Properties

Label 768.4.d.m.385.2
Level $768$
Weight $4$
Character 768.385
Analytic conductor $45.313$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,4,Mod(385,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.385");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.3134668844\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 385.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 768.385
Dual form 768.4.d.m.385.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +2.00000i q^{5} +12.0000 q^{7} -9.00000 q^{9} -60.0000i q^{11} +42.0000i q^{13} -6.00000 q^{15} +10.0000 q^{17} +132.000i q^{19} +36.0000i q^{21} -48.0000 q^{23} +121.000 q^{25} -27.0000i q^{27} -226.000i q^{29} +252.000 q^{31} +180.000 q^{33} +24.0000i q^{35} -362.000i q^{37} -126.000 q^{39} +94.0000 q^{41} +228.000i q^{43} -18.0000i q^{45} +408.000 q^{47} -199.000 q^{49} +30.0000i q^{51} +346.000i q^{53} +120.000 q^{55} -396.000 q^{57} +300.000i q^{59} +466.000i q^{61} -108.000 q^{63} -84.0000 q^{65} +204.000i q^{67} -144.000i q^{69} +1056.00 q^{71} -330.000 q^{73} +363.000i q^{75} -720.000i q^{77} -612.000 q^{79} +81.0000 q^{81} +564.000i q^{83} +20.0000i q^{85} +678.000 q^{87} +1510.00 q^{89} +504.000i q^{91} +756.000i q^{93} -264.000 q^{95} +594.000 q^{97} +540.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{7} - 18 q^{9} - 12 q^{15} + 20 q^{17} - 96 q^{23} + 242 q^{25} + 504 q^{31} + 360 q^{33} - 252 q^{39} + 188 q^{41} + 816 q^{47} - 398 q^{49} + 240 q^{55} - 792 q^{57} - 216 q^{63} - 168 q^{65}+ \cdots + 1188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000i 0.178885i 0.995992 + 0.0894427i \(0.0285086\pi\)
−0.995992 + 0.0894427i \(0.971491\pi\)
\(6\) 0 0
\(7\) 12.0000 0.647939 0.323970 0.946068i \(-0.394982\pi\)
0.323970 + 0.946068i \(0.394982\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) − 60.0000i − 1.64461i −0.569049 0.822304i \(-0.692689\pi\)
0.569049 0.822304i \(-0.307311\pi\)
\(12\) 0 0
\(13\) 42.0000i 0.896054i 0.894020 + 0.448027i \(0.147873\pi\)
−0.894020 + 0.448027i \(0.852127\pi\)
\(14\) 0 0
\(15\) −6.00000 −0.103280
\(16\) 0 0
\(17\) 10.0000 0.142668 0.0713340 0.997452i \(-0.477274\pi\)
0.0713340 + 0.997452i \(0.477274\pi\)
\(18\) 0 0
\(19\) 132.000i 1.59384i 0.604088 + 0.796918i \(0.293538\pi\)
−0.604088 + 0.796918i \(0.706462\pi\)
\(20\) 0 0
\(21\) 36.0000i 0.374088i
\(22\) 0 0
\(23\) −48.0000 −0.435161 −0.217580 0.976042i \(-0.569816\pi\)
−0.217580 + 0.976042i \(0.569816\pi\)
\(24\) 0 0
\(25\) 121.000 0.968000
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) − 226.000i − 1.44714i −0.690249 0.723571i \(-0.742499\pi\)
0.690249 0.723571i \(-0.257501\pi\)
\(30\) 0 0
\(31\) 252.000 1.46002 0.730009 0.683438i \(-0.239516\pi\)
0.730009 + 0.683438i \(0.239516\pi\)
\(32\) 0 0
\(33\) 180.000 0.949514
\(34\) 0 0
\(35\) 24.0000i 0.115907i
\(36\) 0 0
\(37\) − 362.000i − 1.60844i −0.594329 0.804222i \(-0.702582\pi\)
0.594329 0.804222i \(-0.297418\pi\)
\(38\) 0 0
\(39\) −126.000 −0.517337
\(40\) 0 0
\(41\) 94.0000 0.358057 0.179028 0.983844i \(-0.442705\pi\)
0.179028 + 0.983844i \(0.442705\pi\)
\(42\) 0 0
\(43\) 228.000i 0.808597i 0.914627 + 0.404299i \(0.132484\pi\)
−0.914627 + 0.404299i \(0.867516\pi\)
\(44\) 0 0
\(45\) − 18.0000i − 0.0596285i
\(46\) 0 0
\(47\) 408.000 1.26623 0.633116 0.774057i \(-0.281776\pi\)
0.633116 + 0.774057i \(0.281776\pi\)
\(48\) 0 0
\(49\) −199.000 −0.580175
\(50\) 0 0
\(51\) 30.0000i 0.0823694i
\(52\) 0 0
\(53\) 346.000i 0.896731i 0.893850 + 0.448366i \(0.147994\pi\)
−0.893850 + 0.448366i \(0.852006\pi\)
\(54\) 0 0
\(55\) 120.000 0.294196
\(56\) 0 0
\(57\) −396.000 −0.920201
\(58\) 0 0
\(59\) 300.000i 0.661978i 0.943635 + 0.330989i \(0.107382\pi\)
−0.943635 + 0.330989i \(0.892618\pi\)
\(60\) 0 0
\(61\) 466.000i 0.978118i 0.872251 + 0.489059i \(0.162660\pi\)
−0.872251 + 0.489059i \(0.837340\pi\)
\(62\) 0 0
\(63\) −108.000 −0.215980
\(64\) 0 0
\(65\) −84.0000 −0.160291
\(66\) 0 0
\(67\) 204.000i 0.371979i 0.982552 + 0.185989i \(0.0595490\pi\)
−0.982552 + 0.185989i \(0.940451\pi\)
\(68\) 0 0
\(69\) − 144.000i − 0.251240i
\(70\) 0 0
\(71\) 1056.00 1.76513 0.882564 0.470192i \(-0.155815\pi\)
0.882564 + 0.470192i \(0.155815\pi\)
\(72\) 0 0
\(73\) −330.000 −0.529090 −0.264545 0.964373i \(-0.585222\pi\)
−0.264545 + 0.964373i \(0.585222\pi\)
\(74\) 0 0
\(75\) 363.000i 0.558875i
\(76\) 0 0
\(77\) − 720.000i − 1.06561i
\(78\) 0 0
\(79\) −612.000 −0.871587 −0.435794 0.900047i \(-0.643532\pi\)
−0.435794 + 0.900047i \(0.643532\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 564.000i 0.745868i 0.927858 + 0.372934i \(0.121648\pi\)
−0.927858 + 0.372934i \(0.878352\pi\)
\(84\) 0 0
\(85\) 20.0000i 0.0255212i
\(86\) 0 0
\(87\) 678.000 0.835508
\(88\) 0 0
\(89\) 1510.00 1.79842 0.899212 0.437514i \(-0.144141\pi\)
0.899212 + 0.437514i \(0.144141\pi\)
\(90\) 0 0
\(91\) 504.000i 0.580589i
\(92\) 0 0
\(93\) 756.000i 0.842941i
\(94\) 0 0
\(95\) −264.000 −0.285114
\(96\) 0 0
\(97\) 594.000 0.621769 0.310884 0.950448i \(-0.399375\pi\)
0.310884 + 0.950448i \(0.399375\pi\)
\(98\) 0 0
\(99\) 540.000i 0.548202i
\(100\) 0 0
\(101\) 554.000i 0.545793i 0.962043 + 0.272896i \(0.0879816\pi\)
−0.962043 + 0.272896i \(0.912018\pi\)
\(102\) 0 0
\(103\) 1284.00 1.22831 0.614157 0.789184i \(-0.289496\pi\)
0.614157 + 0.789184i \(0.289496\pi\)
\(104\) 0 0
\(105\) −72.0000 −0.0669189
\(106\) 0 0
\(107\) 1356.00i 1.22514i 0.790418 + 0.612568i \(0.209863\pi\)
−0.790418 + 0.612568i \(0.790137\pi\)
\(108\) 0 0
\(109\) − 390.000i − 0.342708i −0.985209 0.171354i \(-0.945186\pi\)
0.985209 0.171354i \(-0.0548143\pi\)
\(110\) 0 0
\(111\) 1086.00 0.928636
\(112\) 0 0
\(113\) −766.000 −0.637692 −0.318846 0.947807i \(-0.603295\pi\)
−0.318846 + 0.947807i \(0.603295\pi\)
\(114\) 0 0
\(115\) − 96.0000i − 0.0778439i
\(116\) 0 0
\(117\) − 378.000i − 0.298685i
\(118\) 0 0
\(119\) 120.000 0.0924402
\(120\) 0 0
\(121\) −2269.00 −1.70473
\(122\) 0 0
\(123\) 282.000i 0.206724i
\(124\) 0 0
\(125\) 492.000i 0.352047i
\(126\) 0 0
\(127\) 2388.00 1.66851 0.834255 0.551379i \(-0.185898\pi\)
0.834255 + 0.551379i \(0.185898\pi\)
\(128\) 0 0
\(129\) −684.000 −0.466844
\(130\) 0 0
\(131\) 396.000i 0.264112i 0.991242 + 0.132056i \(0.0421579\pi\)
−0.991242 + 0.132056i \(0.957842\pi\)
\(132\) 0 0
\(133\) 1584.00i 1.03271i
\(134\) 0 0
\(135\) 54.0000 0.0344265
\(136\) 0 0
\(137\) 110.000 0.0685981 0.0342990 0.999412i \(-0.489080\pi\)
0.0342990 + 0.999412i \(0.489080\pi\)
\(138\) 0 0
\(139\) 732.000i 0.446672i 0.974742 + 0.223336i \(0.0716947\pi\)
−0.974742 + 0.223336i \(0.928305\pi\)
\(140\) 0 0
\(141\) 1224.00i 0.731060i
\(142\) 0 0
\(143\) 2520.00 1.47366
\(144\) 0 0
\(145\) 452.000 0.258873
\(146\) 0 0
\(147\) − 597.000i − 0.334964i
\(148\) 0 0
\(149\) − 1934.00i − 1.06335i −0.846948 0.531676i \(-0.821562\pi\)
0.846948 0.531676i \(-0.178438\pi\)
\(150\) 0 0
\(151\) −1092.00 −0.588515 −0.294257 0.955726i \(-0.595072\pi\)
−0.294257 + 0.955726i \(0.595072\pi\)
\(152\) 0 0
\(153\) −90.0000 −0.0475560
\(154\) 0 0
\(155\) 504.000i 0.261176i
\(156\) 0 0
\(157\) 578.000i 0.293818i 0.989150 + 0.146909i \(0.0469324\pi\)
−0.989150 + 0.146909i \(0.953068\pi\)
\(158\) 0 0
\(159\) −1038.00 −0.517728
\(160\) 0 0
\(161\) −576.000 −0.281958
\(162\) 0 0
\(163\) 2532.00i 1.21670i 0.793670 + 0.608348i \(0.208168\pi\)
−0.793670 + 0.608348i \(0.791832\pi\)
\(164\) 0 0
\(165\) 360.000i 0.169854i
\(166\) 0 0
\(167\) −648.000 −0.300262 −0.150131 0.988666i \(-0.547970\pi\)
−0.150131 + 0.988666i \(0.547970\pi\)
\(168\) 0 0
\(169\) 433.000 0.197087
\(170\) 0 0
\(171\) − 1188.00i − 0.531279i
\(172\) 0 0
\(173\) − 3338.00i − 1.46696i −0.679713 0.733478i \(-0.737896\pi\)
0.679713 0.733478i \(-0.262104\pi\)
\(174\) 0 0
\(175\) 1452.00 0.627205
\(176\) 0 0
\(177\) −900.000 −0.382193
\(178\) 0 0
\(179\) 3804.00i 1.58840i 0.607654 + 0.794202i \(0.292111\pi\)
−0.607654 + 0.794202i \(0.707889\pi\)
\(180\) 0 0
\(181\) 1854.00i 0.761363i 0.924706 + 0.380682i \(0.124311\pi\)
−0.924706 + 0.380682i \(0.875689\pi\)
\(182\) 0 0
\(183\) −1398.00 −0.564717
\(184\) 0 0
\(185\) 724.000 0.287727
\(186\) 0 0
\(187\) − 600.000i − 0.234633i
\(188\) 0 0
\(189\) − 324.000i − 0.124696i
\(190\) 0 0
\(191\) −1344.00 −0.509154 −0.254577 0.967052i \(-0.581936\pi\)
−0.254577 + 0.967052i \(0.581936\pi\)
\(192\) 0 0
\(193\) −1262.00 −0.470677 −0.235339 0.971913i \(-0.575620\pi\)
−0.235339 + 0.971913i \(0.575620\pi\)
\(194\) 0 0
\(195\) − 252.000i − 0.0925441i
\(196\) 0 0
\(197\) − 4294.00i − 1.55297i −0.630137 0.776484i \(-0.717001\pi\)
0.630137 0.776484i \(-0.282999\pi\)
\(198\) 0 0
\(199\) 4308.00 1.53460 0.767302 0.641286i \(-0.221599\pi\)
0.767302 + 0.641286i \(0.221599\pi\)
\(200\) 0 0
\(201\) −612.000 −0.214762
\(202\) 0 0
\(203\) − 2712.00i − 0.937661i
\(204\) 0 0
\(205\) 188.000i 0.0640512i
\(206\) 0 0
\(207\) 432.000 0.145054
\(208\) 0 0
\(209\) 7920.00 2.62123
\(210\) 0 0
\(211\) 1212.00i 0.395438i 0.980259 + 0.197719i \(0.0633534\pi\)
−0.980259 + 0.197719i \(0.936647\pi\)
\(212\) 0 0
\(213\) 3168.00i 1.01910i
\(214\) 0 0
\(215\) −456.000 −0.144646
\(216\) 0 0
\(217\) 3024.00 0.946002
\(218\) 0 0
\(219\) − 990.000i − 0.305470i
\(220\) 0 0
\(221\) 420.000i 0.127838i
\(222\) 0 0
\(223\) −2172.00 −0.652233 −0.326116 0.945330i \(-0.605740\pi\)
−0.326116 + 0.945330i \(0.605740\pi\)
\(224\) 0 0
\(225\) −1089.00 −0.322667
\(226\) 0 0
\(227\) − 3948.00i − 1.15435i −0.816620 0.577176i \(-0.804155\pi\)
0.816620 0.577176i \(-0.195845\pi\)
\(228\) 0 0
\(229\) − 3522.00i − 1.01633i −0.861259 0.508167i \(-0.830323\pi\)
0.861259 0.508167i \(-0.169677\pi\)
\(230\) 0 0
\(231\) 2160.00 0.615228
\(232\) 0 0
\(233\) 2774.00 0.779960 0.389980 0.920823i \(-0.372482\pi\)
0.389980 + 0.920823i \(0.372482\pi\)
\(234\) 0 0
\(235\) 816.000i 0.226511i
\(236\) 0 0
\(237\) − 1836.00i − 0.503211i
\(238\) 0 0
\(239\) −2784.00 −0.753481 −0.376741 0.926319i \(-0.622955\pi\)
−0.376741 + 0.926319i \(0.622955\pi\)
\(240\) 0 0
\(241\) −4686.00 −1.25250 −0.626249 0.779623i \(-0.715410\pi\)
−0.626249 + 0.779623i \(0.715410\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) − 398.000i − 0.103785i
\(246\) 0 0
\(247\) −5544.00 −1.42816
\(248\) 0 0
\(249\) −1692.00 −0.430627
\(250\) 0 0
\(251\) 2484.00i 0.624656i 0.949974 + 0.312328i \(0.101109\pi\)
−0.949974 + 0.312328i \(0.898891\pi\)
\(252\) 0 0
\(253\) 2880.00i 0.715668i
\(254\) 0 0
\(255\) −60.0000 −0.0147347
\(256\) 0 0
\(257\) 6658.00 1.61601 0.808005 0.589175i \(-0.200547\pi\)
0.808005 + 0.589175i \(0.200547\pi\)
\(258\) 0 0
\(259\) − 4344.00i − 1.04217i
\(260\) 0 0
\(261\) 2034.00i 0.482381i
\(262\) 0 0
\(263\) 2904.00 0.680868 0.340434 0.940268i \(-0.389426\pi\)
0.340434 + 0.940268i \(0.389426\pi\)
\(264\) 0 0
\(265\) −692.000 −0.160412
\(266\) 0 0
\(267\) 4530.00i 1.03832i
\(268\) 0 0
\(269\) 1006.00i 0.228018i 0.993480 + 0.114009i \(0.0363693\pi\)
−0.993480 + 0.114009i \(0.963631\pi\)
\(270\) 0 0
\(271\) −876.000 −0.196359 −0.0981794 0.995169i \(-0.531302\pi\)
−0.0981794 + 0.995169i \(0.531302\pi\)
\(272\) 0 0
\(273\) −1512.00 −0.335203
\(274\) 0 0
\(275\) − 7260.00i − 1.59198i
\(276\) 0 0
\(277\) 2718.00i 0.589562i 0.955565 + 0.294781i \(0.0952468\pi\)
−0.955565 + 0.294781i \(0.904753\pi\)
\(278\) 0 0
\(279\) −2268.00 −0.486672
\(280\) 0 0
\(281\) −5354.00 −1.13663 −0.568315 0.822811i \(-0.692404\pi\)
−0.568315 + 0.822811i \(0.692404\pi\)
\(282\) 0 0
\(283\) 780.000i 0.163838i 0.996639 + 0.0819191i \(0.0261049\pi\)
−0.996639 + 0.0819191i \(0.973895\pi\)
\(284\) 0 0
\(285\) − 792.000i − 0.164611i
\(286\) 0 0
\(287\) 1128.00 0.231999
\(288\) 0 0
\(289\) −4813.00 −0.979646
\(290\) 0 0
\(291\) 1782.00i 0.358978i
\(292\) 0 0
\(293\) − 3350.00i − 0.667949i −0.942582 0.333975i \(-0.891610\pi\)
0.942582 0.333975i \(-0.108390\pi\)
\(294\) 0 0
\(295\) −600.000 −0.118418
\(296\) 0 0
\(297\) −1620.00 −0.316505
\(298\) 0 0
\(299\) − 2016.00i − 0.389927i
\(300\) 0 0
\(301\) 2736.00i 0.523922i
\(302\) 0 0
\(303\) −1662.00 −0.315114
\(304\) 0 0
\(305\) −932.000 −0.174971
\(306\) 0 0
\(307\) − 9636.00i − 1.79139i −0.444673 0.895693i \(-0.646680\pi\)
0.444673 0.895693i \(-0.353320\pi\)
\(308\) 0 0
\(309\) 3852.00i 0.709167i
\(310\) 0 0
\(311\) −7560.00 −1.37842 −0.689209 0.724562i \(-0.742042\pi\)
−0.689209 + 0.724562i \(0.742042\pi\)
\(312\) 0 0
\(313\) 3526.00 0.636745 0.318373 0.947966i \(-0.396864\pi\)
0.318373 + 0.947966i \(0.396864\pi\)
\(314\) 0 0
\(315\) − 216.000i − 0.0386356i
\(316\) 0 0
\(317\) − 7634.00i − 1.35258i −0.736635 0.676290i \(-0.763586\pi\)
0.736635 0.676290i \(-0.236414\pi\)
\(318\) 0 0
\(319\) −13560.0 −2.37998
\(320\) 0 0
\(321\) −4068.00 −0.707332
\(322\) 0 0
\(323\) 1320.00i 0.227389i
\(324\) 0 0
\(325\) 5082.00i 0.867380i
\(326\) 0 0
\(327\) 1170.00 0.197863
\(328\) 0 0
\(329\) 4896.00 0.820441
\(330\) 0 0
\(331\) − 7572.00i − 1.25739i −0.777654 0.628693i \(-0.783590\pi\)
0.777654 0.628693i \(-0.216410\pi\)
\(332\) 0 0
\(333\) 3258.00i 0.536148i
\(334\) 0 0
\(335\) −408.000 −0.0665416
\(336\) 0 0
\(337\) 162.000 0.0261861 0.0130930 0.999914i \(-0.495832\pi\)
0.0130930 + 0.999914i \(0.495832\pi\)
\(338\) 0 0
\(339\) − 2298.00i − 0.368172i
\(340\) 0 0
\(341\) − 15120.0i − 2.40116i
\(342\) 0 0
\(343\) −6504.00 −1.02386
\(344\) 0 0
\(345\) 288.000 0.0449432
\(346\) 0 0
\(347\) − 6636.00i − 1.02663i −0.858202 0.513313i \(-0.828418\pi\)
0.858202 0.513313i \(-0.171582\pi\)
\(348\) 0 0
\(349\) − 4430.00i − 0.679463i −0.940523 0.339731i \(-0.889664\pi\)
0.940523 0.339731i \(-0.110336\pi\)
\(350\) 0 0
\(351\) 1134.00 0.172446
\(352\) 0 0
\(353\) 8402.00 1.26684 0.633418 0.773810i \(-0.281651\pi\)
0.633418 + 0.773810i \(0.281651\pi\)
\(354\) 0 0
\(355\) 2112.00i 0.315756i
\(356\) 0 0
\(357\) 360.000i 0.0533704i
\(358\) 0 0
\(359\) 11520.0 1.69360 0.846800 0.531912i \(-0.178526\pi\)
0.846800 + 0.531912i \(0.178526\pi\)
\(360\) 0 0
\(361\) −10565.0 −1.54031
\(362\) 0 0
\(363\) − 6807.00i − 0.984228i
\(364\) 0 0
\(365\) − 660.000i − 0.0946465i
\(366\) 0 0
\(367\) 7404.00 1.05309 0.526547 0.850146i \(-0.323486\pi\)
0.526547 + 0.850146i \(0.323486\pi\)
\(368\) 0 0
\(369\) −846.000 −0.119352
\(370\) 0 0
\(371\) 4152.00i 0.581027i
\(372\) 0 0
\(373\) 1910.00i 0.265137i 0.991174 + 0.132568i \(0.0423224\pi\)
−0.991174 + 0.132568i \(0.957678\pi\)
\(374\) 0 0
\(375\) −1476.00 −0.203254
\(376\) 0 0
\(377\) 9492.00 1.29672
\(378\) 0 0
\(379\) − 10332.0i − 1.40031i −0.713989 0.700157i \(-0.753113\pi\)
0.713989 0.700157i \(-0.246887\pi\)
\(380\) 0 0
\(381\) 7164.00i 0.963315i
\(382\) 0 0
\(383\) −6624.00 −0.883735 −0.441868 0.897080i \(-0.645684\pi\)
−0.441868 + 0.897080i \(0.645684\pi\)
\(384\) 0 0
\(385\) 1440.00 0.190621
\(386\) 0 0
\(387\) − 2052.00i − 0.269532i
\(388\) 0 0
\(389\) 10210.0i 1.33076i 0.746503 + 0.665382i \(0.231732\pi\)
−0.746503 + 0.665382i \(0.768268\pi\)
\(390\) 0 0
\(391\) −480.000 −0.0620835
\(392\) 0 0
\(393\) −1188.00 −0.152485
\(394\) 0 0
\(395\) − 1224.00i − 0.155914i
\(396\) 0 0
\(397\) 4066.00i 0.514022i 0.966408 + 0.257011i \(0.0827376\pi\)
−0.966408 + 0.257011i \(0.917262\pi\)
\(398\) 0 0
\(399\) −4752.00 −0.596234
\(400\) 0 0
\(401\) −5510.00 −0.686175 −0.343088 0.939303i \(-0.611473\pi\)
−0.343088 + 0.939303i \(0.611473\pi\)
\(402\) 0 0
\(403\) 10584.0i 1.30825i
\(404\) 0 0
\(405\) 162.000i 0.0198762i
\(406\) 0 0
\(407\) −21720.0 −2.64526
\(408\) 0 0
\(409\) −15450.0 −1.86786 −0.933928 0.357460i \(-0.883643\pi\)
−0.933928 + 0.357460i \(0.883643\pi\)
\(410\) 0 0
\(411\) 330.000i 0.0396051i
\(412\) 0 0
\(413\) 3600.00i 0.428921i
\(414\) 0 0
\(415\) −1128.00 −0.133425
\(416\) 0 0
\(417\) −2196.00 −0.257886
\(418\) 0 0
\(419\) − 3084.00i − 0.359578i −0.983705 0.179789i \(-0.942458\pi\)
0.983705 0.179789i \(-0.0575415\pi\)
\(420\) 0 0
\(421\) 10446.0i 1.20928i 0.796499 + 0.604640i \(0.206683\pi\)
−0.796499 + 0.604640i \(0.793317\pi\)
\(422\) 0 0
\(423\) −3672.00 −0.422077
\(424\) 0 0
\(425\) 1210.00 0.138103
\(426\) 0 0
\(427\) 5592.00i 0.633761i
\(428\) 0 0
\(429\) 7560.00i 0.850816i
\(430\) 0 0
\(431\) 2184.00 0.244083 0.122041 0.992525i \(-0.461056\pi\)
0.122041 + 0.992525i \(0.461056\pi\)
\(432\) 0 0
\(433\) −110.000 −0.0122085 −0.00610423 0.999981i \(-0.501943\pi\)
−0.00610423 + 0.999981i \(0.501943\pi\)
\(434\) 0 0
\(435\) 1356.00i 0.149460i
\(436\) 0 0
\(437\) − 6336.00i − 0.693574i
\(438\) 0 0
\(439\) −2412.00 −0.262229 −0.131114 0.991367i \(-0.541856\pi\)
−0.131114 + 0.991367i \(0.541856\pi\)
\(440\) 0 0
\(441\) 1791.00 0.193392
\(442\) 0 0
\(443\) − 6540.00i − 0.701410i −0.936486 0.350705i \(-0.885942\pi\)
0.936486 0.350705i \(-0.114058\pi\)
\(444\) 0 0
\(445\) 3020.00i 0.321712i
\(446\) 0 0
\(447\) 5802.00 0.613927
\(448\) 0 0
\(449\) −9670.00 −1.01638 −0.508191 0.861244i \(-0.669686\pi\)
−0.508191 + 0.861244i \(0.669686\pi\)
\(450\) 0 0
\(451\) − 5640.00i − 0.588863i
\(452\) 0 0
\(453\) − 3276.00i − 0.339779i
\(454\) 0 0
\(455\) −1008.00 −0.103859
\(456\) 0 0
\(457\) 6774.00 0.693379 0.346690 0.937980i \(-0.387306\pi\)
0.346690 + 0.937980i \(0.387306\pi\)
\(458\) 0 0
\(459\) − 270.000i − 0.0274565i
\(460\) 0 0
\(461\) − 14602.0i − 1.47523i −0.675219 0.737617i \(-0.735951\pi\)
0.675219 0.737617i \(-0.264049\pi\)
\(462\) 0 0
\(463\) 13620.0 1.36712 0.683558 0.729896i \(-0.260431\pi\)
0.683558 + 0.729896i \(0.260431\pi\)
\(464\) 0 0
\(465\) −1512.00 −0.150790
\(466\) 0 0
\(467\) − 8508.00i − 0.843048i −0.906817 0.421524i \(-0.861495\pi\)
0.906817 0.421524i \(-0.138505\pi\)
\(468\) 0 0
\(469\) 2448.00i 0.241019i
\(470\) 0 0
\(471\) −1734.00 −0.169636
\(472\) 0 0
\(473\) 13680.0 1.32982
\(474\) 0 0
\(475\) 15972.0i 1.54283i
\(476\) 0 0
\(477\) − 3114.00i − 0.298910i
\(478\) 0 0
\(479\) −6312.00 −0.602093 −0.301047 0.953609i \(-0.597336\pi\)
−0.301047 + 0.953609i \(0.597336\pi\)
\(480\) 0 0
\(481\) 15204.0 1.44125
\(482\) 0 0
\(483\) − 1728.00i − 0.162788i
\(484\) 0 0
\(485\) 1188.00i 0.111225i
\(486\) 0 0
\(487\) 10572.0 0.983702 0.491851 0.870679i \(-0.336320\pi\)
0.491851 + 0.870679i \(0.336320\pi\)
\(488\) 0 0
\(489\) −7596.00 −0.702460
\(490\) 0 0
\(491\) 4332.00i 0.398168i 0.979982 + 0.199084i \(0.0637966\pi\)
−0.979982 + 0.199084i \(0.936203\pi\)
\(492\) 0 0
\(493\) − 2260.00i − 0.206461i
\(494\) 0 0
\(495\) −1080.00 −0.0980654
\(496\) 0 0
\(497\) 12672.0 1.14370
\(498\) 0 0
\(499\) − 3684.00i − 0.330498i −0.986252 0.165249i \(-0.947157\pi\)
0.986252 0.165249i \(-0.0528428\pi\)
\(500\) 0 0
\(501\) − 1944.00i − 0.173356i
\(502\) 0 0
\(503\) −11184.0 −0.991391 −0.495696 0.868496i \(-0.665087\pi\)
−0.495696 + 0.868496i \(0.665087\pi\)
\(504\) 0 0
\(505\) −1108.00 −0.0976344
\(506\) 0 0
\(507\) 1299.00i 0.113788i
\(508\) 0 0
\(509\) − 12946.0i − 1.12735i −0.825997 0.563675i \(-0.809387\pi\)
0.825997 0.563675i \(-0.190613\pi\)
\(510\) 0 0
\(511\) −3960.00 −0.342818
\(512\) 0 0
\(513\) 3564.00 0.306734
\(514\) 0 0
\(515\) 2568.00i 0.219727i
\(516\) 0 0
\(517\) − 24480.0i − 2.08245i
\(518\) 0 0
\(519\) 10014.0 0.846948
\(520\) 0 0
\(521\) 17150.0 1.44214 0.721070 0.692862i \(-0.243651\pi\)
0.721070 + 0.692862i \(0.243651\pi\)
\(522\) 0 0
\(523\) − 7884.00i − 0.659165i −0.944127 0.329582i \(-0.893092\pi\)
0.944127 0.329582i \(-0.106908\pi\)
\(524\) 0 0
\(525\) 4356.00i 0.362117i
\(526\) 0 0
\(527\) 2520.00 0.208298
\(528\) 0 0
\(529\) −9863.00 −0.810635
\(530\) 0 0
\(531\) − 2700.00i − 0.220659i
\(532\) 0 0
\(533\) 3948.00i 0.320838i
\(534\) 0 0
\(535\) −2712.00 −0.219159
\(536\) 0 0
\(537\) −11412.0 −0.917065
\(538\) 0 0
\(539\) 11940.0i 0.954160i
\(540\) 0 0
\(541\) − 5910.00i − 0.469669i −0.972035 0.234834i \(-0.924545\pi\)
0.972035 0.234834i \(-0.0754548\pi\)
\(542\) 0 0
\(543\) −5562.00 −0.439573
\(544\) 0 0
\(545\) 780.000 0.0613056
\(546\) 0 0
\(547\) − 972.000i − 0.0759775i −0.999278 0.0379888i \(-0.987905\pi\)
0.999278 0.0379888i \(-0.0120951\pi\)
\(548\) 0 0
\(549\) − 4194.00i − 0.326039i
\(550\) 0 0
\(551\) 29832.0 2.30651
\(552\) 0 0
\(553\) −7344.00 −0.564735
\(554\) 0 0
\(555\) 2172.00i 0.166119i
\(556\) 0 0
\(557\) − 2458.00i − 0.186982i −0.995620 0.0934908i \(-0.970197\pi\)
0.995620 0.0934908i \(-0.0298026\pi\)
\(558\) 0 0
\(559\) −9576.00 −0.724547
\(560\) 0 0
\(561\) 1800.00 0.135465
\(562\) 0 0
\(563\) 11316.0i 0.847092i 0.905875 + 0.423546i \(0.139215\pi\)
−0.905875 + 0.423546i \(0.860785\pi\)
\(564\) 0 0
\(565\) − 1532.00i − 0.114074i
\(566\) 0 0
\(567\) 972.000 0.0719932
\(568\) 0 0
\(569\) −1810.00 −0.133355 −0.0666776 0.997775i \(-0.521240\pi\)
−0.0666776 + 0.997775i \(0.521240\pi\)
\(570\) 0 0
\(571\) − 10500.0i − 0.769547i −0.923011 0.384773i \(-0.874280\pi\)
0.923011 0.384773i \(-0.125720\pi\)
\(572\) 0 0
\(573\) − 4032.00i − 0.293960i
\(574\) 0 0
\(575\) −5808.00 −0.421235
\(576\) 0 0
\(577\) −19438.0 −1.40245 −0.701226 0.712939i \(-0.747363\pi\)
−0.701226 + 0.712939i \(0.747363\pi\)
\(578\) 0 0
\(579\) − 3786.00i − 0.271746i
\(580\) 0 0
\(581\) 6768.00i 0.483277i
\(582\) 0 0
\(583\) 20760.0 1.47477
\(584\) 0 0
\(585\) 756.000 0.0534303
\(586\) 0 0
\(587\) 15084.0i 1.06062i 0.847804 + 0.530309i \(0.177924\pi\)
−0.847804 + 0.530309i \(0.822076\pi\)
\(588\) 0 0
\(589\) 33264.0i 2.32703i
\(590\) 0 0
\(591\) 12882.0 0.896607
\(592\) 0 0
\(593\) 5794.00 0.401233 0.200616 0.979670i \(-0.435706\pi\)
0.200616 + 0.979670i \(0.435706\pi\)
\(594\) 0 0
\(595\) 240.000i 0.0165362i
\(596\) 0 0
\(597\) 12924.0i 0.886004i
\(598\) 0 0
\(599\) 25152.0 1.71566 0.857832 0.513930i \(-0.171811\pi\)
0.857832 + 0.513930i \(0.171811\pi\)
\(600\) 0 0
\(601\) 11846.0 0.804007 0.402004 0.915638i \(-0.368314\pi\)
0.402004 + 0.915638i \(0.368314\pi\)
\(602\) 0 0
\(603\) − 1836.00i − 0.123993i
\(604\) 0 0
\(605\) − 4538.00i − 0.304952i
\(606\) 0 0
\(607\) −8940.00 −0.597798 −0.298899 0.954285i \(-0.596619\pi\)
−0.298899 + 0.954285i \(0.596619\pi\)
\(608\) 0 0
\(609\) 8136.00 0.541359
\(610\) 0 0
\(611\) 17136.0i 1.13461i
\(612\) 0 0
\(613\) − 4570.00i − 0.301110i −0.988602 0.150555i \(-0.951894\pi\)
0.988602 0.150555i \(-0.0481061\pi\)
\(614\) 0 0
\(615\) −564.000 −0.0369800
\(616\) 0 0
\(617\) −17786.0 −1.16051 −0.580257 0.814433i \(-0.697048\pi\)
−0.580257 + 0.814433i \(0.697048\pi\)
\(618\) 0 0
\(619\) 15804.0i 1.02620i 0.858330 + 0.513099i \(0.171503\pi\)
−0.858330 + 0.513099i \(0.828497\pi\)
\(620\) 0 0
\(621\) 1296.00i 0.0837467i
\(622\) 0 0
\(623\) 18120.0 1.16527
\(624\) 0 0
\(625\) 14141.0 0.905024
\(626\) 0 0
\(627\) 23760.0i 1.51337i
\(628\) 0 0
\(629\) − 3620.00i − 0.229474i
\(630\) 0 0
\(631\) −18468.0 −1.16513 −0.582567 0.812783i \(-0.697952\pi\)
−0.582567 + 0.812783i \(0.697952\pi\)
\(632\) 0 0
\(633\) −3636.00 −0.228307
\(634\) 0 0
\(635\) 4776.00i 0.298472i
\(636\) 0 0
\(637\) − 8358.00i − 0.519868i
\(638\) 0 0
\(639\) −9504.00 −0.588376
\(640\) 0 0
\(641\) −7814.00 −0.481489 −0.240744 0.970589i \(-0.577392\pi\)
−0.240744 + 0.970589i \(0.577392\pi\)
\(642\) 0 0
\(643\) 5364.00i 0.328982i 0.986379 + 0.164491i \(0.0525982\pi\)
−0.986379 + 0.164491i \(0.947402\pi\)
\(644\) 0 0
\(645\) − 1368.00i − 0.0835115i
\(646\) 0 0
\(647\) −3936.00 −0.239166 −0.119583 0.992824i \(-0.538156\pi\)
−0.119583 + 0.992824i \(0.538156\pi\)
\(648\) 0 0
\(649\) 18000.0 1.08869
\(650\) 0 0
\(651\) 9072.00i 0.546175i
\(652\) 0 0
\(653\) − 7610.00i − 0.456053i −0.973655 0.228026i \(-0.926773\pi\)
0.973655 0.228026i \(-0.0732272\pi\)
\(654\) 0 0
\(655\) −792.000 −0.0472458
\(656\) 0 0
\(657\) 2970.00 0.176363
\(658\) 0 0
\(659\) − 13620.0i − 0.805098i −0.915398 0.402549i \(-0.868124\pi\)
0.915398 0.402549i \(-0.131876\pi\)
\(660\) 0 0
\(661\) 8710.00i 0.512526i 0.966607 + 0.256263i \(0.0824913\pi\)
−0.966607 + 0.256263i \(0.917509\pi\)
\(662\) 0 0
\(663\) −1260.00 −0.0738075
\(664\) 0 0
\(665\) −3168.00 −0.184736
\(666\) 0 0
\(667\) 10848.0i 0.629739i
\(668\) 0 0
\(669\) − 6516.00i − 0.376567i
\(670\) 0 0
\(671\) 27960.0 1.60862
\(672\) 0 0
\(673\) −12094.0 −0.692703 −0.346352 0.938105i \(-0.612580\pi\)
−0.346352 + 0.938105i \(0.612580\pi\)
\(674\) 0 0
\(675\) − 3267.00i − 0.186292i
\(676\) 0 0
\(677\) 16466.0i 0.934771i 0.884054 + 0.467385i \(0.154804\pi\)
−0.884054 + 0.467385i \(0.845196\pi\)
\(678\) 0 0
\(679\) 7128.00 0.402868
\(680\) 0 0
\(681\) 11844.0 0.666466
\(682\) 0 0
\(683\) − 16428.0i − 0.920351i −0.887828 0.460176i \(-0.847786\pi\)
0.887828 0.460176i \(-0.152214\pi\)
\(684\) 0 0
\(685\) 220.000i 0.0122712i
\(686\) 0 0
\(687\) 10566.0 0.586780
\(688\) 0 0
\(689\) −14532.0 −0.803520
\(690\) 0 0
\(691\) 13332.0i 0.733970i 0.930227 + 0.366985i \(0.119610\pi\)
−0.930227 + 0.366985i \(0.880390\pi\)
\(692\) 0 0
\(693\) 6480.00i 0.355202i
\(694\) 0 0
\(695\) −1464.00 −0.0799031
\(696\) 0 0
\(697\) 940.000 0.0510833
\(698\) 0 0
\(699\) 8322.00i 0.450310i
\(700\) 0 0
\(701\) 19118.0i 1.03007i 0.857170 + 0.515033i \(0.172221\pi\)
−0.857170 + 0.515033i \(0.827779\pi\)
\(702\) 0 0
\(703\) 47784.0 2.56360
\(704\) 0 0
\(705\) −2448.00 −0.130776
\(706\) 0 0
\(707\) 6648.00i 0.353640i
\(708\) 0 0
\(709\) 798.000i 0.0422701i 0.999777 + 0.0211351i \(0.00672800\pi\)
−0.999777 + 0.0211351i \(0.993272\pi\)
\(710\) 0 0
\(711\) 5508.00 0.290529
\(712\) 0 0
\(713\) −12096.0 −0.635342
\(714\) 0 0
\(715\) 5040.00i 0.263616i
\(716\) 0 0
\(717\) − 8352.00i − 0.435023i
\(718\) 0 0
\(719\) 8856.00 0.459351 0.229675 0.973267i \(-0.426234\pi\)
0.229675 + 0.973267i \(0.426234\pi\)
\(720\) 0 0
\(721\) 15408.0 0.795872
\(722\) 0 0
\(723\) − 14058.0i − 0.723130i
\(724\) 0 0
\(725\) − 27346.0i − 1.40083i
\(726\) 0 0
\(727\) −13764.0 −0.702171 −0.351086 0.936343i \(-0.614187\pi\)
−0.351086 + 0.936343i \(0.614187\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 2280.00i 0.115361i
\(732\) 0 0
\(733\) 20538.0i 1.03491i 0.855711 + 0.517455i \(0.173120\pi\)
−0.855711 + 0.517455i \(0.826880\pi\)
\(734\) 0 0
\(735\) 1194.00 0.0599202
\(736\) 0 0
\(737\) 12240.0 0.611759
\(738\) 0 0
\(739\) 15900.0i 0.791463i 0.918366 + 0.395731i \(0.129509\pi\)
−0.918366 + 0.395731i \(0.870491\pi\)
\(740\) 0 0
\(741\) − 16632.0i − 0.824550i
\(742\) 0 0
\(743\) −20856.0 −1.02979 −0.514894 0.857254i \(-0.672169\pi\)
−0.514894 + 0.857254i \(0.672169\pi\)
\(744\) 0 0
\(745\) 3868.00 0.190218
\(746\) 0 0
\(747\) − 5076.00i − 0.248623i
\(748\) 0 0
\(749\) 16272.0i 0.793813i
\(750\) 0 0
\(751\) 10332.0 0.502024 0.251012 0.967984i \(-0.419237\pi\)
0.251012 + 0.967984i \(0.419237\pi\)
\(752\) 0 0
\(753\) −7452.00 −0.360645
\(754\) 0 0
\(755\) − 2184.00i − 0.105277i
\(756\) 0 0
\(757\) 13806.0i 0.662863i 0.943479 + 0.331432i \(0.107532\pi\)
−0.943479 + 0.331432i \(0.892468\pi\)
\(758\) 0 0
\(759\) −8640.00 −0.413191
\(760\) 0 0
\(761\) −15554.0 −0.740909 −0.370455 0.928851i \(-0.620798\pi\)
−0.370455 + 0.928851i \(0.620798\pi\)
\(762\) 0 0
\(763\) − 4680.00i − 0.222054i
\(764\) 0 0
\(765\) − 180.000i − 0.00850708i
\(766\) 0 0
\(767\) −12600.0 −0.593168
\(768\) 0 0
\(769\) 13106.0 0.614583 0.307292 0.951615i \(-0.400577\pi\)
0.307292 + 0.951615i \(0.400577\pi\)
\(770\) 0 0
\(771\) 19974.0i 0.933004i
\(772\) 0 0
\(773\) 18874.0i 0.878203i 0.898438 + 0.439101i \(0.144703\pi\)
−0.898438 + 0.439101i \(0.855297\pi\)
\(774\) 0 0
\(775\) 30492.0 1.41330
\(776\) 0 0
\(777\) 13032.0 0.601699
\(778\) 0 0
\(779\) 12408.0i 0.570684i
\(780\) 0 0
\(781\) − 63360.0i − 2.90294i
\(782\) 0 0
\(783\) −6102.00 −0.278503
\(784\) 0 0
\(785\) −1156.00 −0.0525598
\(786\) 0 0
\(787\) 15444.0i 0.699516i 0.936840 + 0.349758i \(0.113736\pi\)
−0.936840 + 0.349758i \(0.886264\pi\)
\(788\) 0 0
\(789\) 8712.00i 0.393099i
\(790\) 0 0
\(791\) −9192.00 −0.413186
\(792\) 0 0
\(793\) −19572.0 −0.876447
\(794\) 0 0
\(795\) − 2076.00i − 0.0926140i
\(796\) 0 0
\(797\) 39286.0i 1.74602i 0.487698 + 0.873012i \(0.337837\pi\)
−0.487698 + 0.873012i \(0.662163\pi\)
\(798\) 0 0
\(799\) 4080.00 0.180651
\(800\) 0 0
\(801\) −13590.0 −0.599474
\(802\) 0 0
\(803\) 19800.0i 0.870145i
\(804\) 0 0
\(805\) − 1152.00i − 0.0504381i
\(806\) 0 0
\(807\) −3018.00 −0.131646
\(808\) 0 0
\(809\) −20018.0 −0.869957 −0.434979 0.900441i \(-0.643244\pi\)
−0.434979 + 0.900441i \(0.643244\pi\)
\(810\) 0 0
\(811\) 8388.00i 0.363184i 0.983374 + 0.181592i \(0.0581251\pi\)
−0.983374 + 0.181592i \(0.941875\pi\)
\(812\) 0 0
\(813\) − 2628.00i − 0.113368i
\(814\) 0 0
\(815\) −5064.00 −0.217649
\(816\) 0 0
\(817\) −30096.0 −1.28877
\(818\) 0 0
\(819\) − 4536.00i − 0.193530i
\(820\) 0 0
\(821\) − 37942.0i − 1.61289i −0.591307 0.806446i \(-0.701388\pi\)
0.591307 0.806446i \(-0.298612\pi\)
\(822\) 0 0
\(823\) 11628.0 0.492499 0.246249 0.969206i \(-0.420802\pi\)
0.246249 + 0.969206i \(0.420802\pi\)
\(824\) 0 0
\(825\) 21780.0 0.919130
\(826\) 0 0
\(827\) − 32388.0i − 1.36184i −0.732358 0.680920i \(-0.761580\pi\)
0.732358 0.680920i \(-0.238420\pi\)
\(828\) 0 0
\(829\) − 9846.00i − 0.412504i −0.978499 0.206252i \(-0.933873\pi\)
0.978499 0.206252i \(-0.0661266\pi\)
\(830\) 0 0
\(831\) −8154.00 −0.340384
\(832\) 0 0
\(833\) −1990.00 −0.0827724
\(834\) 0 0
\(835\) − 1296.00i − 0.0537125i
\(836\) 0 0
\(837\) − 6804.00i − 0.280980i
\(838\) 0 0
\(839\) 16848.0 0.693275 0.346637 0.937999i \(-0.387323\pi\)
0.346637 + 0.937999i \(0.387323\pi\)
\(840\) 0 0
\(841\) −26687.0 −1.09422
\(842\) 0 0
\(843\) − 16062.0i − 0.656233i
\(844\) 0 0
\(845\) 866.000i 0.0352560i
\(846\) 0 0
\(847\) −27228.0 −1.10456
\(848\) 0 0
\(849\) −2340.00 −0.0945920
\(850\) 0 0
\(851\) 17376.0i 0.699931i
\(852\) 0 0
\(853\) 18214.0i 0.731108i 0.930790 + 0.365554i \(0.119121\pi\)
−0.930790 + 0.365554i \(0.880879\pi\)
\(854\) 0 0
\(855\) 2376.00 0.0950380
\(856\) 0 0
\(857\) 2446.00 0.0974956 0.0487478 0.998811i \(-0.484477\pi\)
0.0487478 + 0.998811i \(0.484477\pi\)
\(858\) 0 0
\(859\) 26244.0i 1.04241i 0.853430 + 0.521207i \(0.174518\pi\)
−0.853430 + 0.521207i \(0.825482\pi\)
\(860\) 0 0
\(861\) 3384.00i 0.133945i
\(862\) 0 0
\(863\) −25248.0 −0.995889 −0.497944 0.867209i \(-0.665912\pi\)
−0.497944 + 0.867209i \(0.665912\pi\)
\(864\) 0 0
\(865\) 6676.00 0.262417
\(866\) 0 0
\(867\) − 14439.0i − 0.565599i
\(868\) 0 0
\(869\) 36720.0i 1.43342i
\(870\) 0 0
\(871\) −8568.00 −0.333313
\(872\) 0 0
\(873\) −5346.00 −0.207256
\(874\) 0 0
\(875\) 5904.00i 0.228105i
\(876\) 0 0
\(877\) 34.0000i 0.00130912i 1.00000 0.000654560i \(0.000208353\pi\)
−1.00000 0.000654560i \(0.999792\pi\)
\(878\) 0 0
\(879\) 10050.0 0.385641
\(880\) 0 0
\(881\) −19022.0 −0.727432 −0.363716 0.931510i \(-0.618492\pi\)
−0.363716 + 0.931510i \(0.618492\pi\)
\(882\) 0 0
\(883\) 12852.0i 0.489812i 0.969547 + 0.244906i \(0.0787571\pi\)
−0.969547 + 0.244906i \(0.921243\pi\)
\(884\) 0 0
\(885\) − 1800.00i − 0.0683687i
\(886\) 0 0
\(887\) 40104.0 1.51811 0.759053 0.651028i \(-0.225662\pi\)
0.759053 + 0.651028i \(0.225662\pi\)
\(888\) 0 0
\(889\) 28656.0 1.08109
\(890\) 0 0
\(891\) − 4860.00i − 0.182734i
\(892\) 0 0
\(893\) 53856.0i 2.01817i
\(894\) 0 0
\(895\) −7608.00 −0.284142
\(896\) 0 0
\(897\) 6048.00 0.225125
\(898\) 0 0
\(899\) − 56952.0i − 2.11285i
\(900\) 0 0
\(901\) 3460.00i 0.127935i
\(902\) 0 0
\(903\) −8208.00 −0.302486
\(904\) 0 0
\(905\) −3708.00 −0.136197
\(906\) 0 0
\(907\) − 42540.0i − 1.55735i −0.627427 0.778676i \(-0.715892\pi\)
0.627427 0.778676i \(-0.284108\pi\)
\(908\) 0 0
\(909\) − 4986.00i − 0.181931i
\(910\) 0 0
\(911\) 18528.0 0.673831 0.336915 0.941535i \(-0.390616\pi\)
0.336915 + 0.941535i \(0.390616\pi\)
\(912\) 0 0
\(913\) 33840.0 1.22666
\(914\) 0 0
\(915\) − 2796.00i − 0.101020i
\(916\) 0 0
\(917\) 4752.00i 0.171129i
\(918\) 0 0
\(919\) 15756.0 0.565552 0.282776 0.959186i \(-0.408745\pi\)
0.282776 + 0.959186i \(0.408745\pi\)
\(920\) 0 0
\(921\) 28908.0 1.03426
\(922\) 0 0
\(923\) 44352.0i 1.58165i
\(924\) 0 0
\(925\) − 43802.0i − 1.55697i
\(926\) 0 0
\(927\) −11556.0 −0.409438
\(928\) 0 0
\(929\) −15542.0 −0.548887 −0.274444 0.961603i \(-0.588494\pi\)
−0.274444 + 0.961603i \(0.588494\pi\)
\(930\) 0 0
\(931\) − 26268.0i − 0.924703i
\(932\) 0 0
\(933\) − 22680.0i − 0.795831i
\(934\) 0 0
\(935\) 1200.00 0.0419724
\(936\) 0 0
\(937\) 29702.0 1.03556 0.517781 0.855513i \(-0.326758\pi\)
0.517781 + 0.855513i \(0.326758\pi\)
\(938\) 0 0
\(939\) 10578.0i 0.367625i
\(940\) 0 0
\(941\) − 2890.00i − 0.100118i −0.998746 0.0500591i \(-0.984059\pi\)
0.998746 0.0500591i \(-0.0159410\pi\)
\(942\) 0 0
\(943\) −4512.00 −0.155812
\(944\) 0 0
\(945\) 648.000 0.0223063
\(946\) 0 0
\(947\) 9180.00i 0.315005i 0.987519 + 0.157503i \(0.0503443\pi\)
−0.987519 + 0.157503i \(0.949656\pi\)
\(948\) 0 0
\(949\) − 13860.0i − 0.474093i
\(950\) 0 0
\(951\) 22902.0 0.780913
\(952\) 0 0
\(953\) −37906.0 −1.28845 −0.644227 0.764835i \(-0.722821\pi\)
−0.644227 + 0.764835i \(0.722821\pi\)
\(954\) 0 0
\(955\) − 2688.00i − 0.0910802i
\(956\) 0 0
\(957\) − 40680.0i − 1.37408i
\(958\) 0 0
\(959\) 1320.00 0.0444474
\(960\) 0 0
\(961\) 33713.0 1.13165
\(962\) 0 0
\(963\) − 12204.0i − 0.408378i
\(964\) 0 0
\(965\) − 2524.00i − 0.0841973i
\(966\) 0 0
\(967\) −41916.0 −1.39393 −0.696964 0.717106i \(-0.745466\pi\)
−0.696964 + 0.717106i \(0.745466\pi\)
\(968\) 0 0
\(969\) −3960.00 −0.131283
\(970\) 0 0
\(971\) 7764.00i 0.256600i 0.991735 + 0.128300i \(0.0409520\pi\)
−0.991735 + 0.128300i \(0.959048\pi\)
\(972\) 0 0
\(973\) 8784.00i 0.289416i
\(974\) 0 0
\(975\) −15246.0 −0.500782
\(976\) 0 0
\(977\) 32666.0 1.06968 0.534840 0.844953i \(-0.320372\pi\)
0.534840 + 0.844953i \(0.320372\pi\)
\(978\) 0 0
\(979\) − 90600.0i − 2.95770i
\(980\) 0 0
\(981\) 3510.00i 0.114236i
\(982\) 0 0
\(983\) −53016.0 −1.72019 −0.860096 0.510133i \(-0.829596\pi\)
−0.860096 + 0.510133i \(0.829596\pi\)
\(984\) 0 0
\(985\) 8588.00 0.277803
\(986\) 0 0
\(987\) 14688.0i 0.473682i
\(988\) 0 0
\(989\) − 10944.0i − 0.351870i
\(990\) 0 0
\(991\) −17844.0 −0.571981 −0.285991 0.958232i \(-0.592323\pi\)
−0.285991 + 0.958232i \(0.592323\pi\)
\(992\) 0 0
\(993\) 22716.0 0.725952
\(994\) 0 0
\(995\) 8616.00i 0.274518i
\(996\) 0 0
\(997\) − 55834.0i − 1.77360i −0.462152 0.886801i \(-0.652923\pi\)
0.462152 0.886801i \(-0.347077\pi\)
\(998\) 0 0
\(999\) −9774.00 −0.309545
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.4.d.m.385.2 2
4.3 odd 2 768.4.d.d.385.1 2
8.3 odd 2 768.4.d.d.385.2 2
8.5 even 2 inner 768.4.d.m.385.1 2
16.3 odd 4 96.4.a.e.1.1 yes 1
16.5 even 4 192.4.a.j.1.1 1
16.11 odd 4 192.4.a.d.1.1 1
16.13 even 4 96.4.a.b.1.1 1
48.5 odd 4 576.4.a.n.1.1 1
48.11 even 4 576.4.a.o.1.1 1
48.29 odd 4 288.4.a.e.1.1 1
48.35 even 4 288.4.a.f.1.1 1
80.19 odd 4 2400.4.a.c.1.1 1
80.29 even 4 2400.4.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.4.a.b.1.1 1 16.13 even 4
96.4.a.e.1.1 yes 1 16.3 odd 4
192.4.a.d.1.1 1 16.11 odd 4
192.4.a.j.1.1 1 16.5 even 4
288.4.a.e.1.1 1 48.29 odd 4
288.4.a.f.1.1 1 48.35 even 4
576.4.a.n.1.1 1 48.5 odd 4
576.4.a.o.1.1 1 48.11 even 4
768.4.d.d.385.1 2 4.3 odd 2
768.4.d.d.385.2 2 8.3 odd 2
768.4.d.m.385.1 2 8.5 even 2 inner
768.4.d.m.385.2 2 1.1 even 1 trivial
2400.4.a.c.1.1 1 80.19 odd 4
2400.4.a.t.1.1 1 80.29 even 4