −0.375534 0.375534i
\(313\) 28.7859i 1.62708i −0.581510 0.813539i \(-0.697538\pi\)
0.581510 0.813539i \(-0.302462\pi\)
\(314\) 8.86188 + 8.86188i 0.500105 + 0.500105i
\(315\) −12.3166 + 7.45894i −0.693963 + 0.420264i
\(316\) 33.0251i 1.85781i
\(317\) 4.58312i 0.257414i −0.991683 0.128707i \(-0.958917\pi\)
0.991683 0.128707i \(-0.0410827\pi\)
\(318\) −13.3166 + 13.3166i −0.746759 + 0.746759i
\(319\) −13.0707 −0.731820
\(320\) −9.26650 15.3014i −0.518013 0.855373i
\(321\) −3.00000 −0.167444
\(322\) 14.2665 + 14.2665i 0.795041 + 0.795041i
\(323\) −0.366750 + 2.61414i −0.0204065 + 0.145455i
\(324\) 2.00000i 0.111111i
\(325\) 14.6958 + 7.68338i 0.815175 + 0.426197i
\(326\) −9.05363 + 9.05363i −0.501434 + 0.501434i
\(327\) 10.8704 0.601136
\(328\) 5.22829 + 5.22829i 0.288684 + 0.288684i
\(329\) −24.6332 −1.35808
\(330\) −7.11432 1.74757i −0.391630 0.0962004i
\(331\) 8.25629i 0.453806i −0.973917 0.226903i \(-0.927140\pi\)
0.973917 0.226903i \(-0.0728601\pi\)
\(332\) −12.8790 −0.706826
\(333\) 13.2665i 0.727000i
\(334\) 19.5831 19.5831i 1.07154 1.07154i
\(335\) −22.2506 + 13.4749i −1.21568 + 0.736214i
\(336\) −12.8790 −0.702606
\(337\) 4.94987 0.269637 0.134818 0.990870i \(-0.456955\pi\)
0.134818 + 0.990870i \(0.456955\pi\)
\(338\) 2.00000 + 2.00000i 0.108786 + 0.108786i
\(339\) −8.31662 −0.451697
\(340\) −2.31662 + 1.40295i −0.125637 + 0.0760854i
\(341\) 11.6678 0.631846
\(342\) −7.42205 9.84445i −0.401339 0.532327i
\(343\) −11.6981 −0.631640
\(344\) 25.3745 + 25.3745i 1.36810 + 1.36810i
\(345\) 8.47494 5.13242i 0.456275 0.276320i
\(346\) −14.0000 + 14.0000i −0.752645 + 0.752645i
\(347\) 30.6027i 1.64284i 0.570323 + 0.821421i \(0.306818\pi\)
−0.570323 + 0.821421i \(0.693182\pi\)
\(348\) 11.2843i 0.604901i
\(349\) 28.5330i 1.52734i 0.645609 + 0.763668i \(0.276604\pi\)
−0.645609 + 0.763668i \(0.723396\pi\)
\(350\) 21.7254 6.80756i 1.16127 0.363879i
\(351\) 16.5831i 0.885142i
\(352\) 9.26650 + 9.26650i 0.493906 + 0.493906i
\(353\) 31.2083i 1.66105i 0.556979 + 0.830526i \(0.311960\pi\)
−0.556979 + 0.830526i \(0.688040\pi\)
\(354\) −9.46748 + 9.46748i −0.503191 + 0.503191i
\(355\) 11.9499 7.23683i 0.634233 0.384091i
\(356\) 25.3745 1.34484
\(357\) 1.94987i 0.103198i
\(358\) −22.9521 + 22.9521i −1.21305 + 1.21305i
\(359\) 2.58312i 0.136332i −0.997674 0.0681660i \(-0.978285\pi\)
0.997674 0.0681660i \(-0.0217148\pi\)
\(360\) 3.01744 12.2839i 0.159033 0.647420i
\(361\) 18.2665 + 5.22829i 0.961395 + 0.275173i
\(362\) 14.0902 + 14.0902i 0.740563 + 0.740563i
\(363\) −5.63325 −0.295669
\(364\) −21.3574 −1.11943
\(365\) −8.16041 13.4749i −0.427135 0.705310i
\(366\) 4.31662 4.31662i 0.225634 0.225634i
\(367\) −2.42240 −0.126448 −0.0632240 0.997999i \(-0.520138\pi\)
−0.0632240 + 0.997999i \(0.520138\pi\)
\(368\) −17.7238 −0.923915
\(369\) 5.22829i 0.272174i
\(370\) 5.00385 20.3706i 0.260138 1.05902i
\(371\) 42.8761i 2.22602i
\(372\) 10.0731i 0.522265i
\(373\) 32.5831i 1.68709i −0.537058 0.843545i \(-0.680465\pi\)
0.537058 0.843545i \(-0.319535\pi\)
\(374\) 1.40295 1.40295i 0.0725446 0.0725446i
\(375\) −0.701473 11.1583i −0.0362239 0.576213i
\(376\) 15.3014 15.3014i 0.789108 0.789108i
\(377\) 18.7129i 0.963762i
\(378\) −16.0987 16.0987i −0.828029 0.828029i
\(379\) 28.7859i 1.47863i −0.673357 0.739317i \(-0.735148\pi\)
0.673357 0.739317i \(-0.264852\pi\)
\(380\) 7.68338 + 17.9155i 0.394149 + 0.919047i
\(381\) 8.00000i 0.409852i
\(382\) −16.5831 + 16.5831i −0.848466 + 0.848466i
\(383\) 7.58312i 0.387480i −0.981053 0.193740i \(-0.937938\pi\)
0.981053 0.193740i \(-0.0620617\pi\)
\(384\) 8.00000 8.00000i 0.408248 0.408248i
\(385\) −14.2665 + 8.63978i −0.727088 + 0.440324i
\(386\) 16.0000 + 16.0000i 0.814379 + 0.814379i
\(387\) 25.3745i 1.28986i
\(388\) 4.00000i 0.203069i
\(389\) 3.05013i 0.154648i −0.997006 0.0773238i \(-0.975362\pi\)
0.997006 0.0773238i \(-0.0246375\pi\)
\(390\) −2.50193 + 10.1853i −0.126690 + 0.515753i
\(391\) 2.68338i 0.135704i
\(392\) −6.73350 + 6.73350i −0.340093 + 0.340093i
\(393\) −6.63325 −0.334603
\(394\) 16.7043 + 16.7043i 0.841551 + 0.841551i
\(395\) −31.5831 + 19.1267i −1.58912 + 0.962369i
\(396\) 9.26650i 0.465659i
\(397\) −12.8790 −0.646377 −0.323189 0.946335i \(-0.604755\pi\)
−0.323189 + 0.946335i \(0.604755\pi\)
\(398\) −11.9499 + 11.9499i −0.598993 + 0.598993i
\(399\) 13.8984 + 1.94987i 0.695792 + 0.0976158i
\(400\) −9.26650 + 17.7238i −0.463325 + 0.886188i
\(401\) 24.3550i 1.21623i 0.793849 + 0.608115i \(0.208074\pi\)
−0.793849 + 0.608115i \(0.791926\pi\)
\(402\) −11.6332 11.6332i −0.580214 0.580214i
\(403\) 16.7043i 0.832101i
\(404\) 8.63325 0.429520
\(405\) 1.91267 1.15831i 0.0950414 0.0575570i
\(406\) 18.1662 + 18.1662i 0.901576 + 0.901576i
\(407\) 15.3668i 0.761702i
\(408\) −1.21120 1.21120i −0.0599633 0.0599633i
\(409\) 31.6222i 1.56362i 0.623519 + 0.781808i \(0.285703\pi\)
−0.623519 + 0.781808i \(0.714297\pi\)
\(410\) 1.97200 8.02800i 0.0973903 0.396474i
\(411\) 15.9070i 0.784633i
\(412\) 3.36675 0.165868
\(413\) 30.4829i 1.49996i
\(414\) −8.86188 8.86188i −0.435538 0.435538i
\(415\) 7.45894 + 12.3166i 0.366145 + 0.604599i
\(416\) 13.2665 13.2665i 0.650444 0.650444i
\(417\) 0 0
\(418\) −8.59705 11.4029i −0.420496 0.557736i
\(419\) −7.05013 −0.344421 −0.172211 0.985060i \(-0.555091\pi\)
−0.172211 + 0.985060i \(0.555091\pi\)
\(420\) 7.45894 + 12.3166i 0.363959 + 0.600990i
\(421\) 9.27574 0.452072 0.226036 0.974119i \(-0.427423\pi\)
0.226036 + 0.974119i \(0.427423\pi\)
\(422\) 8.25629 8.25629i 0.401910 0.401910i
\(423\) 15.3014 0.743978
\(424\) −26.6332 26.6332i −1.29342 1.29342i
\(425\) 2.68338 + 1.40295i 0.130163 + 0.0680529i
\(426\) 6.24774 + 6.24774i 0.302704 + 0.302704i
\(427\) 13.8984i 0.672592i
\(428\) 6.00000i 0.290021i
\(429\) 7.68338i 0.370957i
\(430\) 9.57073 38.9623i 0.461541 1.87893i
\(431\) −10.2648 −0.494439 −0.247220 0.968959i \(-0.579517\pi\)
−0.247220 + 0.968959i \(0.579517\pi\)
\(432\) 20.0000 0.962250
\(433\) −28.3166 −1.36081 −0.680405 0.732836i \(-0.738196\pi\)
−0.680405 + 0.732836i \(0.738196\pi\)
\(434\) −16.2164 16.2164i −0.778411 0.778411i
\(435\) 10.7916 6.53536i 0.517416 0.313347i
\(436\) 21.7409i 1.04120i
\(437\) 19.1267 + 2.68338i 0.914955 + 0.128363i
\(438\) 7.04509 7.04509i 0.336627 0.336627i
\(439\) 30.4110 1.45144 0.725719 0.687991i \(-0.241507\pi\)
0.725719 + 0.687991i \(0.241507\pi\)
\(440\) 3.49513 14.2286i 0.166624 0.678324i
\(441\) −6.73350 −0.320643
\(442\) −2.00855 2.00855i −0.0955368 0.0955368i
\(443\) 9.05363i 0.430151i 0.976597 + 0.215076i \(0.0689998\pi\)
−0.976597 + 0.215076i \(0.931000\pi\)
\(444\) 13.2665 0.629600
\(445\) −14.6958 24.2665i −0.696646 1.15034i
\(446\) 3.26650 3.26650i 0.154673 0.154673i
\(447\) 14.0000i 0.662177i
\(448\) 25.7580i 1.21695i
\(449\) 17.7238i 0.836436i 0.908347 + 0.418218i \(0.137345\pi\)
−0.908347 + 0.418218i \(0.862655\pi\)
\(450\) −13.4951 + 4.22864i −0.636167 + 0.199340i
\(451\) 6.05599i 0.285166i
\(452\) 16.6332i 0.782362i
\(453\) −7.65069 −0.359461
\(454\) −1.63325 1.63325i −0.0766522 0.0766522i
\(455\) 12.3693 + 20.4248i 0.579879 + 0.957530i
\(456\) −9.84445 + 7.42205i −0.461009 + 0.347569i
\(457\) 9.85098i 0.460809i −0.973095 0.230405i \(-0.925995\pi\)
0.973095 0.230405i \(-0.0740050\pi\)
\(458\) −29.8997 + 29.8997i −1.39712 + 1.39712i
\(459\) 3.02800i 0.141335i
\(460\) 10.2648 + 16.9499i 0.478600 + 0.790292i
\(461\) 21.5831i 1.00523i 0.864511 + 0.502613i \(0.167628\pi\)
−0.864511 + 0.502613i \(0.832372\pi\)
\(462\) −7.45894 7.45894i −0.347021 0.347021i
\(463\) 10.0731 0.468136 0.234068 0.972220i \(-0.424796\pi\)
0.234068 + 0.972220i \(0.424796\pi\)
\(464\) −22.5686 −1.04772
\(465\) −9.63325 + 5.83389i −0.446731 + 0.270540i
\(466\) −12.4955 + 12.4955i −0.578842 + 0.578842i
\(467\) 10.2648i 0.475000i −0.971388 0.237500i \(-0.923672\pi\)
0.971388 0.237500i \(-0.0763279\pi\)
\(468\) 13.2665 0.613244
\(469\) −37.4561 −1.72956
\(470\) −23.4951 5.77136i −1.08375 0.266213i
\(471\) 8.86188 0.408334
\(472\) −18.9350 18.9350i −0.871553 0.871553i
\(473\) 29.3915i 1.35142i
\(474\) −16.5126 16.5126i −0.758447 0.758447i
\(475\) 12.6834 17.7238i 0.581953 0.813222i
\(476\) −3.89975 −0.178745
\(477\) 26.6332i 1.21945i
\(478\) −1.94987 + 1.94987i −0.0891852 + 0.0891852i
\(479\) 24.0000i 1.09659i 0.836286 + 0.548294i \(0.184723\pi\)
−0.836286 + 0.548294i \(0.815277\pi\)
\(480\) −12.2839 3.01744i −0.560682 0.137727i
\(481\) 22.0000 1.00311
\(482\) 16.5126 16.5126i 0.752127 0.752127i
\(483\) 14.2665 0.649148
\(484\) 11.2665i 0.512114i
\(485\) 3.82534 2.31662i 0.173700 0.105193i
\(486\) 16.0000 + 16.0000i 0.725775 + 0.725775i
\(487\) 13.3668i 0.605705i 0.953037 + 0.302853i \(0.0979390\pi\)
−0.953037 + 0.302853i \(0.902061\pi\)
\(488\) 8.63325 + 8.63325i 0.390809 + 0.390809i
\(489\) 9.05363i 0.409419i
\(490\) 10.3392 + 2.53974i 0.467079 + 0.114734i
\(491\) 3.58312 0.161704 0.0808521 0.996726i \(-0.474236\pi\)
0.0808521 + 0.996726i \(0.474236\pi\)
\(492\) 5.22829 0.235709
\(493\) 3.41688i 0.153888i
\(494\) −16.3252 + 12.3081i −0.734504 + 0.553767i
\(495\) 8.86188 5.36675i 0.398312 0.241217i
\(496\) 20.1462 0.904590
\(497\) 20.1161 0.902331
\(498\) −6.43949 + 6.43949i −0.288560 + 0.288560i
\(499\) −21.5831 −0.966193 −0.483097 0.875567i \(-0.660488\pi\)
−0.483097 + 0.875567i \(0.660488\pi\)
\(500\) 22.3166 1.40295i 0.998030 0.0627417i
\(501\) 19.5831i 0.874909i
\(502\) 4.94987 + 4.94987i 0.220924 + 0.220924i
\(503\) −23.3659 −1.04183 −0.520917 0.853607i \(-0.674410\pi\)
−0.520917 + 0.853607i \(0.674410\pi\)
\(504\) 12.8790 12.8790i 0.573675 0.573675i
\(505\) −5.00000 8.25629i −0.222497 0.367400i
\(506\) −10.2648 10.2648i −0.456327 0.456327i
\(507\) 2.00000 0.0888231
\(508\) 16.0000 0.709885
\(509\) −16.5126 −0.731907 −0.365953 0.930633i \(-0.619257\pi\)
−0.365953 + 0.930633i \(0.619257\pi\)
\(510\) −0.456839 + 1.85979i −0.0202292 + 0.0823527i
\(511\) 22.6834i 1.00345i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) −21.5831 3.02800i −0.952918 0.133689i
\(514\) −9.58312 9.58312i −0.422693 0.422693i
\(515\) −1.94987 3.21974i −0.0859217 0.141879i
\(516\) 25.3745 1.11705
\(517\) 17.7238 0.779490
\(518\) 21.3574 21.3574i 0.938389 0.938389i
\(519\) 14.0000i 0.614532i
\(520\) −20.3706 5.00385i −0.893310 0.219433i
\(521\) 11.2843i 0.494373i 0.968968 + 0.247187i \(0.0795061\pi\)
−0.968968 + 0.247187i \(0.920494\pi\)
\(522\) −11.2843 11.2843i −0.493900 0.493900i
\(523\) 5.10025 0.223018 0.111509 0.993763i \(-0.464432\pi\)
0.111509 + 0.993763i \(0.464432\pi\)
\(524\) 13.2665i 0.579550i
\(525\) 7.45894 14.2665i 0.325535 0.622641i
\(526\) −1.21120 1.21120i −0.0528108 0.0528108i
\(527\) 3.05013i 0.132866i
\(528\) 9.26650 0.403273
\(529\) −3.36675 −0.146380
\(530\) −10.0455 + 40.8951i −0.436349 + 1.77637i
\(531\) 18.9350i 0.821708i
\(532\) −3.89975 + 27.7969i −0.169076 + 1.20515i
\(533\) 8.67014 0.375545
\(534\) 12.6872 12.6872i 0.549030 0.549030i
\(535\) −5.73801 + 3.47494i −0.248076 + 0.150235i
\(536\) 23.2665 23.2665i 1.00496 1.00496i
\(537\) 22.9521i 0.990454i
\(538\) 27.7969 + 27.7969i 1.19841 + 1.19841i
\(539\) −7.79950 −0.335948
\(540\) −11.5831 19.1267i −0.498458 0.823083i
\(541\) 14.3166i 0.615520i 0.951464 + 0.307760i \(0.0995793\pi\)
−0.951464 + 0.307760i \(0.900421\pi\)
\(542\) −9.31662 + 9.31662i −0.400183 + 0.400183i
\(543\) 14.0902 0.604667
\(544\) 2.42240 2.42240i 0.103859 0.103859i
\(545\) 20.7916 12.5914i 0.890613 0.539354i
\(546\) −10.6787 + 10.6787i −0.457005 + 0.457005i
\(547\) 46.5330 1.98961 0.994804 0.101812i \(-0.0324640\pi\)
0.994804 + 0.101812i \(0.0324640\pi\)
\(548\) 31.8139 1.35902
\(549\) 8.63325i 0.368458i
\(550\) −15.6316 + 4.89808i −0.666533 + 0.208855i
\(551\) 24.3550 + 3.41688i 1.03756 + 0.145564i
\(552\) −8.86188 + 8.86188i −0.377187 + 0.377187i
\(553\) −53.1662 −2.26086
\(554\) −7.65069 7.65069i −0.325047 0.325047i
\(555\) −7.68338 12.6872i −0.326141 0.538543i
\(556\) 0 0
\(557\) −24.1633 −1.02383 −0.511915 0.859036i \(-0.671064\pi\)
−0.511915 + 0.859036i \(0.671064\pi\)
\(558\) 10.0731 + 10.0731i 0.426428 + 0.426428i
\(559\) 42.0788 1.77974
\(560\) −24.6332 + 14.9179i −1.04094 + 0.630395i
\(561\) 1.40295i 0.0592324i
\(562\) 8.67014 8.67014i 0.365728 0.365728i
\(563\) −14.0000 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(564\) 15.3014i 0.644304i
\(565\) −15.9070 + 9.63325i −0.669211 + 0.405274i
\(566\) −11.6678 + 11.6678i −0.490433 + 0.490433i
\(567\) 3.21974 0.135217
\(568\) −12.4955 + 12.4955i −0.524299 + 0.524299i
\(569\) 1.21120i 0.0507761i 0.999678 + 0.0253880i \(0.00808213\pi\)
−0.999678 + 0.0253880i \(0.991918\pi\)
\(570\) 12.7994 + 5.11607i 0.536110 + 0.214289i
\(571\) 30.8496 1.29102 0.645508 0.763753i \(-0.276646\pi\)
0.645508 + 0.763753i \(0.276646\pi\)
\(572\) 15.3668 0.642516
\(573\) 16.5831i 0.692770i
\(574\) 8.41688 8.41688i 0.351314 0.351314i
\(575\) 10.2648 19.6332i 0.428073 0.818763i
\(576\) 16.0000i 0.666667i
\(577\) 5.45039i 0.226903i −0.993544 0.113451i \(-0.963809\pi\)
0.993544 0.113451i \(-0.0361906\pi\)
\(578\) 16.6332 + 16.6332i 0.691852 + 0.691852i
\(579\) 16.0000 0.664937
\(580\) 13.0707 + 21.5831i 0.542732 + 0.896190i
\(581\) 20.7335i 0.860171i
\(582\) 2.00000 + 2.00000i 0.0829027 + 0.0829027i
\(583\) 30.8496i 1.27766i
\(584\) 14.0902 + 14.0902i 0.583056 + 0.583056i
\(585\) −7.68338 12.6872i −0.317668 0.524552i
\(586\) −3.31662 + 3.31662i −0.137009 + 0.137009i
\(587\) 1.01945i 0.0420772i 0.999779 + 0.0210386i \(0.00669729\pi\)
−0.999779 + 0.0210386i \(0.993303\pi\)
\(588\) 6.73350i 0.277685i
\(589\) −21.7409 3.05013i −0.895817 0.125678i
\(590\) −7.14188 + 29.0745i −0.294027 + 1.19698i
\(591\) 16.7043 0.687124
\(592\) 26.5330i 1.09050i
\(593\) 37.0422i 1.52114i −0.649255 0.760571i \(-0.724919\pi\)
0.649255 0.760571i \(-0.275081\pi\)
\(594\) 11.5831 + 11.5831i 0.475261 + 0.475261i
\(595\) 2.25856 + 3.72947i 0.0925921 + 0.152893i
\(596\) −28.0000 −1.14692
\(597\) 11.9499i 0.489076i
\(598\) −14.6958 + 14.6958i −0.600955 + 0.600955i
\(599\) −2.61414 −0.106811 −0.0534055 0.998573i \(-0.517008\pi\)
−0.0534055 + 0.998573i \(0.517008\pi\)
\(600\) 4.22864 + 13.4951i 0.172633 + 0.550937i
\(601\) 13.8984i 0.566929i 0.958983 + 0.283464i \(0.0914838\pi\)
−0.958983 + 0.283464i \(0.908516\pi\)
\(602\) 40.8496 40.8496i 1.66491 1.66491i
\(603\) 23.2665 0.947485
\(604\) 15.3014i 0.622604i
\(605\) −10.7746 + 6.52506i −0.438048 + 0.265282i
\(606\) 4.31662 4.31662i 0.175351 0.175351i
\(607\) 16.5330i 0.671054i 0.942031 + 0.335527i \(0.108914\pi\)
−0.942031 + 0.335527i \(0.891086\pi\)
\(608\) −14.8441 19.6889i −0.602008 0.798490i
\(609\) 18.1662 0.736134
\(610\) 3.25629 13.2563i 0.131843 0.536731i
\(611\) 25.3745i 1.02654i
\(612\) 2.42240 0.0979196
\(613\) 1.40295 0.0566645 0.0283322 0.999599i \(-0.490980\pi\)
0.0283322 + 0.999599i \(0.490980\pi\)
\(614\) −26.6332 26.6332i −1.07483 1.07483i
\(615\) −3.02800 5.00000i −0.122101 0.201619i
\(616\) 14.9179 14.9179i 0.601058 0.601058i
\(617\) 2.42240i 0.0975220i −0.998810 0.0487610i \(-0.984473\pi\)
0.998810 0.0487610i \(-0.0155273\pi\)
\(618\) 1.68338 1.68338i 0.0677153 0.0677153i
\(619\) 31.5831 1.26943 0.634716 0.772745i \(-0.281117\pi\)
0.634716 + 0.772745i \(0.281117\pi\)
\(620\) −11.6678 19.2665i −0.468589 0.773761i
\(621\) −22.1547 −0.889038
\(622\) 9.31662 9.31662i 0.373563 0.373563i
\(623\) 40.8496i 1.63661i
\(624\) 13.2665i 0.531085i
\(625\) −14.2665 20.5297i −0.570660 0.821186i
\(626\) 28.7859 28.7859i 1.15052 1.15052i
\(627\) −10.0000 1.40295i −0.399362 0.0560283i
\(628\) 17.7238i 0.707255i
\(629\) 4.01709 0.160172
\(630\) −19.7756 4.85769i −0.787877 0.193535i
\(631\) 4.10025i 0.163228i −0.996664 0.0816142i \(-0.973992\pi\)
0.996664 0.0816142i \(-0.0260075\pi\)
\(632\) 33.0251 33.0251i 1.31367 1.31367i
\(633\) 8.25629i 0.328158i
\(634\) 4.58312 4.58312i 0.182019 0.182019i
\(635\) −9.26650 15.3014i −0.367730 0.607216i
\(636\) −26.6332 −1.05608
\(637\) 11.1662i 0.442423i
\(638\) −13.0707 13.0707i −0.517475 0.517475i
\(639\) −12.4955 −0.494314
\(640\) 6.03487 24.5679i 0.238549 0.971130i
\(641\) 30.4110i 1.20116i −0.799564 0.600581i \(-0.794936\pi\)
0.799564 0.600581i \(-0.205064\pi\)
\(642\) −3.00000 3.00000i −0.118401 0.118401i
\(643\) 37.0422i 1.46080i −0.683018 0.730402i \(-0.739333\pi\)
0.683018 0.730402i \(-0.260667\pi\)
\(644\) 28.5330i 1.12436i
\(645\) −14.6958 24.2665i −0.578645 0.955492i
\(646\) −2.98090 + 2.24739i −0.117282 + 0.0884225i
\(647\) 25.7883 1.01384 0.506921 0.861992i \(-0.330783\pi\)
0.506921 + 0.861992i \(0.330783\pi\)
\(648\) −2.00000 + 2.00000i −0.0785674 + 0.0785674i
\(649\) 21.9326i 0.860930i
\(650\) 7.01240 + 22.3791i 0.275049 + 0.877782i
\(651\) −16.2164 −0.635570
\(652\) −18.1073 −0.709135
\(653\) 10.0731 0.394190 0.197095 0.980384i \(-0.436849\pi\)
0.197095 + 0.980384i \(0.436849\pi\)
\(654\) 10.8704 + 10.8704i 0.425067 + 0.425067i
\(655\) −12.6872 + 7.68338i −0.495731 + 0.300214i
\(656\) 10.4566i 0.408261i
\(657\) 14.0902i 0.549710i
\(658\) −24.6332 24.6332i −0.960304 0.960304i
\(659\) 34.0142i 1.32501i −0.749059 0.662503i \(-0.769494\pi\)
0.749059 0.662503i \(-0.230506\pi\)
\(660\) −5.36675 8.86188i −0.208900 0.344948i
\(661\) −41.0897 −1.59820 −0.799102 0.601196i \(-0.794691\pi\)
−0.799102 + 0.601196i \(0.794691\pi\)
\(662\) 8.25629 8.25629i 0.320890 0.320890i
\(663\) −2.00855 −0.0780054
\(664\) −12.8790 12.8790i −0.499801 0.499801i
\(665\) 28.8417 12.3693i 1.11843 0.479659i
\(666\) −13.2665 + 13.2665i −0.514066 + 0.514066i
\(667\) 25.0000 0.968004
\(668\) 39.1662 1.51539
\(669\) 3.26650i 0.126290i
\(670\) −35.7255 8.77565i −1.38020 0.339033i
\(671\) 10.0000i 0.386046i
\(672\) −12.8790 12.8790i −0.496817 0.496817i
\(673\) −17.1662 −0.661710 −0.330855 0.943682i \(-0.607337\pi\)
−0.330855 + 0.943682i \(0.607337\pi\)
\(674\) 4.94987 + 4.94987i 0.190662 + 0.190662i
\(675\) −11.5831 + 22.1547i −0.445835 + 0.852735i
\(676\) 4.00000i 0.153846i
\(677\) 5.41688i 0.208187i 0.994567 + 0.104094i \(0.0331942\pi\)
−0.994567 + 0.104094i \(0.966806\pi\)
\(678\) −8.31662 8.31662i −0.319398 0.319398i
\(679\) 6.43949 0.247125
\(680\) −3.71957 0.913679i −0.142639 0.0350380i
\(681\) −1.63325 −0.0625863
\(682\) 11.6678 + 11.6678i 0.446782 + 0.446782i
\(683\) 49.1662 1.88129 0.940647 0.339386i \(-0.110219\pi\)
0.940647 + 0.339386i \(0.110219\pi\)
\(684\) 2.42240 17.2665i 0.0926227 0.660201i
\(685\) −18.4252 30.4248i −0.703992 1.16247i
\(686\) −11.6981 11.6981i −0.446637 0.446637i
\(687\) 29.8997i 1.14075i
\(688\) 50.7489i 1.93478i
\(689\) −44.1662 −1.68260
\(690\) 13.6074 + 3.34252i 0.518023 + 0.127248i
\(691\) −13.8997 −0.528771 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(692\) −28.0000 −1.06440
\(693\) 14.9179 0.566683
\(694\) −30.6027 + 30.6027i −1.16166 + 1.16166i
\(695\) 0 0
\(696\) −11.2843 + 11.2843i −0.427730 + 0.427730i
\(697\) 1.58312 0.0599651
\(698\) −28.5330 + 28.5330i −1.07999 + 1.07999i
\(699\) 12.4955i 0.472622i
\(700\) 28.5330 + 14.9179i 1.07845 + 0.563843i
\(701\) 22.7335i 0.858632i −0.903154 0.429316i \(-0.858755\pi\)
0.903154 0.429316i \(-0.141245\pi\)
\(702\) 16.5831 16.5831i 0.625890 0.625890i
\(703\) 4.01709 28.6332i 0.151507 1.07992i
\(704\) 18.5330i 0.698489i
\(705\) −14.6332 + 8.86188i −0.551120 + 0.333758i
\(706\) −31.2083 + 31.2083i −1.17454 + 1.17454i
\(707\) 13.8984i 0.522704i
\(708\) −18.9350 −0.711620
\(709\) 15.3668i 0.577110i 0.957463 + 0.288555i \(0.0931749\pi\)
−0.957463 + 0.288555i \(0.906825\pi\)
\(710\) 19.1867 + 4.71304i 0.720064 + 0.176877i
\(711\) 33.0251 1.23854
\(712\) 25.3745 + 25.3745i 0.950948 + 0.950948i
\(713\) −22.3166 −0.835764
\(714\) −1.94987 + 1.94987i −0.0729722 + 0.0729722i
\(715\) −8.89975 14.6958i −0.332832 0.549591i
\(716\) −45.9041 −1.71552
\(717\) 1.94987i 0.0728194i
\(718\) 2.58312 2.58312i 0.0964013 0.0964013i
\(719\) 10.5831i 0.394684i 0.980335 + 0.197342i \(0.0632309\pi\)
−0.980335 + 0.197342i \(0.936769\pi\)
\(720\) 15.3014 9.26650i 0.570248 0.345342i
\(721\) 5.42004i 0.201853i
\(722\) 13.0382 + 23.4948i 0.485232 + 0.874385i
\(723\) 16.5126i 0.614109i
\(724\) 28.1803i 1.04731i
\(725\) 13.0707 25.0000i 0.485434 0.928477i
\(726\) −5.63325 5.63325i −0.209070 0.209070i
\(727\) −2.00855 −0.0744928 −0.0372464 0.999306i \(-0.511859\pi\)
−0.0372464 + 0.999306i \(0.511859\pi\)
\(728\) −21.3574 21.3574i −0.791557 0.791557i
\(729\) 13.0000 0.481481
\(730\) 5.31453 21.6353i 0.196699 0.800760i
\(731\) 7.68338 0.284180
\(732\) 8.63325 0.319094
\(733\) −34.2363 −1.26455 −0.632274 0.774745i \(-0.717878\pi\)
−0.632274 + 0.774745i \(0.717878\pi\)
\(734\) −2.42240 2.42240i −0.0894123 0.0894123i
\(735\) 6.43949 3.89975i 0.237524 0.143844i
\(736\) −17.7238 17.7238i −0.653307 0.653307i
\(737\) 26.9499 0.992711
\(738\) −5.22829 + 5.22829i −0.192456 + 0.192456i
\(739\) −20.2164 −0.743671 −0.371836 0.928299i \(-0.621272\pi\)
−0.371836 + 0.928299i \(0.621272\pi\)
\(740\) 25.3745 15.3668i 0.932784 0.564893i
\(741\) −2.00855 + 14.3166i −0.0737858 + 0.525934i
\(742\) −42.8761 + 42.8761i −1.57403 + 1.57403i
\(743\) 5.58312i 0.204825i 0.994742 + 0.102412i \(0.0326562\pi\)
−0.994742 + 0.102412i \(0.967344\pi\)
\(744\) 10.0731 10.0731i 0.369297 0.369297i
\(745\) 16.2164 + 26.7774i 0.594122 + 0.981048i
\(746\) 32.5831 32.5831i 1.19295 1.19295i
\(747\) 12.8790i 0.471217i
\(748\) 2.80589 0.102594
\(749\) −9.65923 −0.352941
\(750\) 10.4568 11.8598i 0.381830 0.433058i
\(751\) −26.7774 −0.977121 −0.488561 0.872530i \(-0.662478\pi\)
−0.488561 + 0.872530i \(0.662478\pi\)
\(752\) 30.6027 1.11597
\(753\) 4.94987 0.180383
\(754\) −18.7129 + 18.7129i −0.681482 + 0.681482i
\(755\) −14.6332 + 8.86188i −0.532558 + 0.322517i
\(756\) 32.1974i 1.17101i
\(757\) −18.1073 −0.658120 −0.329060 0.944309i \(-0.606732\pi\)
−0.329060 + 0.944309i \(0.606732\pi\)
\(758\) 28.7859 28.7859i 1.04555 1.04555i
\(759\) −10.2648 −0.372590
\(760\) −10.2321 + 25.5989i −0.371159 + 0.928569i
\(761\) 24.2665 0.879660 0.439830 0.898081i \(-0.355039\pi\)
0.439830 + 0.898081i \(0.355039\pi\)
\(762\) 8.00000 8.00000i 0.289809 0.289809i
\(763\) 35.0000 1.26709
\(764\) −33.1662 −1.19991
\(765\) −1.40295 2.31662i −0.0507236 0.0837577i
\(766\) 7.58312 7.58312i 0.273989 0.273989i
\(767\) −31.4001 −1.13379
\(768\) 16.0000 0.577350
\(769\) 48.1662 1.73692 0.868460 0.495760i \(-0.165110\pi\)
0.868460 + 0.495760i \(0.165110\pi\)
\(770\) −22.9063 5.62672i −0.825485 0.202773i
\(771\) −9.58312 −0.345128
\(772\) 32.0000i 1.15171i
\(773\) 6.68338i 0.240384i −0.992751 0.120192i \(-0.961649\pi\)
0.992751 0.120192i \(-0.0383511\pi\)
\(774\) −25.3745 + 25.3745i −0.912066 + 0.912066i
\(775\) −11.6678 + 22.3166i −0.419119 + 0.801637i
\(776\) −4.00000 + 4.00000i −0.143592 + 0.143592i
\(777\) 21.3574i 0.766191i
\(778\) 3.05013 3.05013i 0.109352 0.109352i
\(779\) 1.58312 11.2843i 0.0567213 0.404301i
\(780\) −12.6872 + 7.68338i −0.454276 + 0.275109i
\(781\) −14.4737 −0.517909
\(782\) −2.68338 + 2.68338i −0.0959573 + 0.0959573i
\(783\) −28.2107 −1.00817
\(784\) −13.4670 −0.480964
\(785\) 16.9499 10.2648i 0.604967 0.366368i
\(786\) −6.63325 6.63325i −0.236600 0.236600i
\(787\) 11.5330 0.411107 0.205553 0.978646i \(-0.434101\pi\)
0.205553 + 0.978646i \(0.434101\pi\)
\(788\) 33.4086i 1.19013i
\(789\) −1.21120 −0.0431198
\(790\) −50.7098 12.4564i −1.80418 0.443179i
\(791\) −26.7774 −0.952095
\(792\) −9.26650 + 9.26650i −0.329271 + 0.329271i
\(793\) 14.3166 0.508398
\(794\) −12.8790 12.8790i −0.457058 0.457058i
\(795\) 15.4248 + 25.4703i 0.547062 + 0.903339i
\(796\) −23.8997 −0.847104
\(797\) 33.2164i 1.17658i −0.808648 0.588292i \(-0.799801\pi\)
0.808648 0.588292i \(-0.200199\pi\)
\(798\) 11.9486 + 15.8483i 0.422974 + 0.561024i
\(799\) 4.63325i 0.163913i
\(800\) −26.9903 + 8.45727i −0.954250 + 0.299010i
\(801\) 25.3745i 0.896562i
\(802\) −24.3550 + 24.3550i −0.860005 + 0.860005i
\(803\) 16.3208i 0.575949i
\(804\) 23.2665i 0.820546i
\(805\) 27.2871 16.5251i 0.961745 0.582432i
\(806\) 16.7043 16.7043i 0.588385 0.588385i
\(807\) 27.7969 0.978496
\(808\) 8.63325 + 8.63325i 0.303717 + 0.303717i
\(809\) −26.7995 −0.942220 −0.471110 0.882074i \(-0.656147\pi\)
−0.471110 + 0.882074i \(0.656147\pi\)
\(810\) 3.07098 + 0.754359i 0.107903 + 0.0265055i
\(811\) 2.20029i 0.0772627i 0.999254 + 0.0386314i \(0.0122998\pi\)
−0.999254 + 0.0386314i \(0.987700\pi\)
\(812\) 36.3325i 1.27502i
\(813\) 9.31662i 0.326748i
\(814\) −15.3668 + 15.3668i −0.538604 + 0.538604i
\(815\) 10.4869 + 17.3166i 0.367341 + 0.606575i
\(816\) 2.42240i 0.0848009i
\(817\) 7.68338 54.7660i 0.268807 1.91602i
\(818\) −31.6222 + 31.6222i −1.10564 + 1.10564i
\(819\) 21.3574i 0.746287i
\(820\) 10.0000 6.05599i 0.349215 0.211484i
\(821\) 43.1662i 1.50651i 0.657727 + 0.753256i \(0.271518\pi\)
−0.657727 + 0.753256i \(0.728482\pi\)
\(822\) 15.9070 15.9070i 0.554819 0.554819i
\(823\) −18.1376 −0.632238 −0.316119 0.948720i \(-0.602380\pi\)
−0.316119 + 0.948720i \(0.602380\pi\)
\(824\) 3.36675 + 3.36675i 0.117286 + 0.117286i
\(825\) −5.36675 + 10.2648i −0.186846 + 0.357376i
\(826\) −30.4829 + 30.4829i −1.06063 + 1.06063i
\(827\) −36.1662 −1.25762 −0.628812 0.777558i \(-0.716458\pi\)
−0.628812 + 0.777558i \(0.716458\pi\)
\(828\) 17.7238i 0.615944i
\(829\) −10.8704 −0.377546 −0.188773 0.982021i \(-0.560451\pi\)
−0.188773 + 0.982021i \(0.560451\pi\)
\(830\) −4.85769 + 19.7756i −0.168613 + 0.686420i
\(831\) −7.65069 −0.265399
\(832\) 26.5330 0.919866
\(833\) 2.03890i 0.0706437i
\(834\) 0 0
\(835\) −22.6834 37.4561i −0.784991 1.29622i
\(836\) 2.80589 20.0000i 0.0970438 0.691714i
\(837\) 25.1827 0.870442
\(838\) −7.05013 7.05013i −0.243543 0.243543i
\(839\) −21.7409 −0.750578 −0.375289 0.926908i \(-0.622457\pi\)
−0.375289 + 0.926908i \(0.622457\pi\)
\(840\) −4.85769 + 19.7756i −0.167606 + 0.682322i
\(841\) 2.83375 0.0977156
\(842\) 9.27574 + 9.27574i 0.319663 + 0.319663i
\(843\) 8.67014i 0.298615i
\(844\) 16.5126 0.568386
\(845\) 3.82534 2.31662i 0.131596 0.0796943i
\(846\) 15.3014 + 15.3014i 0.526072 + 0.526072i
\(847\) −18.1376 −0.623216
\(848\) 53.2665i 1.82918i
\(849\) 11.6678i 0.400437i
\(850\) 1.28043 + 4.08632i 0.0439184 + 0.140160i
\(851\) 29.3915i 1.00753i
\(852\) 12.4955i 0.428088i
\(853\) 21.3574 0.731262 0.365631 0.930760i \(-0.380853\pi\)
0.365631 + 0.930760i \(0.380853\pi\)
\(854\) 13.8984 13.8984i 0.475594 0.475594i
\(855\) −17.9155 + 7.68338i −0.612698 + 0.262766i
\(856\) 6.00000 6.00000i 0.205076 0.205076i
\(857\) 23.3668 0.798193 0.399096 0.916909i \(-0.369324\pi\)
0.399096 + 0.916909i \(0.369324\pi\)
\(858\) 7.68338 7.68338i 0.262306 0.262306i
\(859\) 32.9499 1.12424 0.562118 0.827057i \(-0.309987\pi\)
0.562118 + 0.827057i \(0.309987\pi\)
\(860\) 48.5330 29.3915i 1.65496 1.00224i
\(861\) 8.41688i 0.286846i
\(862\) −10.2648 10.2648i −0.349622 0.349622i
\(863\) 28.3166i 0.963909i 0.876196 + 0.481955i \(0.160073\pi\)
−0.876196 + 0.481955i \(0.839927\pi\)
\(864\) 20.0000 + 20.0000i 0.680414 + 0.680414i
\(865\) 16.2164 + 26.7774i 0.551373 + 0.910459i
\(866\) −28.3166 28.3166i −0.962238 0.962238i
\(867\) 16.6332 0.564895
\(868\) 32.4327i 1.10084i
\(869\) 38.2534 1.29766
\(870\) 17.3269 + 4.25620i 0.587438 + 0.144299i
\(871\) 38.5831i 1.30734i
\(872\) −21.7409 + 21.7409i −0.736238 + 0.736238i
\(873\) −4.00000 −0.135379
\(874\) 16.4433 + 21.8101i 0.556204 + 0.737737i
\(875\) −2.25856 35.9269i −0.0763534 1.21455i
\(876\) 14.0902 0.476063
\(877\) 0.0501256i 0.00169262i −1.00000 0.000846311i \(-0.999731\pi\)
1.00000 0.000846311i \(-0.000269389\pi\)
\(878\) 30.4110 + 30.4110i 1.02632 + 1.02632i
\(879\) 3.31662i 0.111867i
\(880\) 17.7238 10.7335i 0.597468 0.361826i
\(881\) −33.8997 −1.14211 −0.571056 0.820911i \(-0.693466\pi\)
−0.571056 + 0.820911i \(0.693466\pi\)
\(882\) −6.73350 6.73350i −0.226729 0.226729i
\(883\) 30.9862i 1.04277i −0.853322 0.521385i \(-0.825416\pi\)
0.853322 0.521385i \(-0.174584\pi\)
\(884\) 4.01709i 0.135109i
\(885\) 10.9663 + 18.1082i 0.368628 + 0.608700i
\(886\) −9.05363 + 9.05363i −0.304163 + 0.304163i
\(887\) 24.9499i 0.837735i 0.908047 + 0.418867i \(0.137573\pi\)
−0.908047 + 0.418867i \(0.862427\pi\)
\(888\) 13.2665 + 13.2665i 0.445195 + 0.445195i
\(889\) 25.7580i 0.863894i
\(890\) 9.57073 38.9623i 0.320811 1.30602i
\(891\) −2.31662 −0.0776099
\(892\) 6.53300 0.218741
\(893\) −33.0251 4.63325i −1.10514 0.155046i
\(894\) −14.0000 + 14.0000i −0.468230 + 0.468230i
\(895\) 26.5857 + 43.8997i 0.888660 + 1.46741i
\(896\) 25.7580 25.7580i 0.860513 0.860513i
\(897\) 14.6958i 0.490678i
\(898\) −17.7238 + 17.7238i −0.591450 + 0.591450i
\(899\) −28.4169 −0.947756
\(900\) −17.7238 9.26650i −0.590792 0.308883i
\(901\) −8.06454 −0.268669
\(902\) −6.05599 + 6.05599i −0.201642 + 0.201642i
\(903\) 40.8496i 1.35939i
\(904\) 16.6332 16.6332i 0.553214 0.553214i
\(905\) 26.9499 16.3208i 0.895844 0.542523i
\(906\) −7.65069 7.65069i −0.254177 0.254177i
\(907\) −26.1662 −0.868836 −0.434418 0.900711i \(-0.643046\pi\)
−0.434418 + 0.900711i \(0.643046\pi\)
\(908\) 3.26650i 0.108403i
\(909\) 8.63325i 0.286347i
\(910\) −8.05556 + 32.7941i −0.267039 + 1.08711i
\(911\) −6.82298 −0.226056 −0.113028 0.993592i \(-0.536055\pi\)
−0.113028 + 0.993592i \(0.536055\pi\)
\(912\) −17.2665 2.42240i −0.571751 0.0802136i
\(913\) 14.9179i 0.493710i
\(914\) 9.85098 9.85098i 0.325841 0.325841i
\(915\) −5.00000 8.25629i −0.165295 0.272944i
\(916\) −59.7995 −1.97583
\(917\) −21.3574 −0.705282
\(918\) 3.02800 3.02800i 0.0999388 0.0999388i
\(919\) 41.2164i 1.35960i −0.733396 0.679801i \(-0.762066\pi\)
0.733396 0.679801i \(-0.237934\pi\)
\(920\) −6.68504 + 27.2147i −0.220399 + 0.897242i
\(921\) −26.6332 −0.877595
\(922\) −21.5831 + 21.5831i −0.710802 + 0.710802i
\(923\) 20.7214i 0.682053i
\(924\) 14.9179i 0.490762i
\(925\) −29.3915 15.3668i −0.966388 0.505256i
\(926\) 10.0731 + 10.0731i 0.331022 + 0.331022i
\(927\) 3.36675i 0.110579i
\(928\) −22.5686 22.5686i −0.740849 0.740849i
\(929\) 33.6332 1.10347 0.551736 0.834019i \(-0.313966\pi\)
0.551736 + 0.834019i \(0.313966\pi\)
\(930\) −15.4671 3.79936i −0.507187 0.124586i
\(931\) 14.5330 + 2.03890i 0.476300 + 0.0668223i
\(932\) −24.9910 −0.818606
\(933\) 9.31662i 0.305013i
\(934\) 10.2648 10.2648i 0.335876 0.335876i
\(935\) −1.62505 2.68338i −0.0531448 0.0877558i
\(936\) 13.2665 + 13.2665i 0.433629 + 0.433629i
\(937\) 16.7347i 0.546698i −0.961915 0.273349i \(-0.911869\pi\)
0.961915 0.273349i \(-0.0881314\pi\)
\(938\) −37.4561 37.4561i −1.22298 1.22298i
\(939\) 28.7859i 0.939394i
\(940\) −17.7238 29.2665i −0.578086 0.954568i
\(941\) 57.9857 1.89028 0.945141 0.326664i \(-0.105924\pi\)
0.945141 + 0.326664i \(0.105924\pi\)
\(942\) 8.86188 + 8.86188i 0.288736 + 0.288736i
\(943\) 11.5831i 0.377198i
\(944\) 37.8699i 1.23256i
\(945\) −30.7916 + 18.6473i −1.00165 + 0.606598i
\(946\) −29.3915 + 29.3915i −0.955602 + 0.955602i
\(947\) 18.9350i 0.615304i −0.951499 0.307652i \(-0.900457\pi\)
0.951499 0.307652i \(-0.0995432\pi\)
\(948\) 33.0251i 1.07261i
\(949\) 23.3659 0.758490
\(950\) 30.4071 5.04039i 0.986538 0.163532i
\(951\) 4.58312i 0.148618i
\(952\) −3.89975 3.89975i −0.126392 0.126392i
\(953\) −8.31662 −0.269402 −0.134701 0.990886i \(-0.543007\pi\)
−0.134701 + 0.990886i \(0.543007\pi\)
\(954\) 26.6332 26.6332i 0.862283 0.862283i
\(955\) 19.2084 + 31.7181i 0.621570 + 1.02637i
\(956\) −3.89975 −0.126127
\(957\) −13.0707 −0.422516
\(958\) −24.0000 + 24.0000i −0.775405 + 0.775405i
\(959\) 51.2164i 1.65386i
\(960\) −9.26650 15.3014i −0.299075 0.493850i
\(961\) −5.63325 −0.181718
\(962\) 22.0000 + 22.0000i 0.709308 + 0.709308i
\(963\) 6.00000 0.193347
\(964\) 33.0251 1.06367
\(965\) 30.6027 18.5330i 0.985137 0.596598i
\(966\) 14.2665 + 14.2665i 0.459017 + 0.459017i
\(967\) 30.6027 0.984118 0.492059 0.870562i \(-0.336244\pi\)
0.492059 + 0.870562i \(0.336244\pi\)
\(968\) 11.2665 11.2665i 0.362119 0.362119i
\(969\) −0.366750 + 2.61414i −0.0117817 + 0.0839784i
\(970\) 6.14197 + 1.50872i 0.197207 + 0.0484420i
\(971\) 32.1974i 1.03326i −0.856207 0.516632i \(-0.827185\pi\)
0.856207 0.516632i \(-0.172815\pi\)
\(972\) 32.0000i 1.02640i
\(973\) 0 0
\(974\) −13.3668 + 13.3668i −0.428298 + 0.428298i
\(975\) 14.6958 + 7.68338i 0.470641 + 0.246065i
\(976\) 17.2665i 0.552687i
\(977\) −28.2164 −0.902722 −0.451361 0.892342i \(-0.649061\pi\)
−0.451361 + 0.892342i \(0.649061\pi\)
\(978\) −9.05363 + 9.05363i −0.289503 + 0.289503i
\(979\) 29.3915i 0.939358i
\(980\) 7.79950 + 12.8790i 0.249146 + 0.411404i
\(981\) −21.7409 −0.694132
\(982\) 3.58312 + 3.58312i 0.114342 + 0.114342i
\(983\) 13.2665i 0.423136i −0.977363 0.211568i \(-0.932143\pi\)
0.977363 0.211568i \(-0.0678569\pi\)
\(984\) 5.22829 + 5.22829i 0.166672 + 0.166672i
\(985\) 31.9499 19.3488i 1.01801 0.616505i
\(986\) −3.41688 + 3.41688i −0.108816 + 0.108816i
\(987\) −24.6332 −0.784085
\(988\) −28.6332 4.01709i −0.910945 0.127801i
\(989\) 56.2164i 1.78758i
\(990\) 14.2286 + 3.49513i 0.452216 + 0.111083i
\(991\) 21.9326 0.696712 0.348356 0.937362i \(-0.386740\pi\)
0.348356 + 0.937362i \(0.386740\pi\)
\(992\) 20.1462 + 20.1462i 0.639641 + 0.639641i
\(993\) 8.25629i 0.262005i
\(994\) 20.1161 + 20.1161i 0.638045 + 0.638045i
\(995\) 13.8417 + 22.8562i 0.438811 + 0.724590i
\(996\) −12.8790 −0.408086
\(997\) 38.4452 1.21757 0.608786 0.793335i \(-0.291657\pi\)
0.608786 + 0.793335i \(0.291657\pi\)
\(998\) −21.5831 21.5831i −0.683202 0.683202i
\(999\) 33.1662i 1.04933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.p.g.379.8 yes 8
5.4 even 2 760.2.p.d.379.1 8
8.3 odd 2 inner 760.2.p.g.379.1 yes 8
19.18 odd 2 760.2.p.d.379.4 yes 8
40.19 odd 2 760.2.p.d.379.8 yes 8
95.94 odd 2 inner 760.2.p.g.379.5 yes 8
152.75 even 2 760.2.p.d.379.5 yes 8
760.379 even 2 inner 760.2.p.g.379.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.p.d.379.1 8 5.4 even 2
760.2.p.d.379.4 yes 8 19.18 odd 2
760.2.p.d.379.5 yes 8 152.75 even 2
760.2.p.d.379.8 yes 8 40.19 odd 2
760.2.p.g.379.1 yes 8 8.3 odd 2 inner
760.2.p.g.379.4 yes 8 760.379 even 2 inner
760.2.p.g.379.5 yes 8 95.94 odd 2 inner
760.2.p.g.379.8 yes 8 1.1 even 1 trivial