Properties

Label 765.2.be.b.451.5
Level $765$
Weight $2$
Character 765.451
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(406,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.be (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 451.5
Character \(\chi\) \(=\) 765.451
Dual form 765.2.be.b.631.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27691 - 1.27691i) q^{2} -1.26102i q^{4} +(0.382683 - 0.923880i) q^{5} +(1.66158 + 4.01142i) q^{7} +(0.943613 + 0.943613i) q^{8} +(-0.691061 - 1.66837i) q^{10} +(-0.0485041 + 0.0200910i) q^{11} +3.02508i q^{13} +(7.24394 + 3.00054i) q^{14} +4.93187 q^{16} +(-3.12202 + 2.69314i) q^{17} +(5.52988 - 5.52988i) q^{19} +(-1.16503 - 0.482572i) q^{20} +(-0.0362810 + 0.0875901i) q^{22} +(-0.962654 + 0.398744i) q^{23} +(-0.707107 - 0.707107i) q^{25} +(3.86277 + 3.86277i) q^{26} +(5.05848 - 2.09529i) q^{28} +(0.161016 - 0.388726i) q^{29} +(-1.27892 - 0.529745i) q^{31} +(4.41035 - 4.41035i) q^{32} +(-0.547638 + 7.42546i) q^{34} +4.34193 q^{35} +(0.311301 + 0.128945i) q^{37} -14.1224i q^{38} +(1.23289 - 0.510679i) q^{40} +(-2.52291 - 6.09084i) q^{41} +(-7.06729 - 7.06729i) q^{43} +(0.0253352 + 0.0611647i) q^{44} +(-0.720064 + 1.73839i) q^{46} +6.13168i q^{47} +(-8.38087 + 8.38087i) q^{49} -1.80583 q^{50} +3.81469 q^{52} +(8.52974 - 8.52974i) q^{53} +0.0525004i q^{55} +(-2.21733 + 5.35312i) q^{56} +(-0.290767 - 0.701974i) q^{58} +(-3.60468 - 3.60468i) q^{59} +(-2.28486 - 5.51614i) q^{61} +(-2.30951 + 0.956630i) q^{62} -1.39954i q^{64} +(2.79481 + 1.15765i) q^{65} +0.916040 q^{67} +(3.39611 + 3.93693i) q^{68} +(5.54427 - 5.54427i) q^{70} +(-3.86169 - 1.59956i) q^{71} +(2.06289 - 4.98025i) q^{73} +(0.562156 - 0.232853i) q^{74} +(-6.97330 - 6.97330i) q^{76} +(-0.161187 - 0.161187i) q^{77} +(9.22305 - 3.82031i) q^{79} +(1.88734 - 4.55645i) q^{80} +(-10.9990 - 4.55595i) q^{82} +(4.61746 - 4.61746i) q^{83} +(1.29339 + 3.91499i) q^{85} -18.0487 q^{86} +(-0.0647272 - 0.0268109i) q^{88} +10.2159i q^{89} +(-12.1349 + 5.02642i) q^{91} +(0.502825 + 1.21393i) q^{92} +(7.82963 + 7.82963i) q^{94} +(-2.99275 - 7.22514i) q^{95} +(-7.35663 + 17.7605i) q^{97} +21.4033i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{11} - 24 q^{16} + 8 q^{17} - 8 q^{19} - 32 q^{22} + 16 q^{23} - 16 q^{26} + 48 q^{28} + 8 q^{29} + 16 q^{34} + 32 q^{35} + 24 q^{37} + 16 q^{40} - 16 q^{41} + 8 q^{43} - 16 q^{44} + 8 q^{46}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27691 1.27691i 0.902915 0.902915i −0.0927724 0.995687i \(-0.529573\pi\)
0.995687 + 0.0927724i \(0.0295729\pi\)
\(3\) 0 0
\(4\) 1.26102i 0.630511i
\(5\) 0.382683 0.923880i 0.171141 0.413171i
\(6\) 0 0
\(7\) 1.66158 + 4.01142i 0.628020 + 1.51617i 0.842080 + 0.539353i \(0.181331\pi\)
−0.214060 + 0.976821i \(0.568669\pi\)
\(8\) 0.943613 + 0.943613i 0.333617 + 0.333617i
\(9\) 0 0
\(10\) −0.691061 1.66837i −0.218533 0.527585i
\(11\) −0.0485041 + 0.0200910i −0.0146245 + 0.00605768i −0.389984 0.920822i \(-0.627519\pi\)
0.375359 + 0.926879i \(0.377519\pi\)
\(12\) 0 0
\(13\) 3.02508i 0.839006i 0.907754 + 0.419503i \(0.137796\pi\)
−0.907754 + 0.419503i \(0.862204\pi\)
\(14\) 7.24394 + 3.00054i 1.93602 + 0.801928i
\(15\) 0 0
\(16\) 4.93187 1.23297
\(17\) −3.12202 + 2.69314i −0.757200 + 0.653183i
\(18\) 0 0
\(19\) 5.52988 5.52988i 1.26864 1.26864i 0.321851 0.946790i \(-0.395695\pi\)
0.946790 0.321851i \(-0.104305\pi\)
\(20\) −1.16503 0.482572i −0.260509 0.107906i
\(21\) 0 0
\(22\) −0.0362810 + 0.0875901i −0.00773514 + 0.0186743i
\(23\) −0.962654 + 0.398744i −0.200727 + 0.0831439i −0.480782 0.876840i \(-0.659647\pi\)
0.280055 + 0.959984i \(0.409647\pi\)
\(24\) 0 0
\(25\) −0.707107 0.707107i −0.141421 0.141421i
\(26\) 3.86277 + 3.86277i 0.757551 + 0.757551i
\(27\) 0 0
\(28\) 5.05848 2.09529i 0.955964 0.395973i
\(29\) 0.161016 0.388726i 0.0298999 0.0721847i −0.908224 0.418484i \(-0.862562\pi\)
0.938124 + 0.346299i \(0.112562\pi\)
\(30\) 0 0
\(31\) −1.27892 0.529745i −0.229701 0.0951451i 0.264865 0.964286i \(-0.414673\pi\)
−0.494565 + 0.869141i \(0.664673\pi\)
\(32\) 4.41035 4.41035i 0.779647 0.779647i
\(33\) 0 0
\(34\) −0.547638 + 7.42546i −0.0939192 + 1.27346i
\(35\) 4.34193 0.733920
\(36\) 0 0
\(37\) 0.311301 + 0.128945i 0.0511775 + 0.0211984i 0.408125 0.912926i \(-0.366183\pi\)
−0.356948 + 0.934124i \(0.616183\pi\)
\(38\) 14.1224i 2.29095i
\(39\) 0 0
\(40\) 1.23289 0.510679i 0.194937 0.0807455i
\(41\) −2.52291 6.09084i −0.394012 0.951230i −0.989057 0.147537i \(-0.952865\pi\)
0.595044 0.803693i \(-0.297135\pi\)
\(42\) 0 0
\(43\) −7.06729 7.06729i −1.07775 1.07775i −0.996711 0.0810414i \(-0.974175\pi\)
−0.0810414 0.996711i \(-0.525825\pi\)
\(44\) 0.0253352 + 0.0611647i 0.00381943 + 0.00922092i
\(45\) 0 0
\(46\) −0.720064 + 1.73839i −0.106168 + 0.256311i
\(47\) 6.13168i 0.894398i 0.894435 + 0.447199i \(0.147578\pi\)
−0.894435 + 0.447199i \(0.852422\pi\)
\(48\) 0 0
\(49\) −8.38087 + 8.38087i −1.19727 + 1.19727i
\(50\) −1.80583 −0.255383
\(51\) 0 0
\(52\) 3.81469 0.529002
\(53\) 8.52974 8.52974i 1.17165 1.17165i 0.189834 0.981816i \(-0.439205\pi\)
0.981816 0.189834i \(-0.0607949\pi\)
\(54\) 0 0
\(55\) 0.0525004i 0.00707916i
\(56\) −2.21733 + 5.35312i −0.296304 + 0.715340i
\(57\) 0 0
\(58\) −0.290767 0.701974i −0.0381796 0.0921737i
\(59\) −3.60468 3.60468i −0.469290 0.469290i 0.432395 0.901684i \(-0.357669\pi\)
−0.901684 + 0.432395i \(0.857669\pi\)
\(60\) 0 0
\(61\) −2.28486 5.51614i −0.292547 0.706270i 0.707453 0.706760i \(-0.249844\pi\)
−1.00000 0.000490243i \(0.999844\pi\)
\(62\) −2.30951 + 0.956630i −0.293308 + 0.121492i
\(63\) 0 0
\(64\) 1.39954i 0.174943i
\(65\) 2.79481 + 1.15765i 0.346653 + 0.143588i
\(66\) 0 0
\(67\) 0.916040 0.111912 0.0559561 0.998433i \(-0.482179\pi\)
0.0559561 + 0.998433i \(0.482179\pi\)
\(68\) 3.39611 + 3.93693i 0.411839 + 0.477423i
\(69\) 0 0
\(70\) 5.54427 5.54427i 0.662667 0.662667i
\(71\) −3.86169 1.59956i −0.458298 0.189833i 0.141577 0.989927i \(-0.454783\pi\)
−0.599875 + 0.800094i \(0.704783\pi\)
\(72\) 0 0
\(73\) 2.06289 4.98025i 0.241443 0.582895i −0.755984 0.654590i \(-0.772841\pi\)
0.997427 + 0.0716959i \(0.0228411\pi\)
\(74\) 0.562156 0.232853i 0.0653493 0.0270686i
\(75\) 0 0
\(76\) −6.97330 6.97330i −0.799892 0.799892i
\(77\) −0.161187 0.161187i −0.0183690 0.0183690i
\(78\) 0 0
\(79\) 9.22305 3.82031i 1.03767 0.429819i 0.202198 0.979345i \(-0.435192\pi\)
0.835477 + 0.549526i \(0.185192\pi\)
\(80\) 1.88734 4.55645i 0.211011 0.509427i
\(81\) 0 0
\(82\) −10.9990 4.55595i −1.21464 0.503120i
\(83\) 4.61746 4.61746i 0.506833 0.506833i −0.406720 0.913553i \(-0.633328\pi\)
0.913553 + 0.406720i \(0.133328\pi\)
\(84\) 0 0
\(85\) 1.29339 + 3.91499i 0.140288 + 0.424640i
\(86\) −18.0487 −1.94624
\(87\) 0 0
\(88\) −0.0647272 0.0268109i −0.00689994 0.00285805i
\(89\) 10.2159i 1.08289i 0.840738 + 0.541443i \(0.182122\pi\)
−0.840738 + 0.541443i \(0.817878\pi\)
\(90\) 0 0
\(91\) −12.1349 + 5.02642i −1.27208 + 0.526912i
\(92\) 0.502825 + 1.21393i 0.0524231 + 0.126561i
\(93\) 0 0
\(94\) 7.82963 + 7.82963i 0.807565 + 0.807565i
\(95\) −2.99275 7.22514i −0.307050 0.741283i
\(96\) 0 0
\(97\) −7.35663 + 17.7605i −0.746952 + 1.80330i −0.172036 + 0.985091i \(0.555035\pi\)
−0.574916 + 0.818212i \(0.694965\pi\)
\(98\) 21.4033i 2.16206i
\(99\) 0 0
\(100\) −0.891677 + 0.891677i −0.0891677 + 0.0891677i
\(101\) 13.2926 1.32266 0.661331 0.750094i \(-0.269992\pi\)
0.661331 + 0.750094i \(0.269992\pi\)
\(102\) 0 0
\(103\) −6.91299 −0.681157 −0.340579 0.940216i \(-0.610623\pi\)
−0.340579 + 0.940216i \(0.610623\pi\)
\(104\) −2.85450 + 2.85450i −0.279907 + 0.279907i
\(105\) 0 0
\(106\) 21.7835i 2.11580i
\(107\) −5.64104 + 13.6187i −0.545339 + 1.31657i 0.375572 + 0.926793i \(0.377446\pi\)
−0.920911 + 0.389773i \(0.872554\pi\)
\(108\) 0 0
\(109\) −1.81709 4.38684i −0.174046 0.420183i 0.812652 0.582749i \(-0.198023\pi\)
−0.986698 + 0.162566i \(0.948023\pi\)
\(110\) 0.0670386 + 0.0670386i 0.00639188 + 0.00639188i
\(111\) 0 0
\(112\) 8.19471 + 19.7838i 0.774328 + 1.86939i
\(113\) −2.78393 + 1.15314i −0.261890 + 0.108478i −0.509765 0.860314i \(-0.670268\pi\)
0.247875 + 0.968792i \(0.420268\pi\)
\(114\) 0 0
\(115\) 1.04197i 0.0971641i
\(116\) −0.490192 0.203044i −0.0455132 0.0188522i
\(117\) 0 0
\(118\) −9.20574 −0.847457
\(119\) −15.9908 8.04884i −1.46588 0.737836i
\(120\) 0 0
\(121\) −7.77623 + 7.77623i −0.706930 + 0.706930i
\(122\) −9.96122 4.12607i −0.901846 0.373557i
\(123\) 0 0
\(124\) −0.668020 + 1.61274i −0.0599900 + 0.144829i
\(125\) −0.923880 + 0.382683i −0.0826343 + 0.0342282i
\(126\) 0 0
\(127\) 0.00585984 + 0.00585984i 0.000519977 + 0.000519977i 0.707367 0.706847i \(-0.249883\pi\)
−0.706847 + 0.707367i \(0.749883\pi\)
\(128\) 7.03360 + 7.03360i 0.621689 + 0.621689i
\(129\) 0 0
\(130\) 5.04695 2.09051i 0.442647 0.183350i
\(131\) −3.13210 + 7.56157i −0.273653 + 0.660657i −0.999634 0.0270577i \(-0.991386\pi\)
0.725981 + 0.687715i \(0.241386\pi\)
\(132\) 0 0
\(133\) 31.3710 + 12.9943i 2.72021 + 1.12675i
\(134\) 1.16971 1.16971i 0.101047 0.101047i
\(135\) 0 0
\(136\) −5.48726 0.404693i −0.470528 0.0347021i
\(137\) 2.23387 0.190852 0.0954260 0.995437i \(-0.469579\pi\)
0.0954260 + 0.995437i \(0.469579\pi\)
\(138\) 0 0
\(139\) −18.2335 7.55257i −1.54655 0.640601i −0.563859 0.825871i \(-0.690684\pi\)
−0.982688 + 0.185270i \(0.940684\pi\)
\(140\) 5.47526i 0.462744i
\(141\) 0 0
\(142\) −6.97355 + 2.88854i −0.585207 + 0.242401i
\(143\) −0.0607770 0.146729i −0.00508243 0.0122701i
\(144\) 0 0
\(145\) −0.297518 0.297518i −0.0247076 0.0247076i
\(146\) −3.72523 8.99349i −0.308302 0.744306i
\(147\) 0 0
\(148\) 0.162602 0.392557i 0.0133658 0.0322680i
\(149\) 10.1835i 0.834263i −0.908846 0.417132i \(-0.863035\pi\)
0.908846 0.417132i \(-0.136965\pi\)
\(150\) 0 0
\(151\) 10.8529 10.8529i 0.883200 0.883200i −0.110659 0.993858i \(-0.535296\pi\)
0.993858 + 0.110659i \(0.0352961\pi\)
\(152\) 10.4361 0.846482
\(153\) 0 0
\(154\) −0.411645 −0.0331713
\(155\) −0.978842 + 0.978842i −0.0786225 + 0.0786225i
\(156\) 0 0
\(157\) 9.41222i 0.751177i −0.926787 0.375588i \(-0.877441\pi\)
0.926787 0.375588i \(-0.122559\pi\)
\(158\) 6.89884 16.6553i 0.548842 1.32502i
\(159\) 0 0
\(160\) −2.38686 5.76240i −0.188698 0.455558i
\(161\) −3.19906 3.19906i −0.252121 0.252121i
\(162\) 0 0
\(163\) −4.76262 11.4980i −0.373037 0.900592i −0.993232 0.116144i \(-0.962947\pi\)
0.620195 0.784448i \(-0.287053\pi\)
\(164\) −7.68068 + 3.18144i −0.599761 + 0.248429i
\(165\) 0 0
\(166\) 11.7922i 0.915253i
\(167\) −11.6432 4.82277i −0.900977 0.373197i −0.116382 0.993205i \(-0.537130\pi\)
−0.784596 + 0.620008i \(0.787130\pi\)
\(168\) 0 0
\(169\) 3.84890 0.296069
\(170\) 6.65066 + 3.34755i 0.510082 + 0.256746i
\(171\) 0 0
\(172\) −8.91201 + 8.91201i −0.679534 + 0.679534i
\(173\) −11.2681 4.66741i −0.856699 0.354856i −0.0892832 0.996006i \(-0.528458\pi\)
−0.767416 + 0.641150i \(0.778458\pi\)
\(174\) 0 0
\(175\) 1.66158 4.01142i 0.125604 0.303235i
\(176\) −0.239216 + 0.0990864i −0.0180316 + 0.00746892i
\(177\) 0 0
\(178\) 13.0449 + 13.0449i 0.977754 + 0.977754i
\(179\) −9.80106 9.80106i −0.732566 0.732566i 0.238562 0.971127i \(-0.423324\pi\)
−0.971127 + 0.238562i \(0.923324\pi\)
\(180\) 0 0
\(181\) 1.88863 0.782297i 0.140381 0.0581476i −0.311387 0.950283i \(-0.600794\pi\)
0.451768 + 0.892136i \(0.350794\pi\)
\(182\) −9.07686 + 21.9135i −0.672822 + 1.62434i
\(183\) 0 0
\(184\) −1.28463 0.532112i −0.0947043 0.0392278i
\(185\) 0.238259 0.238259i 0.0175172 0.0175172i
\(186\) 0 0
\(187\) 0.0973225 0.193353i 0.00711693 0.0141394i
\(188\) 7.73218 0.563927
\(189\) 0 0
\(190\) −13.0474 5.40440i −0.946556 0.392076i
\(191\) 3.08056i 0.222902i −0.993770 0.111451i \(-0.964450\pi\)
0.993770 0.111451i \(-0.0355498\pi\)
\(192\) 0 0
\(193\) 19.0706 7.89931i 1.37273 0.568605i 0.430205 0.902731i \(-0.358441\pi\)
0.942528 + 0.334126i \(0.108441\pi\)
\(194\) 13.2848 + 32.0724i 0.953794 + 2.30266i
\(195\) 0 0
\(196\) 10.5685 + 10.5685i 0.754890 + 0.754890i
\(197\) 6.97881 + 16.8483i 0.497219 + 1.20039i 0.950975 + 0.309268i \(0.100084\pi\)
−0.453756 + 0.891126i \(0.649916\pi\)
\(198\) 0 0
\(199\) −10.2053 + 24.6377i −0.723432 + 1.74652i −0.0601040 + 0.998192i \(0.519143\pi\)
−0.663328 + 0.748328i \(0.730857\pi\)
\(200\) 1.33447i 0.0943613i
\(201\) 0 0
\(202\) 16.9735 16.9735i 1.19425 1.19425i
\(203\) 1.82689 0.128222
\(204\) 0 0
\(205\) −6.59268 −0.460453
\(206\) −8.82730 + 8.82730i −0.615027 + 0.615027i
\(207\) 0 0
\(208\) 14.9193i 1.03447i
\(209\) −0.157121 + 0.379323i −0.0108683 + 0.0262383i
\(210\) 0 0
\(211\) 2.98710 + 7.21149i 0.205640 + 0.496460i 0.992728 0.120382i \(-0.0384119\pi\)
−0.787087 + 0.616842i \(0.788412\pi\)
\(212\) −10.7562 10.7562i −0.738738 0.738738i
\(213\) 0 0
\(214\) 10.1868 + 24.5930i 0.696352 + 1.68114i
\(215\) −9.23386 + 3.82479i −0.629744 + 0.260849i
\(216\) 0 0
\(217\) 6.01049i 0.408019i
\(218\) −7.92189 3.28135i −0.536538 0.222241i
\(219\) 0 0
\(220\) 0.0662042 0.00446348
\(221\) −8.14696 9.44435i −0.548024 0.635295i
\(222\) 0 0
\(223\) 3.37213 3.37213i 0.225815 0.225815i −0.585127 0.810942i \(-0.698955\pi\)
0.810942 + 0.585127i \(0.198955\pi\)
\(224\) 25.0199 + 10.3636i 1.67171 + 0.692447i
\(225\) 0 0
\(226\) −2.08238 + 5.02731i −0.138518 + 0.334411i
\(227\) 10.3577 4.29029i 0.687464 0.284757i −0.0114793 0.999934i \(-0.503654\pi\)
0.698943 + 0.715177i \(0.253654\pi\)
\(228\) 0 0
\(229\) −14.6007 14.6007i −0.964838 0.964838i 0.0345640 0.999402i \(-0.488996\pi\)
−0.999402 + 0.0345640i \(0.988996\pi\)
\(230\) 1.33051 + 1.33051i 0.0877309 + 0.0877309i
\(231\) 0 0
\(232\) 0.518744 0.214871i 0.0340572 0.0141069i
\(233\) 1.17044 2.82569i 0.0766781 0.185117i −0.880892 0.473317i \(-0.843057\pi\)
0.957570 + 0.288199i \(0.0930566\pi\)
\(234\) 0 0
\(235\) 5.66494 + 2.34649i 0.369540 + 0.153068i
\(236\) −4.54558 + 4.54558i −0.295892 + 0.295892i
\(237\) 0 0
\(238\) −30.6966 + 10.1412i −1.98976 + 0.657358i
\(239\) −4.94072 −0.319588 −0.159794 0.987150i \(-0.551083\pi\)
−0.159794 + 0.987150i \(0.551083\pi\)
\(240\) 0 0
\(241\) 1.53527 + 0.635928i 0.0988952 + 0.0409637i 0.431583 0.902073i \(-0.357955\pi\)
−0.332687 + 0.943037i \(0.607955\pi\)
\(242\) 19.8592i 1.27659i
\(243\) 0 0
\(244\) −6.95597 + 2.88126i −0.445311 + 0.184454i
\(245\) 4.53570 + 10.9501i 0.289775 + 0.699579i
\(246\) 0 0
\(247\) 16.7283 + 16.7283i 1.06440 + 1.06440i
\(248\) −0.706929 1.70668i −0.0448900 0.108374i
\(249\) 0 0
\(250\) −0.691061 + 1.66837i −0.0437065 + 0.105517i
\(251\) 9.14240i 0.577063i −0.957470 0.288531i \(-0.906833\pi\)
0.957470 0.288531i \(-0.0931670\pi\)
\(252\) 0 0
\(253\) 0.0386814 0.0386814i 0.00243188 0.00243188i
\(254\) 0.0149650 0.000938989
\(255\) 0 0
\(256\) 20.7617 1.29761
\(257\) 11.7749 11.7749i 0.734498 0.734498i −0.237009 0.971507i \(-0.576167\pi\)
0.971507 + 0.237009i \(0.0761671\pi\)
\(258\) 0 0
\(259\) 1.46301i 0.0909070i
\(260\) 1.45982 3.52431i 0.0905341 0.218569i
\(261\) 0 0
\(262\) 5.65605 + 13.6549i 0.349432 + 0.843603i
\(263\) −15.3640 15.3640i −0.947387 0.947387i 0.0512969 0.998683i \(-0.483665\pi\)
−0.998683 + 0.0512969i \(0.983665\pi\)
\(264\) 0 0
\(265\) −4.61626 11.1446i −0.283575 0.684610i
\(266\) 56.6507 23.4655i 3.47348 1.43876i
\(267\) 0 0
\(268\) 1.15515i 0.0705618i
\(269\) 21.4082 + 8.86758i 1.30528 + 0.540666i 0.923504 0.383588i \(-0.125312\pi\)
0.381779 + 0.924254i \(0.375312\pi\)
\(270\) 0 0
\(271\) −3.95595 −0.240307 −0.120153 0.992755i \(-0.538339\pi\)
−0.120153 + 0.992755i \(0.538339\pi\)
\(272\) −15.3974 + 13.2822i −0.933603 + 0.805353i
\(273\) 0 0
\(274\) 2.85246 2.85246i 0.172323 0.172323i
\(275\) 0.0485041 + 0.0200910i 0.00292491 + 0.00121154i
\(276\) 0 0
\(277\) −6.47115 + 15.6227i −0.388814 + 0.938679i 0.601378 + 0.798964i \(0.294618\pi\)
−0.990192 + 0.139714i \(0.955382\pi\)
\(278\) −32.9266 + 13.6387i −1.97481 + 0.817992i
\(279\) 0 0
\(280\) 4.09710 + 4.09710i 0.244848 + 0.244848i
\(281\) −3.30210 3.30210i −0.196987 0.196987i 0.601720 0.798707i \(-0.294482\pi\)
−0.798707 + 0.601720i \(0.794482\pi\)
\(282\) 0 0
\(283\) −8.03809 + 3.32949i −0.477815 + 0.197917i −0.608575 0.793497i \(-0.708258\pi\)
0.130760 + 0.991414i \(0.458258\pi\)
\(284\) −2.01708 + 4.86967i −0.119692 + 0.288962i
\(285\) 0 0
\(286\) −0.264967 0.109753i −0.0156678 0.00648982i
\(287\) 20.2409 20.2409i 1.19478 1.19478i
\(288\) 0 0
\(289\) 2.49398 16.8161i 0.146705 0.989180i
\(290\) −0.759811 −0.0446176
\(291\) 0 0
\(292\) −6.28021 2.60135i −0.367521 0.152232i
\(293\) 0.739100i 0.0431787i 0.999767 + 0.0215893i \(0.00687263\pi\)
−0.999767 + 0.0215893i \(0.993127\pi\)
\(294\) 0 0
\(295\) −4.70974 + 1.95084i −0.274212 + 0.113582i
\(296\) 0.172073 + 0.415421i 0.0100015 + 0.0241459i
\(297\) 0 0
\(298\) −13.0034 13.0034i −0.753269 0.753269i
\(299\) −1.20623 2.91210i −0.0697582 0.168411i
\(300\) 0 0
\(301\) 16.6070 40.0928i 0.957210 2.31091i
\(302\) 27.7165i 1.59491i
\(303\) 0 0
\(304\) 27.2726 27.2726i 1.56419 1.56419i
\(305\) −5.97063 −0.341877
\(306\) 0 0
\(307\) −2.86108 −0.163290 −0.0816451 0.996661i \(-0.526017\pi\)
−0.0816451 + 0.996661i \(0.526017\pi\)
\(308\) −0.203261 + 0.203261i −0.0115818 + 0.0115818i
\(309\) 0 0
\(310\) 2.49979i 0.141979i
\(311\) −7.84424 + 18.9377i −0.444806 + 1.07386i 0.529435 + 0.848350i \(0.322404\pi\)
−0.974242 + 0.225507i \(0.927596\pi\)
\(312\) 0 0
\(313\) 3.23958 + 7.82103i 0.183112 + 0.442071i 0.988605 0.150534i \(-0.0480994\pi\)
−0.805493 + 0.592605i \(0.798099\pi\)
\(314\) −12.0186 12.0186i −0.678249 0.678249i
\(315\) 0 0
\(316\) −4.81750 11.6305i −0.271005 0.654265i
\(317\) 19.4863 8.07149i 1.09446 0.453340i 0.238900 0.971044i \(-0.423213\pi\)
0.855560 + 0.517704i \(0.173213\pi\)
\(318\) 0 0
\(319\) 0.0220898i 0.00123679i
\(320\) −1.29301 0.535581i −0.0722813 0.0299399i
\(321\) 0 0
\(322\) −8.16985 −0.455288
\(323\) −2.37163 + 32.1571i −0.131961 + 1.78927i
\(324\) 0 0
\(325\) 2.13905 2.13905i 0.118653 0.118653i
\(326\) −20.7634 8.60048i −1.14998 0.476337i
\(327\) 0 0
\(328\) 3.36675 8.12805i 0.185897 0.448796i
\(329\) −24.5967 + 10.1883i −1.35606 + 0.561699i
\(330\) 0 0
\(331\) 10.7665 + 10.7665i 0.591780 + 0.591780i 0.938112 0.346332i \(-0.112573\pi\)
−0.346332 + 0.938112i \(0.612573\pi\)
\(332\) −5.82272 5.82272i −0.319563 0.319563i
\(333\) 0 0
\(334\) −21.0256 + 8.70910i −1.15047 + 0.476541i
\(335\) 0.350554 0.846311i 0.0191528 0.0462389i
\(336\) 0 0
\(337\) 10.6003 + 4.39079i 0.577435 + 0.239182i 0.652235 0.758017i \(-0.273832\pi\)
−0.0747994 + 0.997199i \(0.523832\pi\)
\(338\) 4.91472 4.91472i 0.267326 0.267326i
\(339\) 0 0
\(340\) 4.93688 1.63100i 0.267740 0.0884532i
\(341\) 0.0726759 0.00393562
\(342\) 0 0
\(343\) −19.4648 8.06258i −1.05100 0.435338i
\(344\) 13.3376i 0.719114i
\(345\) 0 0
\(346\) −20.3483 + 8.42854i −1.09393 + 0.453121i
\(347\) 5.73424 + 13.8437i 0.307830 + 0.743168i 0.999775 + 0.0212172i \(0.00675416\pi\)
−0.691945 + 0.721950i \(0.743246\pi\)
\(348\) 0 0
\(349\) −3.20791 3.20791i −0.171715 0.171715i 0.616017 0.787733i \(-0.288745\pi\)
−0.787733 + 0.616017i \(0.788745\pi\)
\(350\) −3.00054 7.24394i −0.160386 0.387205i
\(351\) 0 0
\(352\) −0.125311 + 0.302528i −0.00667912 + 0.0161248i
\(353\) 7.71469i 0.410612i 0.978698 + 0.205306i \(0.0658189\pi\)
−0.978698 + 0.205306i \(0.934181\pi\)
\(354\) 0 0
\(355\) −2.95561 + 2.95561i −0.156867 + 0.156867i
\(356\) 12.8825 0.682771
\(357\) 0 0
\(358\) −25.0302 −1.32289
\(359\) 7.79826 7.79826i 0.411577 0.411577i −0.470711 0.882287i \(-0.656003\pi\)
0.882287 + 0.470711i \(0.156003\pi\)
\(360\) 0 0
\(361\) 42.1592i 2.21890i
\(362\) 1.41269 3.41055i 0.0742496 0.179254i
\(363\) 0 0
\(364\) 6.33843 + 15.3023i 0.332224 + 0.802059i
\(365\) −3.81172 3.81172i −0.199515 0.199515i
\(366\) 0 0
\(367\) −6.13386 14.8084i −0.320185 0.772995i −0.999243 0.0389098i \(-0.987611\pi\)
0.679058 0.734085i \(-0.262389\pi\)
\(368\) −4.74768 + 1.96655i −0.247490 + 0.102514i
\(369\) 0 0
\(370\) 0.608473i 0.0316330i
\(371\) 48.3892 + 20.0435i 2.51224 + 1.04061i
\(372\) 0 0
\(373\) −10.2501 −0.530732 −0.265366 0.964148i \(-0.585493\pi\)
−0.265366 + 0.964148i \(0.585493\pi\)
\(374\) −0.122623 0.371168i −0.00634066 0.0191926i
\(375\) 0 0
\(376\) −5.78593 + 5.78593i −0.298387 + 0.298387i
\(377\) 1.17593 + 0.487085i 0.0605634 + 0.0250862i
\(378\) 0 0
\(379\) −5.33919 + 12.8899i −0.274256 + 0.662112i −0.999656 0.0262152i \(-0.991654\pi\)
0.725401 + 0.688327i \(0.241654\pi\)
\(380\) −9.11105 + 3.77392i −0.467387 + 0.193598i
\(381\) 0 0
\(382\) −3.93362 3.93362i −0.201261 0.201261i
\(383\) 3.97525 + 3.97525i 0.203126 + 0.203126i 0.801338 0.598212i \(-0.204122\pi\)
−0.598212 + 0.801338i \(0.704122\pi\)
\(384\) 0 0
\(385\) −0.210601 + 0.0872339i −0.0107332 + 0.00444585i
\(386\) 14.2648 34.4383i 0.726060 1.75286i
\(387\) 0 0
\(388\) 22.3963 + 9.27687i 1.13700 + 0.470962i
\(389\) 25.3255 25.3255i 1.28406 1.28406i 0.345717 0.938339i \(-0.387636\pi\)
0.938339 0.345717i \(-0.112364\pi\)
\(390\) 0 0
\(391\) 1.93155 3.83745i 0.0976825 0.194068i
\(392\) −15.8166 −0.798858
\(393\) 0 0
\(394\) 30.4252 + 12.6025i 1.53280 + 0.634907i
\(395\) 9.98296i 0.502297i
\(396\) 0 0
\(397\) 3.59405 1.48870i 0.180380 0.0747159i −0.290665 0.956825i \(-0.593877\pi\)
0.471046 + 0.882109i \(0.343877\pi\)
\(398\) 18.4290 + 44.4915i 0.923761 + 2.23016i
\(399\) 0 0
\(400\) −3.48736 3.48736i −0.174368 0.174368i
\(401\) −14.0592 33.9420i −0.702085 1.69498i −0.718890 0.695124i \(-0.755350\pi\)
0.0168056 0.999859i \(-0.494650\pi\)
\(402\) 0 0
\(403\) 1.60252 3.86883i 0.0798273 0.192720i
\(404\) 16.7622i 0.833952i
\(405\) 0 0
\(406\) 2.33278 2.33278i 0.115774 0.115774i
\(407\) −0.0176900 −0.000876860
\(408\) 0 0
\(409\) −22.3529 −1.10528 −0.552641 0.833419i \(-0.686380\pi\)
−0.552641 + 0.833419i \(0.686380\pi\)
\(410\) −8.41829 + 8.41829i −0.415750 + 0.415750i
\(411\) 0 0
\(412\) 8.71743i 0.429477i
\(413\) 8.47041 20.4494i 0.416802 1.00625i
\(414\) 0 0
\(415\) −2.49895 6.03301i −0.122669 0.296149i
\(416\) 13.3416 + 13.3416i 0.654128 + 0.654128i
\(417\) 0 0
\(418\) 0.283733 + 0.684993i 0.0138778 + 0.0335041i
\(419\) −20.2014 + 8.36768i −0.986901 + 0.408788i −0.816978 0.576669i \(-0.804352\pi\)
−0.169924 + 0.985457i \(0.554352\pi\)
\(420\) 0 0
\(421\) 20.6111i 1.00453i 0.864715 + 0.502263i \(0.167499\pi\)
−0.864715 + 0.502263i \(0.832501\pi\)
\(422\) 13.0227 + 5.39419i 0.633937 + 0.262585i
\(423\) 0 0
\(424\) 16.0975 0.781766
\(425\) 4.11194 + 0.303261i 0.199458 + 0.0147103i
\(426\) 0 0
\(427\) 18.3311 18.3311i 0.887103 0.887103i
\(428\) 17.1734 + 7.11347i 0.830109 + 0.343842i
\(429\) 0 0
\(430\) −6.90692 + 16.6748i −0.333081 + 0.804130i
\(431\) −20.6074 + 8.53585i −0.992621 + 0.411157i −0.819086 0.573670i \(-0.805519\pi\)
−0.173535 + 0.984828i \(0.555519\pi\)
\(432\) 0 0
\(433\) −6.31536 6.31536i −0.303497 0.303497i 0.538883 0.842380i \(-0.318846\pi\)
−0.842380 + 0.538883i \(0.818846\pi\)
\(434\) −7.67489 7.67489i −0.368406 0.368406i
\(435\) 0 0
\(436\) −5.53190 + 2.29139i −0.264930 + 0.109738i
\(437\) −3.11835 + 7.52837i −0.149171 + 0.360131i
\(438\) 0 0
\(439\) 20.5695 + 8.52016i 0.981728 + 0.406645i 0.815066 0.579369i \(-0.196701\pi\)
0.166663 + 0.986014i \(0.446701\pi\)
\(440\) −0.0495401 + 0.0495401i −0.00236173 + 0.00236173i
\(441\) 0 0
\(442\) −22.4626 1.65665i −1.06844 0.0787987i
\(443\) 6.17421 0.293346 0.146673 0.989185i \(-0.453144\pi\)
0.146673 + 0.989185i \(0.453144\pi\)
\(444\) 0 0
\(445\) 9.43828 + 3.90946i 0.447418 + 0.185326i
\(446\) 8.61184i 0.407783i
\(447\) 0 0
\(448\) 5.61414 2.32545i 0.265243 0.109867i
\(449\) −11.5947 27.9922i −0.547189 1.32103i −0.919561 0.392948i \(-0.871455\pi\)
0.372371 0.928084i \(-0.378545\pi\)
\(450\) 0 0
\(451\) 0.244743 + 0.244743i 0.0115245 + 0.0115245i
\(452\) 1.45414 + 3.51060i 0.0683968 + 0.165125i
\(453\) 0 0
\(454\) 7.74754 18.7042i 0.363610 0.877833i
\(455\) 13.1347i 0.615763i
\(456\) 0 0
\(457\) 18.0847 18.0847i 0.845965 0.845965i −0.143662 0.989627i \(-0.545888\pi\)
0.989627 + 0.143662i \(0.0458877\pi\)
\(458\) −37.2876 −1.74233
\(459\) 0 0
\(460\) 1.31395 0.0612630
\(461\) 9.93945 9.93945i 0.462926 0.462926i −0.436687 0.899613i \(-0.643848\pi\)
0.899613 + 0.436687i \(0.143848\pi\)
\(462\) 0 0
\(463\) 25.1233i 1.16758i 0.811905 + 0.583789i \(0.198431\pi\)
−0.811905 + 0.583789i \(0.801569\pi\)
\(464\) 0.794108 1.91715i 0.0368656 0.0890013i
\(465\) 0 0
\(466\) −2.11362 5.10272i −0.0979114 0.236379i
\(467\) 15.7614 + 15.7614i 0.729352 + 0.729352i 0.970491 0.241139i \(-0.0775209\pi\)
−0.241139 + 0.970491i \(0.577521\pi\)
\(468\) 0 0
\(469\) 1.52208 + 3.67462i 0.0702830 + 0.169678i
\(470\) 10.2299 4.23737i 0.471871 0.195455i
\(471\) 0 0
\(472\) 6.80285i 0.313126i
\(473\) 0.484782 + 0.200803i 0.0222903 + 0.00923294i
\(474\) 0 0
\(475\) −7.82043 −0.358826
\(476\) −10.1498 + 20.1648i −0.465213 + 0.924250i
\(477\) 0 0
\(478\) −6.30887 + 6.30887i −0.288561 + 0.288561i
\(479\) −24.7134 10.2366i −1.12919 0.467724i −0.261681 0.965154i \(-0.584277\pi\)
−0.867504 + 0.497430i \(0.834277\pi\)
\(480\) 0 0
\(481\) −0.390068 + 0.941709i −0.0177856 + 0.0429382i
\(482\) 2.77243 1.14838i 0.126281 0.0523072i
\(483\) 0 0
\(484\) 9.80599 + 9.80599i 0.445727 + 0.445727i
\(485\) 13.5933 + 13.5933i 0.617239 + 0.617239i
\(486\) 0 0
\(487\) −21.3841 + 8.85760i −0.969008 + 0.401376i −0.810343 0.585956i \(-0.800719\pi\)
−0.158665 + 0.987332i \(0.550719\pi\)
\(488\) 3.04908 7.36113i 0.138025 0.333223i
\(489\) 0 0
\(490\) 19.7741 + 8.19069i 0.893302 + 0.370018i
\(491\) 5.50823 5.50823i 0.248583 0.248583i −0.571806 0.820389i \(-0.693757\pi\)
0.820389 + 0.571806i \(0.193757\pi\)
\(492\) 0 0
\(493\) 0.544201 + 1.64725i 0.0245096 + 0.0741883i
\(494\) 42.7213 1.92212
\(495\) 0 0
\(496\) −6.30746 2.61263i −0.283213 0.117311i
\(497\) 18.1487i 0.814079i
\(498\) 0 0
\(499\) −8.12796 + 3.36671i −0.363858 + 0.150715i −0.557119 0.830432i \(-0.688093\pi\)
0.193262 + 0.981147i \(0.438093\pi\)
\(500\) 0.482572 + 1.16503i 0.0215813 + 0.0521018i
\(501\) 0 0
\(502\) −11.6741 11.6741i −0.521039 0.521039i
\(503\) 3.00003 + 7.24271i 0.133765 + 0.322937i 0.976542 0.215325i \(-0.0690812\pi\)
−0.842778 + 0.538262i \(0.819081\pi\)
\(504\) 0 0
\(505\) 5.08685 12.2807i 0.226362 0.546486i
\(506\) 0.0987858i 0.00439156i
\(507\) 0 0
\(508\) 0.00738938 0.00738938i 0.000327851 0.000327851i
\(509\) −2.52868 −0.112082 −0.0560409 0.998428i \(-0.517848\pi\)
−0.0560409 + 0.998428i \(0.517848\pi\)
\(510\) 0 0
\(511\) 23.4055 1.03540
\(512\) 12.4437 12.4437i 0.549940 0.549940i
\(513\) 0 0
\(514\) 30.0711i 1.32638i
\(515\) −2.64549 + 6.38677i −0.116574 + 0.281435i
\(516\) 0 0
\(517\) −0.123192 0.297412i −0.00541797 0.0130801i
\(518\) 1.86814 + 1.86814i 0.0820813 + 0.0820813i
\(519\) 0 0
\(520\) 1.54485 + 3.72959i 0.0677459 + 0.163553i
\(521\) −9.33885 + 3.86828i −0.409142 + 0.169472i −0.577755 0.816210i \(-0.696071\pi\)
0.168613 + 0.985682i \(0.446071\pi\)
\(522\) 0 0
\(523\) 5.80494i 0.253833i −0.991913 0.126916i \(-0.959492\pi\)
0.991913 0.126916i \(-0.0405079\pi\)
\(524\) 9.53530 + 3.94965i 0.416552 + 0.172541i
\(525\) 0 0
\(526\) −39.2371 −1.71082
\(527\) 5.41948 1.79043i 0.236076 0.0779925i
\(528\) 0 0
\(529\) −15.4958 + 15.4958i −0.673728 + 0.673728i
\(530\) −20.1253 8.33618i −0.874188 0.362101i
\(531\) 0 0
\(532\) 16.3861 39.5595i 0.710427 1.71512i
\(533\) 18.4253 7.63200i 0.798087 0.330579i
\(534\) 0 0
\(535\) 10.4233 + 10.4233i 0.450637 + 0.450637i
\(536\) 0.864387 + 0.864387i 0.0373358 + 0.0373358i
\(537\) 0 0
\(538\) 38.6596 16.0133i 1.66674 0.690384i
\(539\) 0.238126 0.574887i 0.0102568 0.0247621i
\(540\) 0 0
\(541\) 39.1174 + 16.2030i 1.68179 + 0.696620i 0.999409 0.0343783i \(-0.0109451\pi\)
0.682380 + 0.730998i \(0.260945\pi\)
\(542\) −5.05141 + 5.05141i −0.216976 + 0.216976i
\(543\) 0 0
\(544\) −1.89149 + 25.6469i −0.0810971 + 1.09960i
\(545\) −4.74828 −0.203394
\(546\) 0 0
\(547\) 18.4832 + 7.65599i 0.790285 + 0.327347i 0.741058 0.671441i \(-0.234324\pi\)
0.0492266 + 0.998788i \(0.484324\pi\)
\(548\) 2.81695i 0.120334i
\(549\) 0 0
\(550\) 0.0875901 0.0362810i 0.00373485 0.00154703i
\(551\) −1.25921 3.04001i −0.0536443 0.129509i
\(552\) 0 0
\(553\) 30.6498 + 30.6498i 1.30336 + 1.30336i
\(554\) 11.6858 + 28.2120i 0.496482 + 1.19861i
\(555\) 0 0
\(556\) −9.52395 + 22.9929i −0.403906 + 0.975114i
\(557\) 25.8965i 1.09727i 0.836062 + 0.548636i \(0.184853\pi\)
−0.836062 + 0.548636i \(0.815147\pi\)
\(558\) 0 0
\(559\) 21.3791 21.3791i 0.904240 0.904240i
\(560\) 21.4138 0.904899
\(561\) 0 0
\(562\) −8.43299 −0.355724
\(563\) −19.8208 + 19.8208i −0.835349 + 0.835349i −0.988243 0.152894i \(-0.951141\pi\)
0.152894 + 0.988243i \(0.451141\pi\)
\(564\) 0 0
\(565\) 3.01331i 0.126771i
\(566\) −6.01248 + 14.5154i −0.252724 + 0.610129i
\(567\) 0 0
\(568\) −2.13457 5.15331i −0.0895645 0.216228i
\(569\) 27.7130 + 27.7130i 1.16179 + 1.16179i 0.984084 + 0.177706i \(0.0568675\pi\)
0.177706 + 0.984084i \(0.443132\pi\)
\(570\) 0 0
\(571\) 1.48008 + 3.57322i 0.0619392 + 0.149535i 0.951819 0.306661i \(-0.0992118\pi\)
−0.889880 + 0.456196i \(0.849212\pi\)
\(572\) −0.185028 + 0.0766411i −0.00773641 + 0.00320452i
\(573\) 0 0
\(574\) 51.6918i 2.15757i
\(575\) 0.962654 + 0.398744i 0.0401454 + 0.0166288i
\(576\) 0 0
\(577\) 14.4808 0.602845 0.301423 0.953491i \(-0.402539\pi\)
0.301423 + 0.953491i \(0.402539\pi\)
\(578\) −18.2881 24.6573i −0.760684 1.02561i
\(579\) 0 0
\(580\) −0.375177 + 0.375177i −0.0155784 + 0.0155784i
\(581\) 26.1949 + 10.8503i 1.08675 + 0.450145i
\(582\) 0 0
\(583\) −0.242356 + 0.585099i −0.0100374 + 0.0242323i
\(584\) 6.64600 2.75286i 0.275013 0.113914i
\(585\) 0 0
\(586\) 0.943767 + 0.943767i 0.0389867 + 0.0389867i
\(587\) −22.0937 22.0937i −0.911905 0.911905i 0.0845171 0.996422i \(-0.473065\pi\)
−0.996422 + 0.0845171i \(0.973065\pi\)
\(588\) 0 0
\(589\) −10.0017 + 4.14284i −0.412113 + 0.170703i
\(590\) −3.52289 + 8.50500i −0.145035 + 0.350145i
\(591\) 0 0
\(592\) 1.53529 + 0.635939i 0.0631002 + 0.0261369i
\(593\) −1.41805 + 1.41805i −0.0582323 + 0.0582323i −0.735623 0.677391i \(-0.763111\pi\)
0.677391 + 0.735623i \(0.263111\pi\)
\(594\) 0 0
\(595\) −13.5556 + 11.6934i −0.555724 + 0.479384i
\(596\) −12.8416 −0.526012
\(597\) 0 0
\(598\) −5.25876 2.17825i −0.215047 0.0890753i
\(599\) 36.0451i 1.47276i 0.676567 + 0.736381i \(0.263467\pi\)
−0.676567 + 0.736381i \(0.736533\pi\)
\(600\) 0 0
\(601\) −35.8417 + 14.8461i −1.46201 + 0.605586i −0.965022 0.262168i \(-0.915562\pi\)
−0.496993 + 0.867755i \(0.665562\pi\)
\(602\) −29.9894 72.4007i −1.22228 2.95083i
\(603\) 0 0
\(604\) −13.6858 13.6858i −0.556867 0.556867i
\(605\) 4.20846 + 10.1601i 0.171098 + 0.413068i
\(606\) 0 0
\(607\) −11.0800 + 26.7496i −0.449725 + 1.08573i 0.522701 + 0.852516i \(0.324925\pi\)
−0.972425 + 0.233215i \(0.925075\pi\)
\(608\) 48.7774i 1.97818i
\(609\) 0 0
\(610\) −7.62399 + 7.62399i −0.308686 + 0.308686i
\(611\) −18.5488 −0.750405
\(612\) 0 0
\(613\) 9.10707 0.367831 0.183915 0.982942i \(-0.441123\pi\)
0.183915 + 0.982942i \(0.441123\pi\)
\(614\) −3.65335 + 3.65335i −0.147437 + 0.147437i
\(615\) 0 0
\(616\) 0.304197i 0.0122564i
\(617\) 1.93466 4.67068i 0.0778864 0.188035i −0.880140 0.474714i \(-0.842551\pi\)
0.958027 + 0.286680i \(0.0925515\pi\)
\(618\) 0 0
\(619\) 6.45177 + 15.5760i 0.259319 + 0.626051i 0.998894 0.0470233i \(-0.0149735\pi\)
−0.739575 + 0.673074i \(0.764974\pi\)
\(620\) 1.23434 + 1.23434i 0.0495723 + 0.0495723i
\(621\) 0 0
\(622\) 14.1654 + 34.1982i 0.567979 + 1.37122i
\(623\) −40.9803 + 16.9746i −1.64184 + 0.680074i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 14.1235 + 5.85013i 0.564487 + 0.233818i
\(627\) 0 0
\(628\) −11.8690 −0.473625
\(629\) −1.31915 + 0.435808i −0.0525981 + 0.0173768i
\(630\) 0 0
\(631\) 1.91845 1.91845i 0.0763722 0.0763722i −0.667889 0.744261i \(-0.732802\pi\)
0.744261 + 0.667889i \(0.232802\pi\)
\(632\) 12.3079 + 5.09809i 0.489581 + 0.202791i
\(633\) 0 0
\(634\) 14.5757 35.1889i 0.578876 1.39753i
\(635\) 0.00765625 0.00317132i 0.000303829 0.000125850i
\(636\) 0 0
\(637\) −25.3528 25.3528i −1.00451 1.00451i
\(638\) 0.0282068 + 0.0282068i 0.00111672 + 0.00111672i
\(639\) 0 0
\(640\) 9.18985 3.80656i 0.363261 0.150467i
\(641\) 8.72988 21.0758i 0.344809 0.832443i −0.652406 0.757870i \(-0.726240\pi\)
0.997215 0.0745739i \(-0.0237597\pi\)
\(642\) 0 0
\(643\) −17.8097 7.37702i −0.702346 0.290921i 0.00278691 0.999996i \(-0.499113\pi\)
−0.705133 + 0.709075i \(0.749113\pi\)
\(644\) −4.03408 + 4.03408i −0.158965 + 0.158965i
\(645\) 0 0
\(646\) 38.0335 + 44.0903i 1.49641 + 1.73471i
\(647\) −12.8098 −0.503606 −0.251803 0.967778i \(-0.581024\pi\)
−0.251803 + 0.967778i \(0.581024\pi\)
\(648\) 0 0
\(649\) 0.247264 + 0.102420i 0.00970595 + 0.00402033i
\(650\) 5.46278i 0.214268i
\(651\) 0 0
\(652\) −14.4992 + 6.00577i −0.567833 + 0.235204i
\(653\) 15.9656 + 38.5442i 0.624780 + 1.50835i 0.846030 + 0.533136i \(0.178987\pi\)
−0.221249 + 0.975217i \(0.571013\pi\)
\(654\) 0 0
\(655\) 5.78738 + 5.78738i 0.226131 + 0.226131i
\(656\) −12.4427 30.0392i −0.485804 1.17284i
\(657\) 0 0
\(658\) −18.3983 + 44.4175i −0.717242 + 1.73158i
\(659\) 34.3290i 1.33727i 0.743592 + 0.668633i \(0.233120\pi\)
−0.743592 + 0.668633i \(0.766880\pi\)
\(660\) 0 0
\(661\) −19.5875 + 19.5875i −0.761865 + 0.761865i −0.976659 0.214794i \(-0.931092\pi\)
0.214794 + 0.976659i \(0.431092\pi\)
\(662\) 27.4958 1.06865
\(663\) 0 0
\(664\) 8.71419 0.338176
\(665\) 24.0103 24.0103i 0.931081 0.931081i
\(666\) 0 0
\(667\) 0.438413i 0.0169754i
\(668\) −6.08161 + 14.6823i −0.235305 + 0.568076i
\(669\) 0 0
\(670\) −0.633040 1.52829i −0.0244565 0.0590431i
\(671\) 0.221650 + 0.221650i 0.00855671 + 0.00855671i
\(672\) 0 0
\(673\) 13.8561 + 33.4517i 0.534115 + 1.28947i 0.928777 + 0.370640i \(0.120862\pi\)
−0.394662 + 0.918826i \(0.629138\pi\)
\(674\) 19.1423 7.92902i 0.737336 0.305414i
\(675\) 0 0
\(676\) 4.85355i 0.186675i
\(677\) −15.8129 6.54992i −0.607739 0.251734i 0.0575224 0.998344i \(-0.481680\pi\)
−0.665262 + 0.746610i \(0.731680\pi\)
\(678\) 0 0
\(679\) −83.4684 −3.20322
\(680\) −2.47377 + 4.91469i −0.0948647 + 0.188470i
\(681\) 0 0
\(682\) 0.0928009 0.0928009i 0.00355353 0.00355353i
\(683\) −8.17654 3.38683i −0.312866 0.129594i 0.220725 0.975336i \(-0.429158\pi\)
−0.533591 + 0.845743i \(0.679158\pi\)
\(684\) 0 0
\(685\) 0.854864 2.06382i 0.0326627 0.0788546i
\(686\) −35.1501 + 14.5596i −1.34204 + 0.555890i
\(687\) 0 0
\(688\) −34.8550 34.8550i −1.32883 1.32883i
\(689\) 25.8031 + 25.8031i 0.983021 + 0.983021i
\(690\) 0 0
\(691\) 1.29190 0.535121i 0.0491461 0.0203570i −0.357975 0.933731i \(-0.616533\pi\)
0.407121 + 0.913374i \(0.366533\pi\)
\(692\) −5.88570 + 14.2093i −0.223741 + 0.540158i
\(693\) 0 0
\(694\) 24.9993 + 10.3551i 0.948962 + 0.393073i
\(695\) −13.9553 + 13.9553i −0.529356 + 0.529356i
\(696\) 0 0
\(697\) 24.2801 + 12.2212i 0.919673 + 0.462910i
\(698\) −8.19245 −0.310089
\(699\) 0 0
\(700\) −5.05848 2.09529i −0.191193 0.0791946i
\(701\) 2.36331i 0.0892608i 0.999004 + 0.0446304i \(0.0142110\pi\)
−0.999004 + 0.0446304i \(0.985789\pi\)
\(702\) 0 0
\(703\) 2.43451 1.00841i 0.0918191 0.0380327i
\(704\) 0.0281182 + 0.0678834i 0.00105975 + 0.00255845i
\(705\) 0 0
\(706\) 9.85100 + 9.85100i 0.370747 + 0.370747i
\(707\) 22.0867 + 53.3221i 0.830657 + 2.00538i
\(708\) 0 0
\(709\) 12.4474 30.0507i 0.467472 1.12858i −0.497791 0.867297i \(-0.665855\pi\)
0.965263 0.261280i \(-0.0841447\pi\)
\(710\) 7.54812i 0.283276i
\(711\) 0 0
\(712\) −9.63987 + 9.63987i −0.361270 + 0.361270i
\(713\) 1.44239 0.0540179
\(714\) 0 0
\(715\) −0.158818 −0.00593945
\(716\) −12.3594 + 12.3594i −0.461891 + 0.461891i
\(717\) 0 0
\(718\) 19.9154i 0.743237i
\(719\) 6.28758 15.1796i 0.234487 0.566102i −0.762208 0.647332i \(-0.775885\pi\)
0.996695 + 0.0812299i \(0.0258848\pi\)
\(720\) 0 0
\(721\) −11.4865 27.7309i −0.427780 1.03275i
\(722\) −53.8336 53.8336i −2.00348 2.00348i
\(723\) 0 0
\(724\) −0.986493 2.38160i −0.0366627 0.0885116i
\(725\) −0.388726 + 0.161016i −0.0144369 + 0.00597997i
\(726\) 0 0
\(727\) 32.4709i 1.20428i −0.798391 0.602139i \(-0.794315\pi\)
0.798391 0.602139i \(-0.205685\pi\)
\(728\) −16.1936 6.70761i −0.600175 0.248600i
\(729\) 0 0
\(730\) −9.73448 −0.360289
\(731\) 41.0974 + 3.03099i 1.52004 + 0.112105i
\(732\) 0 0
\(733\) −6.10533 + 6.10533i −0.225506 + 0.225506i −0.810812 0.585307i \(-0.800974\pi\)
0.585307 + 0.810812i \(0.300974\pi\)
\(734\) −26.7415 11.0767i −0.987048 0.408849i
\(735\) 0 0
\(736\) −2.48704 + 6.00424i −0.0916734 + 0.221319i
\(737\) −0.0444317 + 0.0184042i −0.00163666 + 0.000677928i
\(738\) 0 0
\(739\) −7.49715 7.49715i −0.275787 0.275787i 0.555637 0.831425i \(-0.312474\pi\)
−0.831425 + 0.555637i \(0.812474\pi\)
\(740\) −0.300450 0.300450i −0.0110448 0.0110448i
\(741\) 0 0
\(742\) 87.3827 36.1951i 3.20792 1.32876i
\(743\) 8.55008 20.6417i 0.313672 0.757272i −0.685891 0.727705i \(-0.740587\pi\)
0.999563 0.0295670i \(-0.00941283\pi\)
\(744\) 0 0
\(745\) −9.40831 3.89705i −0.344694 0.142777i
\(746\) −13.0886 + 13.0886i −0.479206 + 0.479206i
\(747\) 0 0
\(748\) −0.243822 0.122726i −0.00891502 0.00448730i
\(749\) −64.0032 −2.33863
\(750\) 0 0
\(751\) 6.59640 + 2.73232i 0.240706 + 0.0997037i 0.499775 0.866155i \(-0.333416\pi\)
−0.259069 + 0.965859i \(0.583416\pi\)
\(752\) 30.2406i 1.10276i
\(753\) 0 0
\(754\) 2.12353 0.879593i 0.0773342 0.0320329i
\(755\) −5.87357 14.1800i −0.213761 0.516065i
\(756\) 0 0
\(757\) 12.7467 + 12.7467i 0.463287 + 0.463287i 0.899731 0.436444i \(-0.143762\pi\)
−0.436444 + 0.899731i \(0.643762\pi\)
\(758\) 9.64166 + 23.2770i 0.350201 + 0.845460i
\(759\) 0 0
\(760\) 3.99373 9.64173i 0.144868 0.349742i
\(761\) 49.9437i 1.81046i 0.424923 + 0.905230i \(0.360301\pi\)
−0.424923 + 0.905230i \(0.639699\pi\)
\(762\) 0 0
\(763\) 14.5782 14.5782i 0.527767 0.527767i
\(764\) −3.88466 −0.140542
\(765\) 0 0
\(766\) 10.1521 0.366811
\(767\) 10.9044 10.9044i 0.393737 0.393737i
\(768\) 0 0
\(769\) 43.9115i 1.58349i 0.610852 + 0.791745i \(0.290827\pi\)
−0.610852 + 0.791745i \(0.709173\pi\)
\(770\) −0.157530 + 0.380310i −0.00567697 + 0.0137054i
\(771\) 0 0
\(772\) −9.96120 24.0485i −0.358511 0.865523i
\(773\) −6.84309 6.84309i −0.246129 0.246129i 0.573251 0.819380i \(-0.305682\pi\)
−0.819380 + 0.573251i \(0.805682\pi\)
\(774\) 0 0
\(775\) 0.529745 + 1.27892i 0.0190290 + 0.0459401i
\(776\) −23.7008 + 9.81720i −0.850810 + 0.352417i
\(777\) 0 0
\(778\) 64.6771i 2.31879i
\(779\) −47.6330 19.7302i −1.70663 0.706909i
\(780\) 0 0
\(781\) 0.219445 0.00785234
\(782\) −2.43367 7.36651i −0.0870280 0.263426i
\(783\) 0 0
\(784\) −41.3334 + 41.3334i −1.47619 + 1.47619i
\(785\) −8.69576 3.60190i −0.310365 0.128557i
\(786\) 0 0
\(787\) 7.59181 18.3283i 0.270619 0.653332i −0.728891 0.684630i \(-0.759964\pi\)
0.999510 + 0.0312976i \(0.00996398\pi\)
\(788\) 21.2461 8.80043i 0.756861 0.313502i
\(789\) 0 0
\(790\) −12.7474 12.7474i −0.453532 0.453532i
\(791\) −9.25147 9.25147i −0.328944 0.328944i
\(792\) 0 0
\(793\) 16.6868 6.91188i 0.592564 0.245448i
\(794\) 2.68835 6.49024i 0.0954059 0.230330i
\(795\) 0 0
\(796\) 31.0687 + 12.8691i 1.10120 + 0.456132i
\(797\) 3.93230 3.93230i 0.139289 0.139289i −0.634024 0.773313i \(-0.718598\pi\)
0.773313 + 0.634024i \(0.218598\pi\)
\(798\) 0 0
\(799\) −16.5135 19.1432i −0.584205 0.677238i
\(800\) −6.23717 −0.220517
\(801\) 0 0
\(802\) −61.2935 25.3886i −2.16435 0.896502i
\(803\) 0.283008i 0.00998714i
\(804\) 0 0
\(805\) −4.17977 + 1.73132i −0.147318 + 0.0610210i
\(806\) −2.89388 6.98644i −0.101933 0.246087i
\(807\) 0 0
\(808\) 12.5430 + 12.5430i 0.441263 + 0.441263i
\(809\) −11.8801 28.6811i −0.417683 1.00838i −0.983017 0.183513i \(-0.941253\pi\)
0.565335 0.824862i \(-0.308747\pi\)
\(810\) 0 0
\(811\) −17.9749 + 43.3953i −0.631185 + 1.52382i 0.206949 + 0.978352i \(0.433647\pi\)
−0.838134 + 0.545464i \(0.816353\pi\)
\(812\) 2.30374i 0.0808455i
\(813\) 0 0
\(814\) −0.0225886 + 0.0225886i −0.000791730 + 0.000791730i
\(815\) −12.4453 −0.435941
\(816\) 0 0
\(817\) −78.1626 −2.73456
\(818\) −28.5428 + 28.5428i −0.997976 + 0.997976i
\(819\) 0 0
\(820\) 8.31351i 0.290320i
\(821\) −6.40739 + 15.4688i −0.223619 + 0.539865i −0.995376 0.0960527i \(-0.969378\pi\)
0.771757 + 0.635918i \(0.219378\pi\)
\(822\) 0 0
\(823\) −10.1792 24.5749i −0.354826 0.856626i −0.996010 0.0892387i \(-0.971557\pi\)
0.641184 0.767387i \(-0.278443\pi\)
\(824\) −6.52318 6.52318i −0.227246 0.227246i
\(825\) 0 0
\(826\) −15.2961 36.9281i −0.532220 1.28489i
\(827\) −31.8605 + 13.1970i −1.10790 + 0.458906i −0.860213 0.509934i \(-0.829670\pi\)
−0.247684 + 0.968841i \(0.579670\pi\)
\(828\) 0 0
\(829\) 7.29346i 0.253312i −0.991947 0.126656i \(-0.959576\pi\)
0.991947 0.126656i \(-0.0404245\pi\)
\(830\) −10.8946 4.51269i −0.378157 0.156638i
\(831\) 0 0
\(832\) 4.23372 0.146778
\(833\) 3.59436 48.7361i 0.124537 1.68861i
\(834\) 0 0
\(835\) −8.91131 + 8.91131i −0.308389 + 0.308389i
\(836\) 0.478334 + 0.198133i 0.0165435 + 0.00685256i
\(837\) 0 0
\(838\) −15.1106 + 36.4802i −0.521987 + 1.26019i
\(839\) 32.8053 13.5884i 1.13257 0.469124i 0.263913 0.964546i \(-0.414987\pi\)
0.868652 + 0.495422i \(0.164987\pi\)
\(840\) 0 0
\(841\) 20.3809 + 20.3809i 0.702790 + 0.702790i
\(842\) 26.3187 + 26.3187i 0.907001 + 0.907001i
\(843\) 0 0
\(844\) 9.09385 3.76680i 0.313023 0.129658i
\(845\) 1.47291 3.55592i 0.0506697 0.122327i
\(846\) 0 0
\(847\) −44.1146 18.2728i −1.51579 0.627862i
\(848\) 42.0676 42.0676i 1.44461 1.44461i
\(849\) 0 0
\(850\) 5.63783 4.86335i 0.193376 0.166812i
\(851\) −0.351091 −0.0120352
\(852\) 0 0
\(853\) 0.220643 + 0.0913933i 0.00755467 + 0.00312925i 0.386458 0.922307i \(-0.373699\pi\)
−0.378903 + 0.925436i \(0.623699\pi\)
\(854\) 46.8144i 1.60196i
\(855\) 0 0
\(856\) −18.1737 + 7.52779i −0.621164 + 0.257295i
\(857\) 6.96291 + 16.8099i 0.237848 + 0.574217i 0.997060 0.0766273i \(-0.0244152\pi\)
−0.759211 + 0.650844i \(0.774415\pi\)
\(858\) 0 0
\(859\) −14.2525 14.2525i −0.486288 0.486288i 0.420845 0.907133i \(-0.361734\pi\)
−0.907133 + 0.420845i \(0.861734\pi\)
\(860\) 4.82314 + 11.6441i 0.164468 + 0.397061i
\(861\) 0 0
\(862\) −15.4143 + 37.2134i −0.525013 + 1.26749i
\(863\) 14.7597i 0.502424i −0.967932 0.251212i \(-0.919171\pi\)
0.967932 0.251212i \(-0.0808292\pi\)
\(864\) 0 0
\(865\) −8.62424 + 8.62424i −0.293233 + 0.293233i
\(866\) −16.1284 −0.548064
\(867\) 0 0
\(868\) −7.57936 −0.257260
\(869\) −0.370602 + 0.370602i −0.0125718 + 0.0125718i
\(870\) 0 0
\(871\) 2.77109i 0.0938949i
\(872\) 2.42485 5.85411i 0.0821158 0.198245i
\(873\) 0 0
\(874\) 5.63121 + 13.5950i 0.190479 + 0.459856i
\(875\) −3.07021 3.07021i −0.103792 0.103792i
\(876\) 0 0
\(877\) 16.3627 + 39.5030i 0.552528 + 1.33392i 0.915574 + 0.402149i \(0.131737\pi\)
−0.363046 + 0.931771i \(0.618263\pi\)
\(878\) 37.1450 15.3860i 1.25358 0.519251i
\(879\) 0 0
\(880\) 0.258925i 0.00872837i
\(881\) 40.3580 + 16.7168i 1.35970 + 0.563205i 0.938975 0.343985i \(-0.111777\pi\)
0.420721 + 0.907190i \(0.361777\pi\)
\(882\) 0 0
\(883\) 41.4824 1.39599 0.697997 0.716101i \(-0.254075\pi\)
0.697997 + 0.716101i \(0.254075\pi\)
\(884\) −11.9095 + 10.2735i −0.400561 + 0.345535i
\(885\) 0 0
\(886\) 7.88394 7.88394i 0.264866 0.264866i
\(887\) −30.3770 12.5826i −1.01996 0.422481i −0.190881 0.981613i \(-0.561134\pi\)
−0.829078 + 0.559132i \(0.811134\pi\)
\(888\) 0 0
\(889\) −0.0137697 + 0.0332429i −0.000461819 + 0.00111493i
\(890\) 17.0439 7.05983i 0.571314 0.236646i
\(891\) 0 0
\(892\) −4.25233 4.25233i −0.142378 0.142378i
\(893\) 33.9075 + 33.9075i 1.13467 + 1.13467i
\(894\) 0 0
\(895\) −12.8057 + 5.30430i −0.428048 + 0.177303i
\(896\) −16.5278 + 39.9017i −0.552155 + 1.33302i
\(897\) 0 0
\(898\) −50.5491 20.9381i −1.68685 0.698714i
\(899\) −0.411852 + 0.411852i −0.0137360 + 0.0137360i
\(900\) 0 0
\(901\) −3.65820 + 49.6018i −0.121872 + 1.65248i
\(902\) 0.625031 0.0208113
\(903\) 0 0
\(904\) −3.71507 1.53883i −0.123561 0.0511808i
\(905\) 2.04424i 0.0679528i
\(906\) 0 0
\(907\) 33.6731 13.9479i 1.11810 0.463131i 0.254379 0.967105i \(-0.418129\pi\)
0.863719 + 0.503973i \(0.168129\pi\)
\(908\) −5.41015 13.0613i −0.179542 0.433453i
\(909\) 0 0
\(910\) 16.7719 + 16.7719i 0.555982 + 0.555982i
\(911\) 11.4322 + 27.5999i 0.378767 + 0.914425i 0.992197 + 0.124676i \(0.0397892\pi\)
−0.613430 + 0.789749i \(0.710211\pi\)
\(912\) 0 0
\(913\) −0.131196 + 0.316736i −0.00434196 + 0.0104824i
\(914\) 46.1852i 1.52767i
\(915\) 0 0
\(916\) −18.4117 + 18.4117i −0.608341 + 0.608341i
\(917\) −35.5369 −1.17353
\(918\) 0 0
\(919\) 11.6218 0.383368 0.191684 0.981457i \(-0.438605\pi\)
0.191684 + 0.981457i \(0.438605\pi\)
\(920\) −0.983215 + 0.983215i −0.0324156 + 0.0324156i
\(921\) 0 0
\(922\) 25.3837i 0.835966i
\(923\) 4.83880 11.6819i 0.159271 0.384515i
\(924\) 0 0
\(925\) −0.128945 0.311301i −0.00423968 0.0102355i
\(926\) 32.0803 + 32.0803i 1.05422 + 1.05422i
\(927\) 0 0
\(928\) −1.00428 2.42455i −0.0329672 0.0795899i
\(929\) 4.65849 1.92961i 0.152840 0.0633085i −0.304952 0.952368i \(-0.598640\pi\)
0.457792 + 0.889059i \(0.348640\pi\)
\(930\) 0 0
\(931\) 92.6904i 3.03781i
\(932\) −3.56326 1.47595i −0.116718 0.0483464i
\(933\) 0 0
\(934\) 40.2520 1.31709
\(935\) −0.141391 0.163907i −0.00462398 0.00536034i
\(936\) 0 0
\(937\) 24.6863 24.6863i 0.806465 0.806465i −0.177632 0.984097i \(-0.556844\pi\)
0.984097 + 0.177632i \(0.0568437\pi\)
\(938\) 6.63574 + 2.74861i 0.216665 + 0.0897454i
\(939\) 0 0
\(940\) 2.95898 7.14360i 0.0965112 0.232999i
\(941\) −10.2169 + 4.23196i −0.333060 + 0.137958i −0.542945 0.839768i \(-0.682691\pi\)
0.209885 + 0.977726i \(0.432691\pi\)
\(942\) 0 0
\(943\) 4.85738 + 4.85738i 0.158178 + 0.158178i
\(944\) −17.7778 17.7778i −0.578619 0.578619i
\(945\) 0 0
\(946\) 0.875434 0.362616i 0.0284628 0.0117897i
\(947\) −4.39774 + 10.6171i −0.142907 + 0.345008i −0.979086 0.203449i \(-0.934785\pi\)
0.836178 + 0.548458i \(0.184785\pi\)
\(948\) 0 0
\(949\) 15.0657 + 6.24040i 0.489052 + 0.202572i
\(950\) −9.98602 + 9.98602i −0.323989 + 0.323989i
\(951\) 0 0
\(952\) −7.49414 22.6841i −0.242887 0.735196i
\(953\) 0.704896 0.0228338 0.0114169 0.999935i \(-0.496366\pi\)
0.0114169 + 0.999935i \(0.496366\pi\)
\(954\) 0 0
\(955\) −2.84607 1.17888i −0.0920966 0.0381477i
\(956\) 6.23035i 0.201504i
\(957\) 0 0
\(958\) −44.6282 + 18.4856i −1.44187 + 0.597243i
\(959\) 3.71176 + 8.96097i 0.119859 + 0.289365i
\(960\) 0 0
\(961\) −20.5653 20.5653i −0.663397 0.663397i
\(962\) 0.704397 + 1.70057i 0.0227107 + 0.0548284i
\(963\) 0 0
\(964\) 0.801919 1.93600i 0.0258281 0.0623545i
\(965\) 20.6419i 0.664486i
\(966\) 0 0
\(967\) 28.2521 28.2521i 0.908527 0.908527i −0.0876267 0.996153i \(-0.527928\pi\)
0.996153 + 0.0876267i \(0.0279283\pi\)
\(968\) −14.6755 −0.471688
\(969\) 0 0
\(970\) 34.7149 1.11463
\(971\) −30.5851 + 30.5851i −0.981521 + 0.981521i −0.999832 0.0183111i \(-0.994171\pi\)
0.0183111 + 0.999832i \(0.494171\pi\)
\(972\) 0 0
\(973\) 85.6915i 2.74714i
\(974\) −15.9953 + 38.6161i −0.512523 + 1.23734i
\(975\) 0 0
\(976\) −11.2686 27.2049i −0.360700 0.870807i
\(977\) 34.5543 + 34.5543i 1.10549 + 1.10549i 0.993736 + 0.111753i \(0.0356467\pi\)
0.111753 + 0.993736i \(0.464353\pi\)
\(978\) 0 0
\(979\) −0.205249 0.495514i −0.00655977 0.0158367i
\(980\) 13.8084 5.71961i 0.441092 0.182706i
\(981\) 0 0
\(982\) 14.0671i 0.448898i
\(983\) 45.1621 + 18.7068i 1.44045 + 0.596653i 0.959907 0.280318i \(-0.0904401\pi\)
0.480542 + 0.876972i \(0.340440\pi\)
\(984\) 0 0
\(985\) 18.2365 0.581063
\(986\) 2.79829 + 1.40850i 0.0891158 + 0.0448557i
\(987\) 0 0
\(988\) 21.0948 21.0948i 0.671114 0.671114i
\(989\) 9.62140 + 3.98531i 0.305943 + 0.126726i
\(990\) 0 0
\(991\) 5.56191 13.4276i 0.176680 0.426543i −0.810586 0.585619i \(-0.800851\pi\)
0.987266 + 0.159076i \(0.0508515\pi\)
\(992\) −7.97684 + 3.30411i −0.253265 + 0.104906i
\(993\) 0 0
\(994\) −23.1743 23.1743i −0.735044 0.735044i
\(995\) 18.8569 + 18.8569i 0.597803 + 0.597803i
\(996\) 0 0
\(997\) −40.8392 + 16.9161i −1.29339 + 0.535740i −0.919994 0.391933i \(-0.871807\pi\)
−0.373396 + 0.927672i \(0.621807\pi\)
\(998\) −6.07971 + 14.6777i −0.192450 + 0.464615i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.be.b.451.5 24
3.2 odd 2 85.2.l.a.26.2 24
15.2 even 4 425.2.n.f.349.2 24
15.8 even 4 425.2.n.c.349.5 24
15.14 odd 2 425.2.m.b.26.5 24
17.2 even 8 inner 765.2.be.b.631.5 24
51.2 odd 8 85.2.l.a.36.2 yes 24
51.11 even 16 1445.2.a.q.1.3 12
51.23 even 16 1445.2.a.p.1.3 12
51.41 even 16 1445.2.d.j.866.20 24
51.44 even 16 1445.2.d.j.866.19 24
255.2 even 8 425.2.n.c.274.5 24
255.53 even 8 425.2.n.f.274.2 24
255.74 even 16 7225.2.a.bs.1.10 12
255.104 odd 8 425.2.m.b.376.5 24
255.164 even 16 7225.2.a.bq.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.2 24 3.2 odd 2
85.2.l.a.36.2 yes 24 51.2 odd 8
425.2.m.b.26.5 24 15.14 odd 2
425.2.m.b.376.5 24 255.104 odd 8
425.2.n.c.274.5 24 255.2 even 8
425.2.n.c.349.5 24 15.8 even 4
425.2.n.f.274.2 24 255.53 even 8
425.2.n.f.349.2 24 15.2 even 4
765.2.be.b.451.5 24 1.1 even 1 trivial
765.2.be.b.631.5 24 17.2 even 8 inner
1445.2.a.p.1.3 12 51.23 even 16
1445.2.a.q.1.3 12 51.11 even 16
1445.2.d.j.866.19 24 51.44 even 16
1445.2.d.j.866.20 24 51.41 even 16
7225.2.a.bq.1.10 12 255.164 even 16
7225.2.a.bs.1.10 12 255.74 even 16