Properties

Label 765.2.a.g.1.1
Level $765$
Weight $2$
Character 765.1
Self dual yes
Analytic conductor $6.109$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(1,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.10855575463\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 765.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +1.00000 q^{4} -1.00000 q^{5} +0.732051 q^{7} +1.73205 q^{8} +1.73205 q^{10} -1.26795 q^{11} -4.00000 q^{13} -1.26795 q^{14} -5.00000 q^{16} +1.00000 q^{17} +5.46410 q^{19} -1.00000 q^{20} +2.19615 q^{22} -2.19615 q^{23} +1.00000 q^{25} +6.92820 q^{26} +0.732051 q^{28} -3.46410 q^{29} +6.73205 q^{31} +5.19615 q^{32} -1.73205 q^{34} -0.732051 q^{35} -7.46410 q^{37} -9.46410 q^{38} -1.73205 q^{40} -3.46410 q^{41} -7.46410 q^{43} -1.26795 q^{44} +3.80385 q^{46} +0.928203 q^{47} -6.46410 q^{49} -1.73205 q^{50} -4.00000 q^{52} -6.00000 q^{53} +1.26795 q^{55} +1.26795 q^{56} +6.00000 q^{58} -9.46410 q^{59} +8.92820 q^{61} -11.6603 q^{62} +1.00000 q^{64} +4.00000 q^{65} -10.0000 q^{67} +1.00000 q^{68} +1.26795 q^{70} +5.66025 q^{71} -14.3923 q^{73} +12.9282 q^{74} +5.46410 q^{76} -0.928203 q^{77} -16.5885 q^{79} +5.00000 q^{80} +6.00000 q^{82} -15.4641 q^{83} -1.00000 q^{85} +12.9282 q^{86} -2.19615 q^{88} +16.3923 q^{89} -2.92820 q^{91} -2.19615 q^{92} -1.60770 q^{94} -5.46410 q^{95} +8.92820 q^{97} +11.1962 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{5} - 2 q^{7} - 6 q^{11} - 8 q^{13} - 6 q^{14} - 10 q^{16} + 2 q^{17} + 4 q^{19} - 2 q^{20} - 6 q^{22} + 6 q^{23} + 2 q^{25} - 2 q^{28} + 10 q^{31} + 2 q^{35} - 8 q^{37} - 12 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.732051 0.276689 0.138345 0.990384i \(-0.455822\pi\)
0.138345 + 0.990384i \(0.455822\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 1.73205 0.547723
\(11\) −1.26795 −0.382301 −0.191151 0.981561i \(-0.561222\pi\)
−0.191151 + 0.981561i \(0.561222\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −1.26795 −0.338874
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 5.46410 1.25355 0.626775 0.779200i \(-0.284374\pi\)
0.626775 + 0.779200i \(0.284374\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 2.19615 0.468221
\(23\) −2.19615 −0.457929 −0.228965 0.973435i \(-0.573534\pi\)
−0.228965 + 0.973435i \(0.573534\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 6.92820 1.35873
\(27\) 0 0
\(28\) 0.732051 0.138345
\(29\) −3.46410 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(30\) 0 0
\(31\) 6.73205 1.20911 0.604556 0.796563i \(-0.293351\pi\)
0.604556 + 0.796563i \(0.293351\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) −1.73205 −0.297044
\(35\) −0.732051 −0.123739
\(36\) 0 0
\(37\) −7.46410 −1.22709 −0.613545 0.789659i \(-0.710257\pi\)
−0.613545 + 0.789659i \(0.710257\pi\)
\(38\) −9.46410 −1.53528
\(39\) 0 0
\(40\) −1.73205 −0.273861
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) −7.46410 −1.13826 −0.569132 0.822246i \(-0.692721\pi\)
−0.569132 + 0.822246i \(0.692721\pi\)
\(44\) −1.26795 −0.191151
\(45\) 0 0
\(46\) 3.80385 0.560847
\(47\) 0.928203 0.135392 0.0676962 0.997706i \(-0.478435\pi\)
0.0676962 + 0.997706i \(0.478435\pi\)
\(48\) 0 0
\(49\) −6.46410 −0.923443
\(50\) −1.73205 −0.244949
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 1.26795 0.170970
\(56\) 1.26795 0.169437
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) −9.46410 −1.23212 −0.616061 0.787699i \(-0.711272\pi\)
−0.616061 + 0.787699i \(0.711272\pi\)
\(60\) 0 0
\(61\) 8.92820 1.14314 0.571570 0.820554i \(-0.306335\pi\)
0.571570 + 0.820554i \(0.306335\pi\)
\(62\) −11.6603 −1.48085
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 1.26795 0.151549
\(71\) 5.66025 0.671749 0.335874 0.941907i \(-0.390968\pi\)
0.335874 + 0.941907i \(0.390968\pi\)
\(72\) 0 0
\(73\) −14.3923 −1.68449 −0.842246 0.539093i \(-0.818767\pi\)
−0.842246 + 0.539093i \(0.818767\pi\)
\(74\) 12.9282 1.50287
\(75\) 0 0
\(76\) 5.46410 0.626775
\(77\) −0.928203 −0.105779
\(78\) 0 0
\(79\) −16.5885 −1.86635 −0.933174 0.359426i \(-0.882973\pi\)
−0.933174 + 0.359426i \(0.882973\pi\)
\(80\) 5.00000 0.559017
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −15.4641 −1.69741 −0.848703 0.528870i \(-0.822616\pi\)
−0.848703 + 0.528870i \(0.822616\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 12.9282 1.39408
\(87\) 0 0
\(88\) −2.19615 −0.234111
\(89\) 16.3923 1.73758 0.868790 0.495180i \(-0.164898\pi\)
0.868790 + 0.495180i \(0.164898\pi\)
\(90\) 0 0
\(91\) −2.92820 −0.306959
\(92\) −2.19615 −0.228965
\(93\) 0 0
\(94\) −1.60770 −0.165821
\(95\) −5.46410 −0.560605
\(96\) 0 0
\(97\) 8.92820 0.906522 0.453261 0.891378i \(-0.350261\pi\)
0.453261 + 0.891378i \(0.350261\pi\)
\(98\) 11.1962 1.13098
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) −4.92820 −0.485590 −0.242795 0.970078i \(-0.578064\pi\)
−0.242795 + 0.970078i \(0.578064\pi\)
\(104\) −6.92820 −0.679366
\(105\) 0 0
\(106\) 10.3923 1.00939
\(107\) −0.339746 −0.0328445 −0.0164222 0.999865i \(-0.505228\pi\)
−0.0164222 + 0.999865i \(0.505228\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −2.19615 −0.209395
\(111\) 0 0
\(112\) −3.66025 −0.345861
\(113\) −17.3205 −1.62938 −0.814688 0.579899i \(-0.803092\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 0 0
\(115\) 2.19615 0.204792
\(116\) −3.46410 −0.321634
\(117\) 0 0
\(118\) 16.3923 1.50903
\(119\) 0.732051 0.0671070
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) −15.4641 −1.40005
\(123\) 0 0
\(124\) 6.73205 0.604556
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.39230 0.567225 0.283613 0.958939i \(-0.408467\pi\)
0.283613 + 0.958939i \(0.408467\pi\)
\(128\) −12.1244 −1.07165
\(129\) 0 0
\(130\) −6.92820 −0.607644
\(131\) −8.19615 −0.716101 −0.358051 0.933702i \(-0.616558\pi\)
−0.358051 + 0.933702i \(0.616558\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 17.3205 1.49626
\(135\) 0 0
\(136\) 1.73205 0.148522
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 13.6603 1.15865 0.579324 0.815097i \(-0.303317\pi\)
0.579324 + 0.815097i \(0.303317\pi\)
\(140\) −0.732051 −0.0618696
\(141\) 0 0
\(142\) −9.80385 −0.822721
\(143\) 5.07180 0.424125
\(144\) 0 0
\(145\) 3.46410 0.287678
\(146\) 24.9282 2.06307
\(147\) 0 0
\(148\) −7.46410 −0.613545
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 5.46410 0.444662 0.222331 0.974971i \(-0.428633\pi\)
0.222331 + 0.974971i \(0.428633\pi\)
\(152\) 9.46410 0.767640
\(153\) 0 0
\(154\) 1.60770 0.129552
\(155\) −6.73205 −0.540731
\(156\) 0 0
\(157\) −4.92820 −0.393313 −0.196657 0.980472i \(-0.563008\pi\)
−0.196657 + 0.980472i \(0.563008\pi\)
\(158\) 28.7321 2.28580
\(159\) 0 0
\(160\) −5.19615 −0.410792
\(161\) −1.60770 −0.126704
\(162\) 0 0
\(163\) 10.1962 0.798624 0.399312 0.916815i \(-0.369249\pi\)
0.399312 + 0.916815i \(0.369249\pi\)
\(164\) −3.46410 −0.270501
\(165\) 0 0
\(166\) 26.7846 2.07889
\(167\) 18.5885 1.43842 0.719209 0.694794i \(-0.244504\pi\)
0.719209 + 0.694794i \(0.244504\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 1.73205 0.132842
\(171\) 0 0
\(172\) −7.46410 −0.569132
\(173\) 3.46410 0.263371 0.131685 0.991292i \(-0.457961\pi\)
0.131685 + 0.991292i \(0.457961\pi\)
\(174\) 0 0
\(175\) 0.732051 0.0553378
\(176\) 6.33975 0.477876
\(177\) 0 0
\(178\) −28.3923 −2.12809
\(179\) −23.3205 −1.74306 −0.871528 0.490345i \(-0.836871\pi\)
−0.871528 + 0.490345i \(0.836871\pi\)
\(180\) 0 0
\(181\) 18.3923 1.36709 0.683545 0.729909i \(-0.260437\pi\)
0.683545 + 0.729909i \(0.260437\pi\)
\(182\) 5.07180 0.375947
\(183\) 0 0
\(184\) −3.80385 −0.280423
\(185\) 7.46410 0.548772
\(186\) 0 0
\(187\) −1.26795 −0.0927216
\(188\) 0.928203 0.0676962
\(189\) 0 0
\(190\) 9.46410 0.686598
\(191\) 25.8564 1.87090 0.935452 0.353454i \(-0.114993\pi\)
0.935452 + 0.353454i \(0.114993\pi\)
\(192\) 0 0
\(193\) 23.4641 1.68898 0.844491 0.535569i \(-0.179903\pi\)
0.844491 + 0.535569i \(0.179903\pi\)
\(194\) −15.4641 −1.11026
\(195\) 0 0
\(196\) −6.46410 −0.461722
\(197\) 17.3205 1.23404 0.617018 0.786949i \(-0.288341\pi\)
0.617018 + 0.786949i \(0.288341\pi\)
\(198\) 0 0
\(199\) −0.196152 −0.0139049 −0.00695244 0.999976i \(-0.502213\pi\)
−0.00695244 + 0.999976i \(0.502213\pi\)
\(200\) 1.73205 0.122474
\(201\) 0 0
\(202\) −4.39230 −0.309041
\(203\) −2.53590 −0.177985
\(204\) 0 0
\(205\) 3.46410 0.241943
\(206\) 8.53590 0.594724
\(207\) 0 0
\(208\) 20.0000 1.38675
\(209\) −6.92820 −0.479234
\(210\) 0 0
\(211\) −0.196152 −0.0135037 −0.00675184 0.999977i \(-0.502149\pi\)
−0.00675184 + 0.999977i \(0.502149\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 0.588457 0.0402261
\(215\) 7.46410 0.509048
\(216\) 0 0
\(217\) 4.92820 0.334548
\(218\) 17.3205 1.17309
\(219\) 0 0
\(220\) 1.26795 0.0854851
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −5.60770 −0.375519 −0.187760 0.982215i \(-0.560123\pi\)
−0.187760 + 0.982215i \(0.560123\pi\)
\(224\) 3.80385 0.254155
\(225\) 0 0
\(226\) 30.0000 1.99557
\(227\) −19.2679 −1.27886 −0.639429 0.768850i \(-0.720829\pi\)
−0.639429 + 0.768850i \(0.720829\pi\)
\(228\) 0 0
\(229\) 12.3923 0.818907 0.409453 0.912331i \(-0.365719\pi\)
0.409453 + 0.912331i \(0.365719\pi\)
\(230\) −3.80385 −0.250818
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −0.928203 −0.0605493
\(236\) −9.46410 −0.616061
\(237\) 0 0
\(238\) −1.26795 −0.0821889
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) 0 0
\(241\) −26.3923 −1.70008 −0.850039 0.526720i \(-0.823422\pi\)
−0.850039 + 0.526720i \(0.823422\pi\)
\(242\) 16.2679 1.04574
\(243\) 0 0
\(244\) 8.92820 0.571570
\(245\) 6.46410 0.412976
\(246\) 0 0
\(247\) −21.8564 −1.39069
\(248\) 11.6603 0.740427
\(249\) 0 0
\(250\) 1.73205 0.109545
\(251\) 6.92820 0.437304 0.218652 0.975803i \(-0.429834\pi\)
0.218652 + 0.975803i \(0.429834\pi\)
\(252\) 0 0
\(253\) 2.78461 0.175067
\(254\) −11.0718 −0.694706
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) −6.92820 −0.432169 −0.216085 0.976375i \(-0.569329\pi\)
−0.216085 + 0.976375i \(0.569329\pi\)
\(258\) 0 0
\(259\) −5.46410 −0.339523
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 14.1962 0.877041
\(263\) 22.3923 1.38077 0.690384 0.723443i \(-0.257441\pi\)
0.690384 + 0.723443i \(0.257441\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) −6.92820 −0.424795
\(267\) 0 0
\(268\) −10.0000 −0.610847
\(269\) 12.9282 0.788246 0.394123 0.919058i \(-0.371048\pi\)
0.394123 + 0.919058i \(0.371048\pi\)
\(270\) 0 0
\(271\) −10.9282 −0.663841 −0.331921 0.943307i \(-0.607697\pi\)
−0.331921 + 0.943307i \(0.607697\pi\)
\(272\) −5.00000 −0.303170
\(273\) 0 0
\(274\) 0 0
\(275\) −1.26795 −0.0764602
\(276\) 0 0
\(277\) 7.07180 0.424903 0.212452 0.977172i \(-0.431855\pi\)
0.212452 + 0.977172i \(0.431855\pi\)
\(278\) −23.6603 −1.41905
\(279\) 0 0
\(280\) −1.26795 −0.0757745
\(281\) −0.928203 −0.0553720 −0.0276860 0.999617i \(-0.508814\pi\)
−0.0276860 + 0.999617i \(0.508814\pi\)
\(282\) 0 0
\(283\) −8.73205 −0.519067 −0.259533 0.965734i \(-0.583569\pi\)
−0.259533 + 0.965734i \(0.583569\pi\)
\(284\) 5.66025 0.335874
\(285\) 0 0
\(286\) −8.78461 −0.519445
\(287\) −2.53590 −0.149689
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) −14.3923 −0.842246
\(293\) −12.9282 −0.755274 −0.377637 0.925954i \(-0.623263\pi\)
−0.377637 + 0.925954i \(0.623263\pi\)
\(294\) 0 0
\(295\) 9.46410 0.551021
\(296\) −12.9282 −0.751437
\(297\) 0 0
\(298\) −10.3923 −0.602010
\(299\) 8.78461 0.508027
\(300\) 0 0
\(301\) −5.46410 −0.314946
\(302\) −9.46410 −0.544598
\(303\) 0 0
\(304\) −27.3205 −1.56694
\(305\) −8.92820 −0.511227
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) −0.928203 −0.0528893
\(309\) 0 0
\(310\) 11.6603 0.662258
\(311\) −22.0526 −1.25049 −0.625243 0.780430i \(-0.715000\pi\)
−0.625243 + 0.780430i \(0.715000\pi\)
\(312\) 0 0
\(313\) −5.60770 −0.316966 −0.158483 0.987362i \(-0.550660\pi\)
−0.158483 + 0.987362i \(0.550660\pi\)
\(314\) 8.53590 0.481709
\(315\) 0 0
\(316\) −16.5885 −0.933174
\(317\) 11.0718 0.621854 0.310927 0.950434i \(-0.399361\pi\)
0.310927 + 0.950434i \(0.399361\pi\)
\(318\) 0 0
\(319\) 4.39230 0.245922
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 2.78461 0.155180
\(323\) 5.46410 0.304031
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) −17.6603 −0.978111
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 0.679492 0.0374616
\(330\) 0 0
\(331\) −13.4641 −0.740054 −0.370027 0.929021i \(-0.620652\pi\)
−0.370027 + 0.929021i \(0.620652\pi\)
\(332\) −15.4641 −0.848703
\(333\) 0 0
\(334\) −32.1962 −1.76170
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) 34.7846 1.89484 0.947419 0.319995i \(-0.103681\pi\)
0.947419 + 0.319995i \(0.103681\pi\)
\(338\) −5.19615 −0.282633
\(339\) 0 0
\(340\) −1.00000 −0.0542326
\(341\) −8.53590 −0.462245
\(342\) 0 0
\(343\) −9.85641 −0.532196
\(344\) −12.9282 −0.697042
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −14.1962 −0.762089 −0.381045 0.924557i \(-0.624436\pi\)
−0.381045 + 0.924557i \(0.624436\pi\)
\(348\) 0 0
\(349\) −30.7846 −1.64786 −0.823931 0.566690i \(-0.808224\pi\)
−0.823931 + 0.566690i \(0.808224\pi\)
\(350\) −1.26795 −0.0677747
\(351\) 0 0
\(352\) −6.58846 −0.351166
\(353\) 14.7846 0.786905 0.393453 0.919345i \(-0.371281\pi\)
0.393453 + 0.919345i \(0.371281\pi\)
\(354\) 0 0
\(355\) −5.66025 −0.300415
\(356\) 16.3923 0.868790
\(357\) 0 0
\(358\) 40.3923 2.13480
\(359\) 14.5359 0.767175 0.383588 0.923504i \(-0.374688\pi\)
0.383588 + 0.923504i \(0.374688\pi\)
\(360\) 0 0
\(361\) 10.8564 0.571390
\(362\) −31.8564 −1.67434
\(363\) 0 0
\(364\) −2.92820 −0.153480
\(365\) 14.3923 0.753328
\(366\) 0 0
\(367\) −18.1962 −0.949831 −0.474916 0.880031i \(-0.657521\pi\)
−0.474916 + 0.880031i \(0.657521\pi\)
\(368\) 10.9808 0.572412
\(369\) 0 0
\(370\) −12.9282 −0.672105
\(371\) −4.39230 −0.228037
\(372\) 0 0
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) 2.19615 0.113560
\(375\) 0 0
\(376\) 1.60770 0.0829105
\(377\) 13.8564 0.713641
\(378\) 0 0
\(379\) 28.1962 1.44834 0.724170 0.689622i \(-0.242223\pi\)
0.724170 + 0.689622i \(0.242223\pi\)
\(380\) −5.46410 −0.280302
\(381\) 0 0
\(382\) −44.7846 −2.29138
\(383\) −8.53590 −0.436164 −0.218082 0.975930i \(-0.569980\pi\)
−0.218082 + 0.975930i \(0.569980\pi\)
\(384\) 0 0
\(385\) 0.928203 0.0473056
\(386\) −40.6410 −2.06857
\(387\) 0 0
\(388\) 8.92820 0.453261
\(389\) −16.3923 −0.831123 −0.415561 0.909565i \(-0.636415\pi\)
−0.415561 + 0.909565i \(0.636415\pi\)
\(390\) 0 0
\(391\) −2.19615 −0.111064
\(392\) −11.1962 −0.565491
\(393\) 0 0
\(394\) −30.0000 −1.51138
\(395\) 16.5885 0.834656
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0.339746 0.0170299
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 0.928203 0.0463523 0.0231761 0.999731i \(-0.492622\pi\)
0.0231761 + 0.999731i \(0.492622\pi\)
\(402\) 0 0
\(403\) −26.9282 −1.34139
\(404\) 2.53590 0.126166
\(405\) 0 0
\(406\) 4.39230 0.217986
\(407\) 9.46410 0.469118
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −4.92820 −0.242795
\(413\) −6.92820 −0.340915
\(414\) 0 0
\(415\) 15.4641 0.759103
\(416\) −20.7846 −1.01905
\(417\) 0 0
\(418\) 12.0000 0.586939
\(419\) −27.8038 −1.35831 −0.679153 0.733996i \(-0.737653\pi\)
−0.679153 + 0.733996i \(0.737653\pi\)
\(420\) 0 0
\(421\) −1.46410 −0.0713559 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(422\) 0.339746 0.0165386
\(423\) 0 0
\(424\) −10.3923 −0.504695
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 6.53590 0.316294
\(428\) −0.339746 −0.0164222
\(429\) 0 0
\(430\) −12.9282 −0.623453
\(431\) −20.1962 −0.972814 −0.486407 0.873732i \(-0.661693\pi\)
−0.486407 + 0.873732i \(0.661693\pi\)
\(432\) 0 0
\(433\) 9.85641 0.473669 0.236834 0.971550i \(-0.423890\pi\)
0.236834 + 0.971550i \(0.423890\pi\)
\(434\) −8.53590 −0.409736
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 18.0526 0.861602 0.430801 0.902447i \(-0.358231\pi\)
0.430801 + 0.902447i \(0.358231\pi\)
\(440\) 2.19615 0.104697
\(441\) 0 0
\(442\) 6.92820 0.329541
\(443\) −0.928203 −0.0441003 −0.0220501 0.999757i \(-0.507019\pi\)
−0.0220501 + 0.999757i \(0.507019\pi\)
\(444\) 0 0
\(445\) −16.3923 −0.777070
\(446\) 9.71281 0.459915
\(447\) 0 0
\(448\) 0.732051 0.0345861
\(449\) 13.6077 0.642187 0.321093 0.947048i \(-0.395950\pi\)
0.321093 + 0.947048i \(0.395950\pi\)
\(450\) 0 0
\(451\) 4.39230 0.206826
\(452\) −17.3205 −0.814688
\(453\) 0 0
\(454\) 33.3731 1.56628
\(455\) 2.92820 0.137276
\(456\) 0 0
\(457\) 4.78461 0.223815 0.111907 0.993719i \(-0.464304\pi\)
0.111907 + 0.993719i \(0.464304\pi\)
\(458\) −21.4641 −1.00295
\(459\) 0 0
\(460\) 2.19615 0.102396
\(461\) 11.0718 0.515665 0.257832 0.966190i \(-0.416992\pi\)
0.257832 + 0.966190i \(0.416992\pi\)
\(462\) 0 0
\(463\) 3.85641 0.179222 0.0896112 0.995977i \(-0.471438\pi\)
0.0896112 + 0.995977i \(0.471438\pi\)
\(464\) 17.3205 0.804084
\(465\) 0 0
\(466\) 10.3923 0.481414
\(467\) −22.3923 −1.03619 −0.518096 0.855322i \(-0.673359\pi\)
−0.518096 + 0.855322i \(0.673359\pi\)
\(468\) 0 0
\(469\) −7.32051 −0.338030
\(470\) 1.60770 0.0741574
\(471\) 0 0
\(472\) −16.3923 −0.754517
\(473\) 9.46410 0.435160
\(474\) 0 0
\(475\) 5.46410 0.250710
\(476\) 0.732051 0.0335535
\(477\) 0 0
\(478\) 36.0000 1.64660
\(479\) −5.66025 −0.258624 −0.129312 0.991604i \(-0.541277\pi\)
−0.129312 + 0.991604i \(0.541277\pi\)
\(480\) 0 0
\(481\) 29.8564 1.36133
\(482\) 45.7128 2.08216
\(483\) 0 0
\(484\) −9.39230 −0.426923
\(485\) −8.92820 −0.405409
\(486\) 0 0
\(487\) −26.9808 −1.22262 −0.611308 0.791393i \(-0.709356\pi\)
−0.611308 + 0.791393i \(0.709356\pi\)
\(488\) 15.4641 0.700027
\(489\) 0 0
\(490\) −11.1962 −0.505791
\(491\) 40.3923 1.82288 0.911440 0.411434i \(-0.134972\pi\)
0.911440 + 0.411434i \(0.134972\pi\)
\(492\) 0 0
\(493\) −3.46410 −0.156015
\(494\) 37.8564 1.70324
\(495\) 0 0
\(496\) −33.6603 −1.51139
\(497\) 4.14359 0.185866
\(498\) 0 0
\(499\) 1.66025 0.0743232 0.0371616 0.999309i \(-0.488168\pi\)
0.0371616 + 0.999309i \(0.488168\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 9.12436 0.406835 0.203417 0.979092i \(-0.434795\pi\)
0.203417 + 0.979092i \(0.434795\pi\)
\(504\) 0 0
\(505\) −2.53590 −0.112846
\(506\) −4.82309 −0.214412
\(507\) 0 0
\(508\) 6.39230 0.283613
\(509\) 7.85641 0.348229 0.174115 0.984725i \(-0.444294\pi\)
0.174115 + 0.984725i \(0.444294\pi\)
\(510\) 0 0
\(511\) −10.5359 −0.466081
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) 4.92820 0.217163
\(516\) 0 0
\(517\) −1.17691 −0.0517606
\(518\) 9.46410 0.415829
\(519\) 0 0
\(520\) 6.92820 0.303822
\(521\) −31.8564 −1.39565 −0.697827 0.716266i \(-0.745850\pi\)
−0.697827 + 0.716266i \(0.745850\pi\)
\(522\) 0 0
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) −8.19615 −0.358051
\(525\) 0 0
\(526\) −38.7846 −1.69109
\(527\) 6.73205 0.293253
\(528\) 0 0
\(529\) −18.1769 −0.790301
\(530\) −10.3923 −0.451413
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 13.8564 0.600188
\(534\) 0 0
\(535\) 0.339746 0.0146885
\(536\) −17.3205 −0.748132
\(537\) 0 0
\(538\) −22.3923 −0.965401
\(539\) 8.19615 0.353033
\(540\) 0 0
\(541\) −23.1769 −0.996453 −0.498227 0.867047i \(-0.666015\pi\)
−0.498227 + 0.867047i \(0.666015\pi\)
\(542\) 18.9282 0.813036
\(543\) 0 0
\(544\) 5.19615 0.222783
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 25.9090 1.10779 0.553894 0.832587i \(-0.313141\pi\)
0.553894 + 0.832587i \(0.313141\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 2.19615 0.0936443
\(551\) −18.9282 −0.806369
\(552\) 0 0
\(553\) −12.1436 −0.516398
\(554\) −12.2487 −0.520398
\(555\) 0 0
\(556\) 13.6603 0.579324
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) 0 0
\(559\) 29.8564 1.26279
\(560\) 3.66025 0.154674
\(561\) 0 0
\(562\) 1.60770 0.0678165
\(563\) −20.5359 −0.865485 −0.432742 0.901518i \(-0.642454\pi\)
−0.432742 + 0.901518i \(0.642454\pi\)
\(564\) 0 0
\(565\) 17.3205 0.728679
\(566\) 15.1244 0.635724
\(567\) 0 0
\(568\) 9.80385 0.411360
\(569\) 28.6410 1.20069 0.600347 0.799740i \(-0.295029\pi\)
0.600347 + 0.799740i \(0.295029\pi\)
\(570\) 0 0
\(571\) 22.4449 0.939288 0.469644 0.882856i \(-0.344382\pi\)
0.469644 + 0.882856i \(0.344382\pi\)
\(572\) 5.07180 0.212062
\(573\) 0 0
\(574\) 4.39230 0.183331
\(575\) −2.19615 −0.0915859
\(576\) 0 0
\(577\) 30.6410 1.27560 0.637801 0.770201i \(-0.279844\pi\)
0.637801 + 0.770201i \(0.279844\pi\)
\(578\) −1.73205 −0.0720438
\(579\) 0 0
\(580\) 3.46410 0.143839
\(581\) −11.3205 −0.469654
\(582\) 0 0
\(583\) 7.60770 0.315079
\(584\) −24.9282 −1.03154
\(585\) 0 0
\(586\) 22.3923 0.925018
\(587\) −25.6077 −1.05694 −0.528471 0.848951i \(-0.677235\pi\)
−0.528471 + 0.848951i \(0.677235\pi\)
\(588\) 0 0
\(589\) 36.7846 1.51568
\(590\) −16.3923 −0.674861
\(591\) 0 0
\(592\) 37.3205 1.53386
\(593\) 7.85641 0.322624 0.161312 0.986903i \(-0.448427\pi\)
0.161312 + 0.986903i \(0.448427\pi\)
\(594\) 0 0
\(595\) −0.732051 −0.0300112
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −15.2154 −0.622204
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −40.2487 −1.64178 −0.820890 0.571087i \(-0.806522\pi\)
−0.820890 + 0.571087i \(0.806522\pi\)
\(602\) 9.46410 0.385728
\(603\) 0 0
\(604\) 5.46410 0.222331
\(605\) 9.39230 0.381851
\(606\) 0 0
\(607\) −4.33975 −0.176145 −0.0880724 0.996114i \(-0.528071\pi\)
−0.0880724 + 0.996114i \(0.528071\pi\)
\(608\) 28.3923 1.15146
\(609\) 0 0
\(610\) 15.4641 0.626123
\(611\) −3.71281 −0.150204
\(612\) 0 0
\(613\) −11.8564 −0.478876 −0.239438 0.970912i \(-0.576963\pi\)
−0.239438 + 0.970912i \(0.576963\pi\)
\(614\) 17.3205 0.698999
\(615\) 0 0
\(616\) −1.60770 −0.0647759
\(617\) 20.5359 0.826744 0.413372 0.910562i \(-0.364351\pi\)
0.413372 + 0.910562i \(0.364351\pi\)
\(618\) 0 0
\(619\) 7.41154 0.297895 0.148948 0.988845i \(-0.452411\pi\)
0.148948 + 0.988845i \(0.452411\pi\)
\(620\) −6.73205 −0.270366
\(621\) 0 0
\(622\) 38.1962 1.53153
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 9.71281 0.388202
\(627\) 0 0
\(628\) −4.92820 −0.196657
\(629\) −7.46410 −0.297613
\(630\) 0 0
\(631\) −11.6077 −0.462095 −0.231048 0.972942i \(-0.574215\pi\)
−0.231048 + 0.972942i \(0.574215\pi\)
\(632\) −28.7321 −1.14290
\(633\) 0 0
\(634\) −19.1769 −0.761613
\(635\) −6.39230 −0.253671
\(636\) 0 0
\(637\) 25.8564 1.02447
\(638\) −7.60770 −0.301192
\(639\) 0 0
\(640\) 12.1244 0.479257
\(641\) 31.1769 1.23141 0.615707 0.787975i \(-0.288870\pi\)
0.615707 + 0.787975i \(0.288870\pi\)
\(642\) 0 0
\(643\) −13.8038 −0.544371 −0.272185 0.962245i \(-0.587746\pi\)
−0.272185 + 0.962245i \(0.587746\pi\)
\(644\) −1.60770 −0.0633521
\(645\) 0 0
\(646\) −9.46410 −0.372360
\(647\) −2.78461 −0.109474 −0.0547372 0.998501i \(-0.517432\pi\)
−0.0547372 + 0.998501i \(0.517432\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 6.92820 0.271746
\(651\) 0 0
\(652\) 10.1962 0.399312
\(653\) 46.3923 1.81547 0.907736 0.419543i \(-0.137810\pi\)
0.907736 + 0.419543i \(0.137810\pi\)
\(654\) 0 0
\(655\) 8.19615 0.320250
\(656\) 17.3205 0.676252
\(657\) 0 0
\(658\) −1.17691 −0.0458809
\(659\) −8.78461 −0.342200 −0.171100 0.985254i \(-0.554732\pi\)
−0.171100 + 0.985254i \(0.554732\pi\)
\(660\) 0 0
\(661\) −35.8564 −1.39465 −0.697326 0.716754i \(-0.745627\pi\)
−0.697326 + 0.716754i \(0.745627\pi\)
\(662\) 23.3205 0.906377
\(663\) 0 0
\(664\) −26.7846 −1.03944
\(665\) −4.00000 −0.155113
\(666\) 0 0
\(667\) 7.60770 0.294571
\(668\) 18.5885 0.719209
\(669\) 0 0
\(670\) −17.3205 −0.669150
\(671\) −11.3205 −0.437023
\(672\) 0 0
\(673\) 16.5359 0.637412 0.318706 0.947854i \(-0.396752\pi\)
0.318706 + 0.947854i \(0.396752\pi\)
\(674\) −60.2487 −2.32069
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 38.7846 1.49061 0.745307 0.666722i \(-0.232303\pi\)
0.745307 + 0.666722i \(0.232303\pi\)
\(678\) 0 0
\(679\) 6.53590 0.250825
\(680\) −1.73205 −0.0664211
\(681\) 0 0
\(682\) 14.7846 0.566132
\(683\) −48.8372 −1.86870 −0.934351 0.356354i \(-0.884020\pi\)
−0.934351 + 0.356354i \(0.884020\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 17.0718 0.651804
\(687\) 0 0
\(688\) 37.3205 1.42283
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 12.9808 0.493811 0.246906 0.969040i \(-0.420586\pi\)
0.246906 + 0.969040i \(0.420586\pi\)
\(692\) 3.46410 0.131685
\(693\) 0 0
\(694\) 24.5885 0.933365
\(695\) −13.6603 −0.518163
\(696\) 0 0
\(697\) −3.46410 −0.131212
\(698\) 53.3205 2.01821
\(699\) 0 0
\(700\) 0.732051 0.0276689
\(701\) 23.3205 0.880803 0.440402 0.897801i \(-0.354836\pi\)
0.440402 + 0.897801i \(0.354836\pi\)
\(702\) 0 0
\(703\) −40.7846 −1.53822
\(704\) −1.26795 −0.0477876
\(705\) 0 0
\(706\) −25.6077 −0.963758
\(707\) 1.85641 0.0698174
\(708\) 0 0
\(709\) 11.4641 0.430543 0.215272 0.976554i \(-0.430936\pi\)
0.215272 + 0.976554i \(0.430936\pi\)
\(710\) 9.80385 0.367932
\(711\) 0 0
\(712\) 28.3923 1.06405
\(713\) −14.7846 −0.553688
\(714\) 0 0
\(715\) −5.07180 −0.189674
\(716\) −23.3205 −0.871528
\(717\) 0 0
\(718\) −25.1769 −0.939594
\(719\) 36.5885 1.36452 0.682260 0.731110i \(-0.260997\pi\)
0.682260 + 0.731110i \(0.260997\pi\)
\(720\) 0 0
\(721\) −3.60770 −0.134358
\(722\) −18.8038 −0.699807
\(723\) 0 0
\(724\) 18.3923 0.683545
\(725\) −3.46410 −0.128654
\(726\) 0 0
\(727\) 27.8564 1.03314 0.516568 0.856246i \(-0.327209\pi\)
0.516568 + 0.856246i \(0.327209\pi\)
\(728\) −5.07180 −0.187973
\(729\) 0 0
\(730\) −24.9282 −0.922634
\(731\) −7.46410 −0.276070
\(732\) 0 0
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) 31.5167 1.16330
\(735\) 0 0
\(736\) −11.4115 −0.420635
\(737\) 12.6795 0.467055
\(738\) 0 0
\(739\) −32.3923 −1.19157 −0.595785 0.803144i \(-0.703159\pi\)
−0.595785 + 0.803144i \(0.703159\pi\)
\(740\) 7.46410 0.274386
\(741\) 0 0
\(742\) 7.60770 0.279287
\(743\) 19.2679 0.706872 0.353436 0.935459i \(-0.385013\pi\)
0.353436 + 0.935459i \(0.385013\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) −34.6410 −1.26830
\(747\) 0 0
\(748\) −1.26795 −0.0463608
\(749\) −0.248711 −0.00908771
\(750\) 0 0
\(751\) 26.3397 0.961151 0.480575 0.876953i \(-0.340428\pi\)
0.480575 + 0.876953i \(0.340428\pi\)
\(752\) −4.64102 −0.169240
\(753\) 0 0
\(754\) −24.0000 −0.874028
\(755\) −5.46410 −0.198859
\(756\) 0 0
\(757\) −38.6410 −1.40443 −0.702216 0.711964i \(-0.747806\pi\)
−0.702216 + 0.711964i \(0.747806\pi\)
\(758\) −48.8372 −1.77385
\(759\) 0 0
\(760\) −9.46410 −0.343299
\(761\) 7.60770 0.275779 0.137889 0.990448i \(-0.455968\pi\)
0.137889 + 0.990448i \(0.455968\pi\)
\(762\) 0 0
\(763\) −7.32051 −0.265020
\(764\) 25.8564 0.935452
\(765\) 0 0
\(766\) 14.7846 0.534190
\(767\) 37.8564 1.36692
\(768\) 0 0
\(769\) 15.6077 0.562828 0.281414 0.959586i \(-0.409197\pi\)
0.281414 + 0.959586i \(0.409197\pi\)
\(770\) −1.60770 −0.0579373
\(771\) 0 0
\(772\) 23.4641 0.844491
\(773\) −22.6410 −0.814341 −0.407170 0.913352i \(-0.633484\pi\)
−0.407170 + 0.913352i \(0.633484\pi\)
\(774\) 0 0
\(775\) 6.73205 0.241822
\(776\) 15.4641 0.555129
\(777\) 0 0
\(778\) 28.3923 1.01791
\(779\) −18.9282 −0.678173
\(780\) 0 0
\(781\) −7.17691 −0.256810
\(782\) 3.80385 0.136025
\(783\) 0 0
\(784\) 32.3205 1.15430
\(785\) 4.92820 0.175895
\(786\) 0 0
\(787\) −21.9090 −0.780970 −0.390485 0.920609i \(-0.627693\pi\)
−0.390485 + 0.920609i \(0.627693\pi\)
\(788\) 17.3205 0.617018
\(789\) 0 0
\(790\) −28.7321 −1.02224
\(791\) −12.6795 −0.450831
\(792\) 0 0
\(793\) −35.7128 −1.26820
\(794\) −24.2487 −0.860555
\(795\) 0 0
\(796\) −0.196152 −0.00695244
\(797\) 11.0718 0.392183 0.196092 0.980586i \(-0.437175\pi\)
0.196092 + 0.980586i \(0.437175\pi\)
\(798\) 0 0
\(799\) 0.928203 0.0328375
\(800\) 5.19615 0.183712
\(801\) 0 0
\(802\) −1.60770 −0.0567697
\(803\) 18.2487 0.643983
\(804\) 0 0
\(805\) 1.60770 0.0566638
\(806\) 46.6410 1.64286
\(807\) 0 0
\(808\) 4.39230 0.154521
\(809\) 28.1436 0.989476 0.494738 0.869042i \(-0.335264\pi\)
0.494738 + 0.869042i \(0.335264\pi\)
\(810\) 0 0
\(811\) −34.8372 −1.22330 −0.611649 0.791129i \(-0.709494\pi\)
−0.611649 + 0.791129i \(0.709494\pi\)
\(812\) −2.53590 −0.0889926
\(813\) 0 0
\(814\) −16.3923 −0.574550
\(815\) −10.1962 −0.357156
\(816\) 0 0
\(817\) −40.7846 −1.42687
\(818\) −45.0333 −1.57455
\(819\) 0 0
\(820\) 3.46410 0.120972
\(821\) 11.0718 0.386408 0.193204 0.981159i \(-0.438112\pi\)
0.193204 + 0.981159i \(0.438112\pi\)
\(822\) 0 0
\(823\) 42.9808 1.49822 0.749108 0.662448i \(-0.230483\pi\)
0.749108 + 0.662448i \(0.230483\pi\)
\(824\) −8.53590 −0.297362
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) 26.1962 0.910929 0.455465 0.890254i \(-0.349473\pi\)
0.455465 + 0.890254i \(0.349473\pi\)
\(828\) 0 0
\(829\) −37.7128 −1.30982 −0.654910 0.755707i \(-0.727294\pi\)
−0.654910 + 0.755707i \(0.727294\pi\)
\(830\) −26.7846 −0.929707
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) −6.46410 −0.223968
\(834\) 0 0
\(835\) −18.5885 −0.643280
\(836\) −6.92820 −0.239617
\(837\) 0 0
\(838\) 48.1577 1.66358
\(839\) −22.7321 −0.784798 −0.392399 0.919795i \(-0.628355\pi\)
−0.392399 + 0.919795i \(0.628355\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 2.53590 0.0873928
\(843\) 0 0
\(844\) −0.196152 −0.00675184
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −6.87564 −0.236250
\(848\) 30.0000 1.03020
\(849\) 0 0
\(850\) −1.73205 −0.0594089
\(851\) 16.3923 0.561921
\(852\) 0 0
\(853\) 39.1769 1.34139 0.670696 0.741732i \(-0.265996\pi\)
0.670696 + 0.741732i \(0.265996\pi\)
\(854\) −11.3205 −0.387380
\(855\) 0 0
\(856\) −0.588457 −0.0201131
\(857\) 31.1769 1.06498 0.532492 0.846435i \(-0.321256\pi\)
0.532492 + 0.846435i \(0.321256\pi\)
\(858\) 0 0
\(859\) −18.5359 −0.632437 −0.316218 0.948686i \(-0.602413\pi\)
−0.316218 + 0.948686i \(0.602413\pi\)
\(860\) 7.46410 0.254524
\(861\) 0 0
\(862\) 34.9808 1.19145
\(863\) −36.9282 −1.25705 −0.628525 0.777789i \(-0.716341\pi\)
−0.628525 + 0.777789i \(0.716341\pi\)
\(864\) 0 0
\(865\) −3.46410 −0.117783
\(866\) −17.0718 −0.580123
\(867\) 0 0
\(868\) 4.92820 0.167274
\(869\) 21.0333 0.713507
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) −17.3205 −0.586546
\(873\) 0 0
\(874\) 20.7846 0.703050
\(875\) −0.732051 −0.0247478
\(876\) 0 0
\(877\) −42.7846 −1.44473 −0.722367 0.691510i \(-0.756946\pi\)
−0.722367 + 0.691510i \(0.756946\pi\)
\(878\) −31.2679 −1.05524
\(879\) 0 0
\(880\) −6.33975 −0.213713
\(881\) 6.67949 0.225038 0.112519 0.993650i \(-0.464108\pi\)
0.112519 + 0.993650i \(0.464108\pi\)
\(882\) 0 0
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 1.60770 0.0540116
\(887\) 21.1244 0.709286 0.354643 0.935002i \(-0.384602\pi\)
0.354643 + 0.935002i \(0.384602\pi\)
\(888\) 0 0
\(889\) 4.67949 0.156945
\(890\) 28.3923 0.951712
\(891\) 0 0
\(892\) −5.60770 −0.187760
\(893\) 5.07180 0.169721
\(894\) 0 0
\(895\) 23.3205 0.779519
\(896\) −8.87564 −0.296514
\(897\) 0 0
\(898\) −23.5692 −0.786515
\(899\) −23.3205 −0.777782
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) −7.60770 −0.253309
\(903\) 0 0
\(904\) −30.0000 −0.997785
\(905\) −18.3923 −0.611381
\(906\) 0 0
\(907\) 27.2679 0.905417 0.452709 0.891658i \(-0.350458\pi\)
0.452709 + 0.891658i \(0.350458\pi\)
\(908\) −19.2679 −0.639429
\(909\) 0 0
\(910\) −5.07180 −0.168128
\(911\) −53.6603 −1.77784 −0.888922 0.458059i \(-0.848545\pi\)
−0.888922 + 0.458059i \(0.848545\pi\)
\(912\) 0 0
\(913\) 19.6077 0.648920
\(914\) −8.28719 −0.274116
\(915\) 0 0
\(916\) 12.3923 0.409453
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 3.80385 0.125409
\(921\) 0 0
\(922\) −19.1769 −0.631558
\(923\) −22.6410 −0.745238
\(924\) 0 0
\(925\) −7.46410 −0.245418
\(926\) −6.67949 −0.219502
\(927\) 0 0
\(928\) −18.0000 −0.590879
\(929\) −3.46410 −0.113653 −0.0568267 0.998384i \(-0.518098\pi\)
−0.0568267 + 0.998384i \(0.518098\pi\)
\(930\) 0 0
\(931\) −35.3205 −1.15758
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 38.7846 1.26907
\(935\) 1.26795 0.0414664
\(936\) 0 0
\(937\) 36.6410 1.19701 0.598505 0.801119i \(-0.295762\pi\)
0.598505 + 0.801119i \(0.295762\pi\)
\(938\) 12.6795 0.414000
\(939\) 0 0
\(940\) −0.928203 −0.0302747
\(941\) 0.248711 0.00810776 0.00405388 0.999992i \(-0.498710\pi\)
0.00405388 + 0.999992i \(0.498710\pi\)
\(942\) 0 0
\(943\) 7.60770 0.247741
\(944\) 47.3205 1.54015
\(945\) 0 0
\(946\) −16.3923 −0.532960
\(947\) 2.19615 0.0713654 0.0356827 0.999363i \(-0.488639\pi\)
0.0356827 + 0.999363i \(0.488639\pi\)
\(948\) 0 0
\(949\) 57.5692 1.86878
\(950\) −9.46410 −0.307056
\(951\) 0 0
\(952\) 1.26795 0.0410945
\(953\) −32.7846 −1.06200 −0.530999 0.847373i \(-0.678183\pi\)
−0.530999 + 0.847373i \(0.678183\pi\)
\(954\) 0 0
\(955\) −25.8564 −0.836694
\(956\) −20.7846 −0.672222
\(957\) 0 0
\(958\) 9.80385 0.316748
\(959\) 0 0
\(960\) 0 0
\(961\) 14.3205 0.461952
\(962\) −51.7128 −1.66729
\(963\) 0 0
\(964\) −26.3923 −0.850039
\(965\) −23.4641 −0.755336
\(966\) 0 0
\(967\) −23.1769 −0.745319 −0.372660 0.927968i \(-0.621554\pi\)
−0.372660 + 0.927968i \(0.621554\pi\)
\(968\) −16.2679 −0.522872
\(969\) 0 0
\(970\) 15.4641 0.496522
\(971\) −5.75129 −0.184568 −0.0922838 0.995733i \(-0.529417\pi\)
−0.0922838 + 0.995733i \(0.529417\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) 46.7321 1.49739
\(975\) 0 0
\(976\) −44.6410 −1.42892
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) −20.7846 −0.664279
\(980\) 6.46410 0.206488
\(981\) 0 0
\(982\) −69.9615 −2.23256
\(983\) −55.2679 −1.76277 −0.881387 0.472395i \(-0.843390\pi\)
−0.881387 + 0.472395i \(0.843390\pi\)
\(984\) 0 0
\(985\) −17.3205 −0.551877
\(986\) 6.00000 0.191079
\(987\) 0 0
\(988\) −21.8564 −0.695345
\(989\) 16.3923 0.521245
\(990\) 0 0
\(991\) 48.9808 1.55593 0.777963 0.628311i \(-0.216253\pi\)
0.777963 + 0.628311i \(0.216253\pi\)
\(992\) 34.9808 1.11064
\(993\) 0 0
\(994\) −7.17691 −0.227638
\(995\) 0.196152 0.00621845
\(996\) 0 0
\(997\) 18.3923 0.582490 0.291245 0.956648i \(-0.405930\pi\)
0.291245 + 0.956648i \(0.405930\pi\)
\(998\) −2.87564 −0.0910269
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.a.g.1.1 2
3.2 odd 2 85.2.a.c.1.2 2
5.4 even 2 3825.2.a.v.1.2 2
12.11 even 2 1360.2.a.k.1.2 2
15.2 even 4 425.2.b.d.324.3 4
15.8 even 4 425.2.b.d.324.2 4
15.14 odd 2 425.2.a.e.1.1 2
21.20 even 2 4165.2.a.t.1.2 2
24.5 odd 2 5440.2.a.bb.1.2 2
24.11 even 2 5440.2.a.bl.1.1 2
51.38 odd 4 1445.2.d.e.866.2 4
51.47 odd 4 1445.2.d.e.866.1 4
51.50 odd 2 1445.2.a.g.1.2 2
60.59 even 2 6800.2.a.bg.1.1 2
255.254 odd 2 7225.2.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.2 2 3.2 odd 2
425.2.a.e.1.1 2 15.14 odd 2
425.2.b.d.324.2 4 15.8 even 4
425.2.b.d.324.3 4 15.2 even 4
765.2.a.g.1.1 2 1.1 even 1 trivial
1360.2.a.k.1.2 2 12.11 even 2
1445.2.a.g.1.2 2 51.50 odd 2
1445.2.d.e.866.1 4 51.47 odd 4
1445.2.d.e.866.2 4 51.38 odd 4
3825.2.a.v.1.2 2 5.4 even 2
4165.2.a.t.1.2 2 21.20 even 2
5440.2.a.bb.1.2 2 24.5 odd 2
5440.2.a.bl.1.1 2 24.11 even 2
6800.2.a.bg.1.1 2 60.59 even 2
7225.2.a.l.1.1 2 255.254 odd 2