Properties

Label 768.2.f.a
Level 768768
Weight 22
Character orbit 768.f
Analytic conductor 6.1336.133
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,2,Mod(383,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.383");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 768=283 768 = 2^{8} \cdot 3
Weight: k k == 2 2
Character orbit: [χ][\chi] == 768.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.132510875236.13251087523
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q3β3q5+β1q7+(2β21)q92β2q11+β1q13+(β3+2β1)q15+6q19+(β3β1)q21++(2β2+8)q99+O(q100) q + ( - \beta_{2} - 1) q^{3} - \beta_{3} q^{5} + \beta_1 q^{7} + (2 \beta_{2} - 1) q^{9} - 2 \beta_{2} q^{11} + \beta_1 q^{13} + (\beta_{3} + 2 \beta_1) q^{15} + 6 q^{19} + (\beta_{3} - \beta_1) q^{21}+ \cdots + (2 \beta_{2} + 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q34q9+24q19+12q25+20q2716q33+8q43+12q4924q578q67+24q7312q7528q8116q91+40q97+32q99+O(q100) 4 q - 4 q^{3} - 4 q^{9} + 24 q^{19} + 12 q^{25} + 20 q^{27} - 16 q^{33} + 8 q^{43} + 12 q^{49} - 24 q^{57} - 8 q^{67} + 24 q^{73} - 12 q^{75} - 28 q^{81} - 16 q^{91} + 40 q^{97} + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 2ζ82 2\zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ8 \zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== 2ζ83+2ζ8 -2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+2β2)/4 ( \beta_{3} + 2\beta_{2} ) / 4 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+2β2)/4 ( -\beta_{3} + 2\beta_{2} ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/768Z)×\left(\mathbb{Z}/768\mathbb{Z}\right)^\times.

nn 257257 511511 517517
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
383.1
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0 −1.00000 1.41421i 0 −2.82843 0 2.00000i 0 −1.00000 + 2.82843i 0
383.2 0 −1.00000 1.41421i 0 2.82843 0 2.00000i 0 −1.00000 + 2.82843i 0
383.3 0 −1.00000 + 1.41421i 0 −2.82843 0 2.00000i 0 −1.00000 2.82843i 0
383.4 0 −1.00000 + 1.41421i 0 2.82843 0 2.00000i 0 −1.00000 2.82843i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.2.f.a 4
3.b odd 2 1 inner 768.2.f.a 4
4.b odd 2 1 768.2.f.g 4
8.b even 2 1 768.2.f.g 4
8.d odd 2 1 inner 768.2.f.a 4
12.b even 2 1 768.2.f.g 4
16.e even 4 1 96.2.c.a 4
16.e even 4 1 192.2.c.b 4
16.f odd 4 1 96.2.c.a 4
16.f odd 4 1 192.2.c.b 4
24.f even 2 1 inner 768.2.f.a 4
24.h odd 2 1 768.2.f.g 4
48.i odd 4 1 96.2.c.a 4
48.i odd 4 1 192.2.c.b 4
48.k even 4 1 96.2.c.a 4
48.k even 4 1 192.2.c.b 4
80.i odd 4 1 2400.2.o.h 4
80.j even 4 1 2400.2.o.h 4
80.k odd 4 1 2400.2.h.c 4
80.q even 4 1 2400.2.h.c 4
80.s even 4 1 2400.2.o.a 4
80.t odd 4 1 2400.2.o.a 4
144.u even 12 2 2592.2.s.e 8
144.v odd 12 2 2592.2.s.e 8
144.w odd 12 2 2592.2.s.e 8
144.x even 12 2 2592.2.s.e 8
240.t even 4 1 2400.2.h.c 4
240.z odd 4 1 2400.2.o.a 4
240.bb even 4 1 2400.2.o.h 4
240.bd odd 4 1 2400.2.o.h 4
240.bf even 4 1 2400.2.o.a 4
240.bm odd 4 1 2400.2.h.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.2.c.a 4 16.e even 4 1
96.2.c.a 4 16.f odd 4 1
96.2.c.a 4 48.i odd 4 1
96.2.c.a 4 48.k even 4 1
192.2.c.b 4 16.e even 4 1
192.2.c.b 4 16.f odd 4 1
192.2.c.b 4 48.i odd 4 1
192.2.c.b 4 48.k even 4 1
768.2.f.a 4 1.a even 1 1 trivial
768.2.f.a 4 3.b odd 2 1 inner
768.2.f.a 4 8.d odd 2 1 inner
768.2.f.a 4 24.f even 2 1 inner
768.2.f.g 4 4.b odd 2 1
768.2.f.g 4 8.b even 2 1
768.2.f.g 4 12.b even 2 1
768.2.f.g 4 24.h odd 2 1
2400.2.h.c 4 80.k odd 4 1
2400.2.h.c 4 80.q even 4 1
2400.2.h.c 4 240.t even 4 1
2400.2.h.c 4 240.bm odd 4 1
2400.2.o.a 4 80.s even 4 1
2400.2.o.a 4 80.t odd 4 1
2400.2.o.a 4 240.z odd 4 1
2400.2.o.a 4 240.bf even 4 1
2400.2.o.h 4 80.i odd 4 1
2400.2.o.h 4 80.j even 4 1
2400.2.o.h 4 240.bb even 4 1
2400.2.o.h 4 240.bd odd 4 1
2592.2.s.e 8 144.u even 12 2
2592.2.s.e 8 144.v odd 12 2
2592.2.s.e 8 144.w odd 12 2
2592.2.s.e 8 144.x even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(768,[χ])S_{2}^{\mathrm{new}}(768, [\chi]):

T528 T_{5}^{2} - 8 Copy content Toggle raw display
T196 T_{19} - 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+2T+3)2 (T^{2} + 2 T + 3)^{2} Copy content Toggle raw display
55 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
77 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1111 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
1313 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T6)4 (T - 6)^{4} Copy content Toggle raw display
2323 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
2929 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
3131 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
3737 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
4141 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
4343 (T2)4 (T - 2)^{4} Copy content Toggle raw display
4747 (T2128)2 (T^{2} - 128)^{2} Copy content Toggle raw display
5353 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
5959 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
6161 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
6767 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
7171 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
7373 (T6)4 (T - 6)^{4} Copy content Toggle raw display
7979 (T2+196)2 (T^{2} + 196)^{2} Copy content Toggle raw display
8383 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
8989 (T2+288)2 (T^{2} + 288)^{2} Copy content Toggle raw display
9797 (T10)4 (T - 10)^{4} Copy content Toggle raw display
show more
show less