Properties

Label 7600.2.a.w.1.1
Level $7600$
Weight $2$
Character 7600.1
Self dual yes
Analytic conductor $60.686$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7600,2,Mod(1,7600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6863055362\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 7600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.23607 q^{3} +4.47214 q^{7} +7.47214 q^{9} +1.23607 q^{13} +2.47214 q^{17} -1.00000 q^{19} -14.4721 q^{21} -2.00000 q^{23} -14.4721 q^{27} +2.00000 q^{29} +10.4721 q^{31} +9.23607 q^{37} -4.00000 q^{39} +12.4721 q^{41} -8.47214 q^{43} -3.52786 q^{47} +13.0000 q^{49} -8.00000 q^{51} +6.76393 q^{53} +3.23607 q^{57} +1.52786 q^{59} +4.47214 q^{61} +33.4164 q^{63} +3.23607 q^{67} +6.47214 q^{69} +10.4721 q^{71} -2.47214 q^{73} -2.47214 q^{79} +24.4164 q^{81} -2.94427 q^{83} -6.47214 q^{87} +10.9443 q^{89} +5.52786 q^{91} -33.8885 q^{93} -18.1803 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 6 q^{9} - 2 q^{13} - 4 q^{17} - 2 q^{19} - 20 q^{21} - 4 q^{23} - 20 q^{27} + 4 q^{29} + 12 q^{31} + 14 q^{37} - 8 q^{39} + 16 q^{41} - 8 q^{43} - 16 q^{47} + 26 q^{49} - 16 q^{51} + 18 q^{53}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.23607 −1.86834 −0.934172 0.356822i \(-0.883860\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.47214 1.69031 0.845154 0.534522i \(-0.179509\pi\)
0.845154 + 0.534522i \(0.179509\pi\)
\(8\) 0 0
\(9\) 7.47214 2.49071
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 1.23607 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.47214 0.599581 0.299791 0.954005i \(-0.403083\pi\)
0.299791 + 0.954005i \(0.403083\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −14.4721 −3.15808
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −14.4721 −2.78516
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 10.4721 1.88085 0.940426 0.340000i \(-0.110427\pi\)
0.940426 + 0.340000i \(0.110427\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.23607 1.51840 0.759200 0.650857i \(-0.225590\pi\)
0.759200 + 0.650857i \(0.225590\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 12.4721 1.94782 0.973910 0.226934i \(-0.0728701\pi\)
0.973910 + 0.226934i \(0.0728701\pi\)
\(42\) 0 0
\(43\) −8.47214 −1.29199 −0.645994 0.763342i \(-0.723557\pi\)
−0.645994 + 0.763342i \(0.723557\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.52786 −0.514592 −0.257296 0.966333i \(-0.582832\pi\)
−0.257296 + 0.966333i \(0.582832\pi\)
\(48\) 0 0
\(49\) 13.0000 1.85714
\(50\) 0 0
\(51\) −8.00000 −1.12022
\(52\) 0 0
\(53\) 6.76393 0.929098 0.464549 0.885548i \(-0.346217\pi\)
0.464549 + 0.885548i \(0.346217\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.23607 0.428628
\(58\) 0 0
\(59\) 1.52786 0.198911 0.0994555 0.995042i \(-0.468290\pi\)
0.0994555 + 0.995042i \(0.468290\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) 0 0
\(63\) 33.4164 4.21007
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.23607 0.395349 0.197674 0.980268i \(-0.436661\pi\)
0.197674 + 0.980268i \(0.436661\pi\)
\(68\) 0 0
\(69\) 6.47214 0.779154
\(70\) 0 0
\(71\) 10.4721 1.24281 0.621407 0.783488i \(-0.286561\pi\)
0.621407 + 0.783488i \(0.286561\pi\)
\(72\) 0 0
\(73\) −2.47214 −0.289342 −0.144671 0.989480i \(-0.546212\pi\)
−0.144671 + 0.989480i \(0.546212\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.47214 −0.278137 −0.139069 0.990283i \(-0.544411\pi\)
−0.139069 + 0.990283i \(0.544411\pi\)
\(80\) 0 0
\(81\) 24.4164 2.71293
\(82\) 0 0
\(83\) −2.94427 −0.323176 −0.161588 0.986858i \(-0.551662\pi\)
−0.161588 + 0.986858i \(0.551662\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.47214 −0.693886
\(88\) 0 0
\(89\) 10.9443 1.16009 0.580045 0.814584i \(-0.303035\pi\)
0.580045 + 0.814584i \(0.303035\pi\)
\(90\) 0 0
\(91\) 5.52786 0.579478
\(92\) 0 0
\(93\) −33.8885 −3.51408
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.1803 −1.84593 −0.922967 0.384879i \(-0.874243\pi\)
−0.922967 + 0.384879i \(0.874243\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.472136 −0.0469793 −0.0234896 0.999724i \(-0.507478\pi\)
−0.0234896 + 0.999724i \(0.507478\pi\)
\(102\) 0 0
\(103\) −12.7639 −1.25767 −0.628834 0.777540i \(-0.716467\pi\)
−0.628834 + 0.777540i \(0.716467\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.70820 0.551833 0.275916 0.961182i \(-0.411019\pi\)
0.275916 + 0.961182i \(0.411019\pi\)
\(108\) 0 0
\(109\) −13.4164 −1.28506 −0.642529 0.766261i \(-0.722115\pi\)
−0.642529 + 0.766261i \(0.722115\pi\)
\(110\) 0 0
\(111\) −29.8885 −2.83690
\(112\) 0 0
\(113\) 10.7639 1.01259 0.506293 0.862362i \(-0.331016\pi\)
0.506293 + 0.862362i \(0.331016\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.23607 0.853875
\(118\) 0 0
\(119\) 11.0557 1.01348
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −40.3607 −3.63920
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −11.2361 −0.997040 −0.498520 0.866878i \(-0.666123\pi\)
−0.498520 + 0.866878i \(0.666123\pi\)
\(128\) 0 0
\(129\) 27.4164 2.41388
\(130\) 0 0
\(131\) −8.94427 −0.781465 −0.390732 0.920504i \(-0.627778\pi\)
−0.390732 + 0.920504i \(0.627778\pi\)
\(132\) 0 0
\(133\) −4.47214 −0.387783
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.4164 −1.31711 −0.658556 0.752531i \(-0.728833\pi\)
−0.658556 + 0.752531i \(0.728833\pi\)
\(138\) 0 0
\(139\) 12.9443 1.09792 0.548959 0.835849i \(-0.315024\pi\)
0.548959 + 0.835849i \(0.315024\pi\)
\(140\) 0 0
\(141\) 11.4164 0.961435
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −42.0689 −3.46978
\(148\) 0 0
\(149\) 5.41641 0.443729 0.221865 0.975077i \(-0.428786\pi\)
0.221865 + 0.975077i \(0.428786\pi\)
\(150\) 0 0
\(151\) 17.8885 1.45575 0.727875 0.685710i \(-0.240508\pi\)
0.727875 + 0.685710i \(0.240508\pi\)
\(152\) 0 0
\(153\) 18.4721 1.49338
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.4164 −0.911129 −0.455564 0.890203i \(-0.650562\pi\)
−0.455564 + 0.890203i \(0.650562\pi\)
\(158\) 0 0
\(159\) −21.8885 −1.73587
\(160\) 0 0
\(161\) −8.94427 −0.704907
\(162\) 0 0
\(163\) −0.472136 −0.0369805 −0.0184903 0.999829i \(-0.505886\pi\)
−0.0184903 + 0.999829i \(0.505886\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.1803 0.942543 0.471271 0.881988i \(-0.343795\pi\)
0.471271 + 0.881988i \(0.343795\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −7.47214 −0.571409
\(172\) 0 0
\(173\) 16.6525 1.26606 0.633032 0.774126i \(-0.281810\pi\)
0.633032 + 0.774126i \(0.281810\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.94427 −0.371634
\(178\) 0 0
\(179\) 14.4721 1.08170 0.540849 0.841120i \(-0.318103\pi\)
0.540849 + 0.841120i \(0.318103\pi\)
\(180\) 0 0
\(181\) −11.8885 −0.883669 −0.441834 0.897097i \(-0.645672\pi\)
−0.441834 + 0.897097i \(0.645672\pi\)
\(182\) 0 0
\(183\) −14.4721 −1.06981
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −64.7214 −4.70779
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 7.70820 0.554849 0.277424 0.960747i \(-0.410519\pi\)
0.277424 + 0.960747i \(0.410519\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.9443 1.20723 0.603615 0.797276i \(-0.293727\pi\)
0.603615 + 0.797276i \(0.293727\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −10.4721 −0.738648
\(202\) 0 0
\(203\) 8.94427 0.627765
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −14.9443 −1.03870
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −24.9443 −1.71723 −0.858617 0.512617i \(-0.828676\pi\)
−0.858617 + 0.512617i \(0.828676\pi\)
\(212\) 0 0
\(213\) −33.8885 −2.32200
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 46.8328 3.17922
\(218\) 0 0
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) 3.05573 0.205551
\(222\) 0 0
\(223\) −20.7639 −1.39046 −0.695228 0.718789i \(-0.744697\pi\)
−0.695228 + 0.718789i \(0.744697\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.1803 −0.808438 −0.404219 0.914662i \(-0.632457\pi\)
−0.404219 + 0.914662i \(0.632457\pi\)
\(228\) 0 0
\(229\) −9.41641 −0.622254 −0.311127 0.950368i \(-0.600706\pi\)
−0.311127 + 0.950368i \(0.600706\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.94427 −0.323910 −0.161955 0.986798i \(-0.551780\pi\)
−0.161955 + 0.986798i \(0.551780\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −11.0557 −0.715136 −0.357568 0.933887i \(-0.616394\pi\)
−0.357568 + 0.933887i \(0.616394\pi\)
\(240\) 0 0
\(241\) −5.41641 −0.348902 −0.174451 0.984666i \(-0.555815\pi\)
−0.174451 + 0.984666i \(0.555815\pi\)
\(242\) 0 0
\(243\) −35.5967 −2.28353
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.23607 −0.0786491
\(248\) 0 0
\(249\) 9.52786 0.603804
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −23.7082 −1.47888 −0.739439 0.673224i \(-0.764909\pi\)
−0.739439 + 0.673224i \(0.764909\pi\)
\(258\) 0 0
\(259\) 41.3050 2.56656
\(260\) 0 0
\(261\) 14.9443 0.925027
\(262\) 0 0
\(263\) 23.8885 1.47303 0.736515 0.676421i \(-0.236470\pi\)
0.736515 + 0.676421i \(0.236470\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −35.4164 −2.16745
\(268\) 0 0
\(269\) 1.41641 0.0863599 0.0431800 0.999067i \(-0.486251\pi\)
0.0431800 + 0.999067i \(0.486251\pi\)
\(270\) 0 0
\(271\) 16.9443 1.02929 0.514646 0.857403i \(-0.327924\pi\)
0.514646 + 0.857403i \(0.327924\pi\)
\(272\) 0 0
\(273\) −17.8885 −1.08266
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.5279 1.05315 0.526574 0.850130i \(-0.323476\pi\)
0.526574 + 0.850130i \(0.323476\pi\)
\(278\) 0 0
\(279\) 78.2492 4.68466
\(280\) 0 0
\(281\) −5.41641 −0.323116 −0.161558 0.986863i \(-0.551652\pi\)
−0.161558 + 0.986863i \(0.551652\pi\)
\(282\) 0 0
\(283\) −15.8885 −0.944476 −0.472238 0.881471i \(-0.656554\pi\)
−0.472238 + 0.881471i \(0.656554\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 55.7771 3.29242
\(288\) 0 0
\(289\) −10.8885 −0.640503
\(290\) 0 0
\(291\) 58.8328 3.44884
\(292\) 0 0
\(293\) −4.29180 −0.250729 −0.125365 0.992111i \(-0.540010\pi\)
−0.125365 + 0.992111i \(0.540010\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.47214 −0.142967
\(300\) 0 0
\(301\) −37.8885 −2.18386
\(302\) 0 0
\(303\) 1.52786 0.0877735
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.76393 0.500184 0.250092 0.968222i \(-0.419539\pi\)
0.250092 + 0.968222i \(0.419539\pi\)
\(308\) 0 0
\(309\) 41.3050 2.34976
\(310\) 0 0
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 0 0
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.1246 1.07415 0.537073 0.843536i \(-0.319530\pi\)
0.537073 + 0.843536i \(0.319530\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −18.4721 −1.03101
\(322\) 0 0
\(323\) −2.47214 −0.137553
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 43.4164 2.40093
\(328\) 0 0
\(329\) −15.7771 −0.869819
\(330\) 0 0
\(331\) 15.0557 0.827538 0.413769 0.910382i \(-0.364212\pi\)
0.413769 + 0.910382i \(0.364212\pi\)
\(332\) 0 0
\(333\) 69.0132 3.78190
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.7639 1.45792 0.728962 0.684554i \(-0.240003\pi\)
0.728962 + 0.684554i \(0.240003\pi\)
\(338\) 0 0
\(339\) −34.8328 −1.89186
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 26.8328 1.44884
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.94427 −0.372788 −0.186394 0.982475i \(-0.559680\pi\)
−0.186394 + 0.982475i \(0.559680\pi\)
\(348\) 0 0
\(349\) 27.8885 1.49284 0.746420 0.665475i \(-0.231771\pi\)
0.746420 + 0.665475i \(0.231771\pi\)
\(350\) 0 0
\(351\) −17.8885 −0.954820
\(352\) 0 0
\(353\) −13.5279 −0.720016 −0.360008 0.932949i \(-0.617226\pi\)
−0.360008 + 0.932949i \(0.617226\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −35.7771 −1.89352
\(358\) 0 0
\(359\) 29.8885 1.57746 0.788729 0.614742i \(-0.210740\pi\)
0.788729 + 0.614742i \(0.210740\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 35.5967 1.86834
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 14.3607 0.749621 0.374811 0.927101i \(-0.377708\pi\)
0.374811 + 0.927101i \(0.377708\pi\)
\(368\) 0 0
\(369\) 93.1935 4.85146
\(370\) 0 0
\(371\) 30.2492 1.57046
\(372\) 0 0
\(373\) −19.1246 −0.990235 −0.495117 0.868826i \(-0.664875\pi\)
−0.495117 + 0.868826i \(0.664875\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.47214 0.127321
\(378\) 0 0
\(379\) 13.8885 0.713407 0.356703 0.934218i \(-0.383901\pi\)
0.356703 + 0.934218i \(0.383901\pi\)
\(380\) 0 0
\(381\) 36.3607 1.86281
\(382\) 0 0
\(383\) 10.6525 0.544316 0.272158 0.962253i \(-0.412263\pi\)
0.272158 + 0.962253i \(0.412263\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −63.3050 −3.21797
\(388\) 0 0
\(389\) −33.7771 −1.71257 −0.856283 0.516507i \(-0.827232\pi\)
−0.856283 + 0.516507i \(0.827232\pi\)
\(390\) 0 0
\(391\) −4.94427 −0.250043
\(392\) 0 0
\(393\) 28.9443 1.46005
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.41641 −0.171465 −0.0857323 0.996318i \(-0.527323\pi\)
−0.0857323 + 0.996318i \(0.527323\pi\)
\(398\) 0 0
\(399\) 14.4721 0.724513
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 12.9443 0.644800
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −15.5279 −0.767803 −0.383902 0.923374i \(-0.625420\pi\)
−0.383902 + 0.923374i \(0.625420\pi\)
\(410\) 0 0
\(411\) 49.8885 2.46082
\(412\) 0 0
\(413\) 6.83282 0.336221
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −41.8885 −2.05129
\(418\) 0 0
\(419\) −5.88854 −0.287674 −0.143837 0.989601i \(-0.545944\pi\)
−0.143837 + 0.989601i \(0.545944\pi\)
\(420\) 0 0
\(421\) 11.5279 0.561834 0.280917 0.959732i \(-0.409361\pi\)
0.280917 + 0.959732i \(0.409361\pi\)
\(422\) 0 0
\(423\) −26.3607 −1.28170
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 20.0000 0.967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.8885 −0.861661 −0.430830 0.902433i \(-0.641779\pi\)
−0.430830 + 0.902433i \(0.641779\pi\)
\(432\) 0 0
\(433\) −10.1803 −0.489236 −0.244618 0.969620i \(-0.578663\pi\)
−0.244618 + 0.969620i \(0.578663\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) 0 0
\(439\) −13.5279 −0.645650 −0.322825 0.946459i \(-0.604632\pi\)
−0.322825 + 0.946459i \(0.604632\pi\)
\(440\) 0 0
\(441\) 97.1378 4.62561
\(442\) 0 0
\(443\) 11.8885 0.564842 0.282421 0.959291i \(-0.408863\pi\)
0.282421 + 0.959291i \(0.408863\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −17.5279 −0.829040
\(448\) 0 0
\(449\) −17.4164 −0.821931 −0.410966 0.911651i \(-0.634808\pi\)
−0.410966 + 0.911651i \(0.634808\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −57.8885 −2.71984
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.88854 0.0883424 0.0441712 0.999024i \(-0.485935\pi\)
0.0441712 + 0.999024i \(0.485935\pi\)
\(458\) 0 0
\(459\) −35.7771 −1.66993
\(460\) 0 0
\(461\) 23.8885 1.11260 0.556300 0.830981i \(-0.312220\pi\)
0.556300 + 0.830981i \(0.312220\pi\)
\(462\) 0 0
\(463\) −3.88854 −0.180716 −0.0903580 0.995909i \(-0.528801\pi\)
−0.0903580 + 0.995909i \(0.528801\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) 14.4721 0.668261
\(470\) 0 0
\(471\) 36.9443 1.70230
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 50.5410 2.31411
\(478\) 0 0
\(479\) 7.05573 0.322384 0.161192 0.986923i \(-0.448466\pi\)
0.161192 + 0.986923i \(0.448466\pi\)
\(480\) 0 0
\(481\) 11.4164 0.520543
\(482\) 0 0
\(483\) 28.9443 1.31701
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −18.6525 −0.845224 −0.422612 0.906311i \(-0.638887\pi\)
−0.422612 + 0.906311i \(0.638887\pi\)
\(488\) 0 0
\(489\) 1.52786 0.0690924
\(490\) 0 0
\(491\) −24.9443 −1.12572 −0.562860 0.826553i \(-0.690299\pi\)
−0.562860 + 0.826553i \(0.690299\pi\)
\(492\) 0 0
\(493\) 4.94427 0.222679
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 46.8328 2.10074
\(498\) 0 0
\(499\) −38.8328 −1.73840 −0.869198 0.494465i \(-0.835364\pi\)
−0.869198 + 0.494465i \(0.835364\pi\)
\(500\) 0 0
\(501\) −39.4164 −1.76100
\(502\) 0 0
\(503\) 33.7771 1.50605 0.753023 0.657994i \(-0.228595\pi\)
0.753023 + 0.657994i \(0.228595\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 37.1246 1.64876
\(508\) 0 0
\(509\) 2.00000 0.0886484 0.0443242 0.999017i \(-0.485887\pi\)
0.0443242 + 0.999017i \(0.485887\pi\)
\(510\) 0 0
\(511\) −11.0557 −0.489077
\(512\) 0 0
\(513\) 14.4721 0.638960
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −53.8885 −2.36544
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −16.7639 −0.733036 −0.366518 0.930411i \(-0.619450\pi\)
−0.366518 + 0.930411i \(0.619450\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.8885 1.12772
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 11.4164 0.495430
\(532\) 0 0
\(533\) 15.4164 0.667759
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −46.8328 −2.02099
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.3607 0.617414 0.308707 0.951157i \(-0.400104\pi\)
0.308707 + 0.951157i \(0.400104\pi\)
\(542\) 0 0
\(543\) 38.4721 1.65100
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.7082 0.586120 0.293060 0.956094i \(-0.405326\pi\)
0.293060 + 0.956094i \(0.405326\pi\)
\(548\) 0 0
\(549\) 33.4164 1.42618
\(550\) 0 0
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) −11.0557 −0.470137
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.5836 −0.533184 −0.266592 0.963809i \(-0.585898\pi\)
−0.266592 + 0.963809i \(0.585898\pi\)
\(558\) 0 0
\(559\) −10.4721 −0.442924
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.7639 −1.04368 −0.521838 0.853045i \(-0.674753\pi\)
−0.521838 + 0.853045i \(0.674753\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 109.193 4.58570
\(568\) 0 0
\(569\) 3.52786 0.147896 0.0739479 0.997262i \(-0.476440\pi\)
0.0739479 + 0.997262i \(0.476440\pi\)
\(570\) 0 0
\(571\) 20.9443 0.876491 0.438245 0.898855i \(-0.355600\pi\)
0.438245 + 0.898855i \(0.355600\pi\)
\(572\) 0 0
\(573\) 25.8885 1.08151
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.05573 −0.127212 −0.0636058 0.997975i \(-0.520260\pi\)
−0.0636058 + 0.997975i \(0.520260\pi\)
\(578\) 0 0
\(579\) −24.9443 −1.03665
\(580\) 0 0
\(581\) −13.1672 −0.546267
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −45.7771 −1.88942 −0.944711 0.327903i \(-0.893658\pi\)
−0.944711 + 0.327903i \(0.893658\pi\)
\(588\) 0 0
\(589\) −10.4721 −0.431497
\(590\) 0 0
\(591\) −54.8328 −2.25552
\(592\) 0 0
\(593\) 36.9443 1.51712 0.758560 0.651604i \(-0.225903\pi\)
0.758560 + 0.651604i \(0.225903\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 29.5279 1.20648 0.603238 0.797561i \(-0.293877\pi\)
0.603238 + 0.797561i \(0.293877\pi\)
\(600\) 0 0
\(601\) −2.36068 −0.0962941 −0.0481471 0.998840i \(-0.515332\pi\)
−0.0481471 + 0.998840i \(0.515332\pi\)
\(602\) 0 0
\(603\) 24.1803 0.984700
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.1246 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(608\) 0 0
\(609\) −28.9443 −1.17288
\(610\) 0 0
\(611\) −4.36068 −0.176414
\(612\) 0 0
\(613\) 12.5836 0.508246 0.254123 0.967172i \(-0.418213\pi\)
0.254123 + 0.967172i \(0.418213\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.2492 1.53986 0.769928 0.638131i \(-0.220292\pi\)
0.769928 + 0.638131i \(0.220292\pi\)
\(618\) 0 0
\(619\) 28.9443 1.16337 0.581684 0.813415i \(-0.302394\pi\)
0.581684 + 0.813415i \(0.302394\pi\)
\(620\) 0 0
\(621\) 28.9443 1.16149
\(622\) 0 0
\(623\) 48.9443 1.96091
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.8328 0.910404
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 80.7214 3.20839
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 16.0689 0.636672
\(638\) 0 0
\(639\) 78.2492 3.09549
\(640\) 0 0
\(641\) −10.3607 −0.409222 −0.204611 0.978843i \(-0.565593\pi\)
−0.204611 + 0.978843i \(0.565593\pi\)
\(642\) 0 0
\(643\) −6.00000 −0.236617 −0.118308 0.992977i \(-0.537747\pi\)
−0.118308 + 0.992977i \(0.537747\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26.9443 −1.05929 −0.529644 0.848220i \(-0.677675\pi\)
−0.529644 + 0.848220i \(0.677675\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −151.554 −5.93988
\(652\) 0 0
\(653\) 30.4721 1.19247 0.596233 0.802811i \(-0.296663\pi\)
0.596233 + 0.802811i \(0.296663\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −18.4721 −0.720667
\(658\) 0 0
\(659\) 16.3607 0.637322 0.318661 0.947869i \(-0.396767\pi\)
0.318661 + 0.947869i \(0.396767\pi\)
\(660\) 0 0
\(661\) −36.4721 −1.41860 −0.709301 0.704906i \(-0.750989\pi\)
−0.709301 + 0.704906i \(0.750989\pi\)
\(662\) 0 0
\(663\) −9.88854 −0.384039
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.00000 −0.154881
\(668\) 0 0
\(669\) 67.1935 2.59785
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 42.1803 1.62593 0.812966 0.582311i \(-0.197851\pi\)
0.812966 + 0.582311i \(0.197851\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.1246 −1.04248 −0.521242 0.853409i \(-0.674531\pi\)
−0.521242 + 0.853409i \(0.674531\pi\)
\(678\) 0 0
\(679\) −81.3050 −3.12020
\(680\) 0 0
\(681\) 39.4164 1.51044
\(682\) 0 0
\(683\) 36.1803 1.38440 0.692201 0.721705i \(-0.256641\pi\)
0.692201 + 0.721705i \(0.256641\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 30.4721 1.16258
\(688\) 0 0
\(689\) 8.36068 0.318517
\(690\) 0 0
\(691\) −17.8885 −0.680512 −0.340256 0.940333i \(-0.610514\pi\)
−0.340256 + 0.940333i \(0.610514\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 30.8328 1.16788
\(698\) 0 0
\(699\) 16.0000 0.605176
\(700\) 0 0
\(701\) −39.3050 −1.48453 −0.742264 0.670108i \(-0.766248\pi\)
−0.742264 + 0.670108i \(0.766248\pi\)
\(702\) 0 0
\(703\) −9.23607 −0.348345
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.11146 −0.0794095
\(708\) 0 0
\(709\) 35.8885 1.34782 0.673911 0.738812i \(-0.264613\pi\)
0.673911 + 0.738812i \(0.264613\pi\)
\(710\) 0 0
\(711\) −18.4721 −0.692759
\(712\) 0 0
\(713\) −20.9443 −0.784369
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 35.7771 1.33612
\(718\) 0 0
\(719\) 10.1115 0.377094 0.188547 0.982064i \(-0.439622\pi\)
0.188547 + 0.982064i \(0.439622\pi\)
\(720\) 0 0
\(721\) −57.0820 −2.12585
\(722\) 0 0
\(723\) 17.5279 0.651868
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.5836 0.689227 0.344614 0.938745i \(-0.388010\pi\)
0.344614 + 0.938745i \(0.388010\pi\)
\(728\) 0 0
\(729\) 41.9443 1.55349
\(730\) 0 0
\(731\) −20.9443 −0.774652
\(732\) 0 0
\(733\) 0.944272 0.0348775 0.0174387 0.999848i \(-0.494449\pi\)
0.0174387 + 0.999848i \(0.494449\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) −1.12461 −0.0412580 −0.0206290 0.999787i \(-0.506567\pi\)
−0.0206290 + 0.999787i \(0.506567\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −22.0000 −0.804938
\(748\) 0 0
\(749\) 25.5279 0.932768
\(750\) 0 0
\(751\) −3.05573 −0.111505 −0.0557526 0.998445i \(-0.517756\pi\)
−0.0557526 + 0.998445i \(0.517756\pi\)
\(752\) 0 0
\(753\) 12.9443 0.471715
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 12.0000 0.436147 0.218074 0.975932i \(-0.430023\pi\)
0.218074 + 0.975932i \(0.430023\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.47214 0.307115 0.153557 0.988140i \(-0.450927\pi\)
0.153557 + 0.988140i \(0.450927\pi\)
\(762\) 0 0
\(763\) −60.0000 −2.17215
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.88854 0.0681914
\(768\) 0 0
\(769\) −29.4164 −1.06078 −0.530391 0.847753i \(-0.677955\pi\)
−0.530391 + 0.847753i \(0.677955\pi\)
\(770\) 0 0
\(771\) 76.7214 2.76305
\(772\) 0 0
\(773\) −27.7082 −0.996595 −0.498297 0.867006i \(-0.666041\pi\)
−0.498297 + 0.867006i \(0.666041\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −133.666 −4.79523
\(778\) 0 0
\(779\) −12.4721 −0.446861
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −28.9443 −1.03438
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 12.5410 0.447039 0.223520 0.974699i \(-0.428245\pi\)
0.223520 + 0.974699i \(0.428245\pi\)
\(788\) 0 0
\(789\) −77.3050 −2.75213
\(790\) 0 0
\(791\) 48.1378 1.71158
\(792\) 0 0
\(793\) 5.52786 0.196300
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.6525 0.589861 0.294930 0.955519i \(-0.404704\pi\)
0.294930 + 0.955519i \(0.404704\pi\)
\(798\) 0 0
\(799\) −8.72136 −0.308540
\(800\) 0 0
\(801\) 81.7771 2.88945
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.58359 −0.161350
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 21.3050 0.748118 0.374059 0.927405i \(-0.377966\pi\)
0.374059 + 0.927405i \(0.377966\pi\)
\(812\) 0 0
\(813\) −54.8328 −1.92307
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.47214 0.296403
\(818\) 0 0
\(819\) 41.3050 1.44331
\(820\) 0 0
\(821\) 25.0557 0.874451 0.437225 0.899352i \(-0.355961\pi\)
0.437225 + 0.899352i \(0.355961\pi\)
\(822\) 0 0
\(823\) −49.4164 −1.72255 −0.861274 0.508141i \(-0.830333\pi\)
−0.861274 + 0.508141i \(0.830333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.2361 1.50347 0.751733 0.659468i \(-0.229218\pi\)
0.751733 + 0.659468i \(0.229218\pi\)
\(828\) 0 0
\(829\) 17.4164 0.604897 0.302448 0.953166i \(-0.402196\pi\)
0.302448 + 0.953166i \(0.402196\pi\)
\(830\) 0 0
\(831\) −56.7214 −1.96764
\(832\) 0 0
\(833\) 32.1378 1.11351
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −151.554 −5.23848
\(838\) 0 0
\(839\) 26.4721 0.913920 0.456960 0.889487i \(-0.348938\pi\)
0.456960 + 0.889487i \(0.348938\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 17.5279 0.603692
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −49.1935 −1.69031
\(848\) 0 0
\(849\) 51.4164 1.76461
\(850\) 0 0
\(851\) −18.4721 −0.633217
\(852\) 0 0
\(853\) 23.0557 0.789413 0.394707 0.918807i \(-0.370846\pi\)
0.394707 + 0.918807i \(0.370846\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −52.6525 −1.79857 −0.899287 0.437359i \(-0.855914\pi\)
−0.899287 + 0.437359i \(0.855914\pi\)
\(858\) 0 0
\(859\) 2.11146 0.0720420 0.0360210 0.999351i \(-0.488532\pi\)
0.0360210 + 0.999351i \(0.488532\pi\)
\(860\) 0 0
\(861\) −180.498 −6.15137
\(862\) 0 0
\(863\) 16.7639 0.570651 0.285325 0.958431i \(-0.407898\pi\)
0.285325 + 0.958431i \(0.407898\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 35.2361 1.19668
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 0 0
\(873\) −135.846 −4.59769
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.1803 −0.478836 −0.239418 0.970917i \(-0.576957\pi\)
−0.239418 + 0.970917i \(0.576957\pi\)
\(878\) 0 0
\(879\) 13.8885 0.468449
\(880\) 0 0
\(881\) −40.2492 −1.35603 −0.678015 0.735048i \(-0.737160\pi\)
−0.678015 + 0.735048i \(0.737160\pi\)
\(882\) 0 0
\(883\) 44.4721 1.49661 0.748303 0.663357i \(-0.230869\pi\)
0.748303 + 0.663357i \(0.230869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49.7082 1.66904 0.834519 0.550979i \(-0.185746\pi\)
0.834519 + 0.550979i \(0.185746\pi\)
\(888\) 0 0
\(889\) −50.2492 −1.68530
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.52786 0.118055
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.00000 0.267112
\(898\) 0 0
\(899\) 20.9443 0.698531
\(900\) 0 0
\(901\) 16.7214 0.557069
\(902\) 0 0
\(903\) 122.610 4.08020
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 11.8197 0.392465 0.196233 0.980557i \(-0.437129\pi\)
0.196233 + 0.980557i \(0.437129\pi\)
\(908\) 0 0
\(909\) −3.52786 −0.117012
\(910\) 0 0
\(911\) 54.8328 1.81669 0.908346 0.418219i \(-0.137346\pi\)
0.908346 + 0.418219i \(0.137346\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −40.0000 −1.32092
\(918\) 0 0
\(919\) 1.88854 0.0622973 0.0311487 0.999515i \(-0.490083\pi\)
0.0311487 + 0.999515i \(0.490083\pi\)
\(920\) 0 0
\(921\) −28.3607 −0.934516
\(922\) 0 0
\(923\) 12.9443 0.426066
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −95.3738 −3.13249
\(928\) 0 0
\(929\) −29.7771 −0.976955 −0.488477 0.872577i \(-0.662447\pi\)
−0.488477 + 0.872577i \(0.662447\pi\)
\(930\) 0 0
\(931\) −13.0000 −0.426058
\(932\) 0 0
\(933\) −64.7214 −2.11888
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.58359 0.280414 0.140207 0.990122i \(-0.455223\pi\)
0.140207 + 0.990122i \(0.455223\pi\)
\(938\) 0 0
\(939\) 51.7771 1.68968
\(940\) 0 0
\(941\) 36.8328 1.20072 0.600358 0.799732i \(-0.295025\pi\)
0.600358 + 0.799732i \(0.295025\pi\)
\(942\) 0 0
\(943\) −24.9443 −0.812297
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.9443 0.875571 0.437786 0.899079i \(-0.355763\pi\)
0.437786 + 0.899079i \(0.355763\pi\)
\(948\) 0 0
\(949\) −3.05573 −0.0991931
\(950\) 0 0
\(951\) −61.8885 −2.00687
\(952\) 0 0
\(953\) −15.7082 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −68.9443 −2.22633
\(960\) 0 0
\(961\) 78.6656 2.53760
\(962\) 0 0
\(963\) 42.6525 1.37446
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −20.8328 −0.669938 −0.334969 0.942229i \(-0.608726\pi\)
−0.334969 + 0.942229i \(0.608726\pi\)
\(968\) 0 0
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) −0.360680 −0.0115748 −0.00578738 0.999983i \(-0.501842\pi\)
−0.00578738 + 0.999983i \(0.501842\pi\)
\(972\) 0 0
\(973\) 57.8885 1.85582
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.1803 0.837583 0.418792 0.908082i \(-0.362454\pi\)
0.418792 + 0.908082i \(0.362454\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −100.249 −3.20071
\(982\) 0 0
\(983\) −39.2361 −1.25144 −0.625718 0.780049i \(-0.715194\pi\)
−0.625718 + 0.780049i \(0.715194\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 51.0557 1.62512
\(988\) 0 0
\(989\) 16.9443 0.538797
\(990\) 0 0
\(991\) 25.8885 0.822377 0.411188 0.911550i \(-0.365114\pi\)
0.411188 + 0.911550i \(0.365114\pi\)
\(992\) 0 0
\(993\) −48.7214 −1.54613
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −29.3050 −0.928097 −0.464049 0.885810i \(-0.653604\pi\)
−0.464049 + 0.885810i \(0.653604\pi\)
\(998\) 0 0
\(999\) −133.666 −4.22899
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7600.2.a.w.1.1 2
4.3 odd 2 3800.2.a.q.1.2 2
5.2 odd 4 1520.2.d.c.609.4 4
5.3 odd 4 1520.2.d.c.609.1 4
5.4 even 2 7600.2.a.be.1.2 2
20.3 even 4 760.2.d.b.609.4 yes 4
20.7 even 4 760.2.d.b.609.1 4
20.19 odd 2 3800.2.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.d.b.609.1 4 20.7 even 4
760.2.d.b.609.4 yes 4 20.3 even 4
1520.2.d.c.609.1 4 5.3 odd 4
1520.2.d.c.609.4 4 5.2 odd 4
3800.2.a.k.1.1 2 20.19 odd 2
3800.2.a.q.1.2 2 4.3 odd 2
7600.2.a.w.1.1 2 1.1 even 1 trivial
7600.2.a.be.1.2 2 5.4 even 2