Properties

Label 7600.2.a.ca
Level $7600$
Weight $2$
Character orbit 7600.a
Self dual yes
Analytic conductor $60.686$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7600,2,Mod(1,7600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6863055362\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1900)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + ( - \beta_{2} - 2 \beta_1 + 1) q^{7} + ( - \beta_1 + 2) q^{9} - \beta_{2} q^{11} + ( - \beta_{2} - \beta_1 - 1) q^{13} + (\beta_{2} - 2 \beta_1 - 1) q^{17} - q^{19} + (2 \beta_{2} - 3 \beta_1 - 1) q^{21}+ \cdots + ( - 2 \beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 2 q^{7} + 5 q^{9} + q^{11} - 3 q^{13} - 6 q^{17} - 3 q^{19} - 8 q^{21} + 16 q^{23} - q^{27} + 3 q^{29} + q^{31} - 12 q^{33} + 13 q^{37} - 13 q^{39} - 3 q^{41} + 13 q^{43} + 9 q^{47} + 21 q^{49}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.239123
2.46050
−1.69963
0 −2.18194 0 0 0 3.70370 0 1.76088 0
1.2 0 1.59358 0 0 0 −4.51459 0 −0.460505 0
1.3 0 2.58836 0 0 0 2.81089 0 3.69963 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7600.2.a.ca 3
4.b odd 2 1 1900.2.a.g 3
5.b even 2 1 7600.2.a.bl 3
20.d odd 2 1 1900.2.a.i yes 3
20.e even 4 2 1900.2.c.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1900.2.a.g 3 4.b odd 2 1
1900.2.a.i yes 3 20.d odd 2 1
1900.2.c.f 6 20.e even 4 2
7600.2.a.bl 3 5.b even 2 1
7600.2.a.ca 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7600))\):

\( T_{3}^{3} - 2T_{3}^{2} - 5T_{3} + 9 \) Copy content Toggle raw display
\( T_{7}^{3} - 2T_{7}^{2} - 19T_{7} + 47 \) Copy content Toggle raw display
\( T_{11}^{3} - T_{11}^{2} - 6T_{11} - 3 \) Copy content Toggle raw display
\( T_{13}^{3} + 3T_{13}^{2} - 6T_{13} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots + 47 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} - 6T - 3 \) Copy content Toggle raw display
$13$ \( T^{3} + 3 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$17$ \( T^{3} + 6 T^{2} + \cdots - 99 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 16 T^{2} + \cdots - 129 \) Copy content Toggle raw display
$29$ \( T^{3} - 3 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$31$ \( T^{3} - T^{2} + \cdots + 109 \) Copy content Toggle raw display
$37$ \( T^{3} - 13 T^{2} + \cdots - 59 \) Copy content Toggle raw display
$41$ \( T^{3} + 3 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$43$ \( T^{3} - 13 T^{2} + \cdots + 69 \) Copy content Toggle raw display
$47$ \( T^{3} - 9 T^{2} + \cdots + 621 \) Copy content Toggle raw display
$53$ \( T^{3} - T^{2} - 69T - 3 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$61$ \( T^{3} + 5 T^{2} + \cdots - 489 \) Copy content Toggle raw display
$67$ \( T^{3} - 19 T^{2} + \cdots + 1323 \) Copy content Toggle raw display
$71$ \( T^{3} - 3 T^{2} + \cdots + 27 \) Copy content Toggle raw display
$73$ \( T^{3} + 15 T^{2} + \cdots - 49 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots + 529 \) Copy content Toggle raw display
$83$ \( T^{3} - 29 T^{2} + \cdots - 861 \) Copy content Toggle raw display
$89$ \( T^{3} - 14 T^{2} + \cdots + 489 \) Copy content Toggle raw display
$97$ \( T^{3} - T^{2} + \cdots - 683 \) Copy content Toggle raw display
show more
show less