Properties

Label 768.4.d.m.385.2
Level 768768
Weight 44
Character 768.385
Analytic conductor 45.31345.313
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,4,Mod(385,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.385"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 768=283 768 = 2^{8} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 768.d (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,24,0,-18,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 45.313466884445.3134668844
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 385.2
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 768.385
Dual form 768.4.d.m.385.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+3.00000iq3+2.00000iq5+12.0000q79.00000q960.0000iq11+42.0000iq136.00000q15+10.0000q17+132.000iq19+36.0000iq2148.0000q23+121.000q2527.0000iq27226.000iq29+252.000q31+180.000q33+24.0000iq35362.000iq37126.000q39+94.0000q41+228.000iq4318.0000iq45+408.000q47199.000q49+30.0000iq51+346.000iq53+120.000q55396.000q57+300.000iq59+466.000iq61108.000q6384.0000q65+204.000iq67144.000iq69+1056.00q71330.000q73+363.000iq75720.000iq77612.000q79+81.0000q81+564.000iq83+20.0000iq85+678.000q87+1510.00q89+504.000iq91+756.000iq93264.000q95+594.000q97+540.000iq99+O(q100)q+3.00000i q^{3} +2.00000i q^{5} +12.0000 q^{7} -9.00000 q^{9} -60.0000i q^{11} +42.0000i q^{13} -6.00000 q^{15} +10.0000 q^{17} +132.000i q^{19} +36.0000i q^{21} -48.0000 q^{23} +121.000 q^{25} -27.0000i q^{27} -226.000i q^{29} +252.000 q^{31} +180.000 q^{33} +24.0000i q^{35} -362.000i q^{37} -126.000 q^{39} +94.0000 q^{41} +228.000i q^{43} -18.0000i q^{45} +408.000 q^{47} -199.000 q^{49} +30.0000i q^{51} +346.000i q^{53} +120.000 q^{55} -396.000 q^{57} +300.000i q^{59} +466.000i q^{61} -108.000 q^{63} -84.0000 q^{65} +204.000i q^{67} -144.000i q^{69} +1056.00 q^{71} -330.000 q^{73} +363.000i q^{75} -720.000i q^{77} -612.000 q^{79} +81.0000 q^{81} +564.000i q^{83} +20.0000i q^{85} +678.000 q^{87} +1510.00 q^{89} +504.000i q^{91} +756.000i q^{93} -264.000 q^{95} +594.000 q^{97} +540.000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+24q718q912q15+20q1796q23+242q25+504q31+360q33252q39+188q41+816q47398q49+240q55792q57216q63168q65++1188q97+O(q100) 2 q + 24 q^{7} - 18 q^{9} - 12 q^{15} + 20 q^{17} - 96 q^{23} + 242 q^{25} + 504 q^{31} + 360 q^{33} - 252 q^{39} + 188 q^{41} + 816 q^{47} - 398 q^{49} + 240 q^{55} - 792 q^{57} - 216 q^{63} - 168 q^{65}+ \cdots + 1188 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/768Z)×\left(\mathbb{Z}/768\mathbb{Z}\right)^\times.

nn 257257 511511 517517
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.00000i 0.577350i
44 0 0
55 2.00000i 0.178885i 0.995992 + 0.0894427i 0.0285086π0.0285086\pi
−0.995992 + 0.0894427i 0.971491π0.971491\pi
66 0 0
77 12.0000 0.647939 0.323970 0.946068i 0.394982π-0.394982\pi
0.323970 + 0.946068i 0.394982π0.394982\pi
88 0 0
99 −9.00000 −0.333333
1010 0 0
1111 − 60.0000i − 1.64461i −0.569049 0.822304i 0.692689π-0.692689\pi
0.569049 0.822304i 0.307311π-0.307311\pi
1212 0 0
1313 42.0000i 0.896054i 0.894020 + 0.448027i 0.147873π0.147873\pi
−0.894020 + 0.448027i 0.852127π0.852127\pi
1414 0 0
1515 −6.00000 −0.103280
1616 0 0
1717 10.0000 0.142668 0.0713340 0.997452i 0.477274π-0.477274\pi
0.0713340 + 0.997452i 0.477274π0.477274\pi
1818 0 0
1919 132.000i 1.59384i 0.604088 + 0.796918i 0.293538π0.293538\pi
−0.604088 + 0.796918i 0.706462π0.706462\pi
2020 0 0
2121 36.0000i 0.374088i
2222 0 0
2323 −48.0000 −0.435161 −0.217580 0.976042i 0.569816π-0.569816\pi
−0.217580 + 0.976042i 0.569816π0.569816\pi
2424 0 0
2525 121.000 0.968000
2626 0 0
2727 − 27.0000i − 0.192450i
2828 0 0
2929 − 226.000i − 1.44714i −0.690249 0.723571i 0.742499π-0.742499\pi
0.690249 0.723571i 0.257501π-0.257501\pi
3030 0 0
3131 252.000 1.46002 0.730009 0.683438i 0.239516π-0.239516\pi
0.730009 + 0.683438i 0.239516π0.239516\pi
3232 0 0
3333 180.000 0.949514
3434 0 0
3535 24.0000i 0.115907i
3636 0 0
3737 − 362.000i − 1.60844i −0.594329 0.804222i 0.702582π-0.702582\pi
0.594329 0.804222i 0.297418π-0.297418\pi
3838 0 0
3939 −126.000 −0.517337
4040 0 0
4141 94.0000 0.358057 0.179028 0.983844i 0.442705π-0.442705\pi
0.179028 + 0.983844i 0.442705π0.442705\pi
4242 0 0
4343 228.000i 0.808597i 0.914627 + 0.404299i 0.132484π0.132484\pi
−0.914627 + 0.404299i 0.867516π0.867516\pi
4444 0 0
4545 − 18.0000i − 0.0596285i
4646 0 0
4747 408.000 1.26623 0.633116 0.774057i 0.281776π-0.281776\pi
0.633116 + 0.774057i 0.281776π0.281776\pi
4848 0 0
4949 −199.000 −0.580175
5050 0 0
5151 30.0000i 0.0823694i
5252 0 0
5353 346.000i 0.896731i 0.893850 + 0.448366i 0.147994π0.147994\pi
−0.893850 + 0.448366i 0.852006π0.852006\pi
5454 0 0
5555 120.000 0.294196
5656 0 0
5757 −396.000 −0.920201
5858 0 0
5959 300.000i 0.661978i 0.943635 + 0.330989i 0.107382π0.107382\pi
−0.943635 + 0.330989i 0.892618π0.892618\pi
6060 0 0
6161 466.000i 0.978118i 0.872251 + 0.489059i 0.162660π0.162660\pi
−0.872251 + 0.489059i 0.837340π0.837340\pi
6262 0 0
6363 −108.000 −0.215980
6464 0 0
6565 −84.0000 −0.160291
6666 0 0
6767 204.000i 0.371979i 0.982552 + 0.185989i 0.0595490π0.0595490\pi
−0.982552 + 0.185989i 0.940451π0.940451\pi
6868 0 0
6969 − 144.000i − 0.251240i
7070 0 0
7171 1056.00 1.76513 0.882564 0.470192i 0.155815π-0.155815\pi
0.882564 + 0.470192i 0.155815π0.155815\pi
7272 0 0
7373 −330.000 −0.529090 −0.264545 0.964373i 0.585222π-0.585222\pi
−0.264545 + 0.964373i 0.585222π0.585222\pi
7474 0 0
7575 363.000i 0.558875i
7676 0 0
7777 − 720.000i − 1.06561i
7878 0 0
7979 −612.000 −0.871587 −0.435794 0.900047i 0.643532π-0.643532\pi
−0.435794 + 0.900047i 0.643532π0.643532\pi
8080 0 0
8181 81.0000 0.111111
8282 0 0
8383 564.000i 0.745868i 0.927858 + 0.372934i 0.121648π0.121648\pi
−0.927858 + 0.372934i 0.878352π0.878352\pi
8484 0 0
8585 20.0000i 0.0255212i
8686 0 0
8787 678.000 0.835508
8888 0 0
8989 1510.00 1.79842 0.899212 0.437514i 0.144141π-0.144141\pi
0.899212 + 0.437514i 0.144141π0.144141\pi
9090 0 0
9191 504.000i 0.580589i
9292 0 0
9393 756.000i 0.842941i
9494 0 0
9595 −264.000 −0.285114
9696 0 0
9797 594.000 0.621769 0.310884 0.950448i 0.399375π-0.399375\pi
0.310884 + 0.950448i 0.399375π0.399375\pi
9898 0 0
9999 540.000i 0.548202i
100100 0 0
101101 554.000i 0.545793i 0.962043 + 0.272896i 0.0879816π0.0879816\pi
−0.962043 + 0.272896i 0.912018π0.912018\pi
102102 0 0
103103 1284.00 1.22831 0.614157 0.789184i 0.289496π-0.289496\pi
0.614157 + 0.789184i 0.289496π0.289496\pi
104104 0 0
105105 −72.0000 −0.0669189
106106 0 0
107107 1356.00i 1.22514i 0.790418 + 0.612568i 0.209863π0.209863\pi
−0.790418 + 0.612568i 0.790137π0.790137\pi
108108 0 0
109109 − 390.000i − 0.342708i −0.985209 0.171354i 0.945186π-0.945186\pi
0.985209 0.171354i 0.0548143π-0.0548143\pi
110110 0 0
111111 1086.00 0.928636
112112 0 0
113113 −766.000 −0.637692 −0.318846 0.947807i 0.603295π-0.603295\pi
−0.318846 + 0.947807i 0.603295π0.603295\pi
114114 0 0
115115 − 96.0000i − 0.0778439i
116116 0 0
117117 − 378.000i − 0.298685i
118118 0 0
119119 120.000 0.0924402
120120 0 0
121121 −2269.00 −1.70473
122122 0 0
123123 282.000i 0.206724i
124124 0 0
125125 492.000i 0.352047i
126126 0 0
127127 2388.00 1.66851 0.834255 0.551379i 0.185898π-0.185898\pi
0.834255 + 0.551379i 0.185898π0.185898\pi
128128 0 0
129129 −684.000 −0.466844
130130 0 0
131131 396.000i 0.264112i 0.991242 + 0.132056i 0.0421579π0.0421579\pi
−0.991242 + 0.132056i 0.957842π0.957842\pi
132132 0 0
133133 1584.00i 1.03271i
134134 0 0
135135 54.0000 0.0344265
136136 0 0
137137 110.000 0.0685981 0.0342990 0.999412i 0.489080π-0.489080\pi
0.0342990 + 0.999412i 0.489080π0.489080\pi
138138 0 0
139139 732.000i 0.446672i 0.974742 + 0.223336i 0.0716947π0.0716947\pi
−0.974742 + 0.223336i 0.928305π0.928305\pi
140140 0 0
141141 1224.00i 0.731060i
142142 0 0
143143 2520.00 1.47366
144144 0 0
145145 452.000 0.258873
146146 0 0
147147 − 597.000i − 0.334964i
148148 0 0
149149 − 1934.00i − 1.06335i −0.846948 0.531676i 0.821562π-0.821562\pi
0.846948 0.531676i 0.178438π-0.178438\pi
150150 0 0
151151 −1092.00 −0.588515 −0.294257 0.955726i 0.595072π-0.595072\pi
−0.294257 + 0.955726i 0.595072π0.595072\pi
152152 0 0
153153 −90.0000 −0.0475560
154154 0 0
155155 504.000i 0.261176i
156156 0 0
157157 578.000i 0.293818i 0.989150 + 0.146909i 0.0469324π0.0469324\pi
−0.989150 + 0.146909i 0.953068π0.953068\pi
158158 0 0
159159 −1038.00 −0.517728
160160 0 0
161161 −576.000 −0.281958
162162 0 0
163163 2532.00i 1.21670i 0.793670 + 0.608348i 0.208168π0.208168\pi
−0.793670 + 0.608348i 0.791832π0.791832\pi
164164 0 0
165165 360.000i 0.169854i
166166 0 0
167167 −648.000 −0.300262 −0.150131 0.988666i 0.547970π-0.547970\pi
−0.150131 + 0.988666i 0.547970π0.547970\pi
168168 0 0
169169 433.000 0.197087
170170 0 0
171171 − 1188.00i − 0.531279i
172172 0 0
173173 − 3338.00i − 1.46696i −0.679713 0.733478i 0.737896π-0.737896\pi
0.679713 0.733478i 0.262104π-0.262104\pi
174174 0 0
175175 1452.00 0.627205
176176 0 0
177177 −900.000 −0.382193
178178 0 0
179179 3804.00i 1.58840i 0.607654 + 0.794202i 0.292111π0.292111\pi
−0.607654 + 0.794202i 0.707889π0.707889\pi
180180 0 0
181181 1854.00i 0.761363i 0.924706 + 0.380682i 0.124311π0.124311\pi
−0.924706 + 0.380682i 0.875689π0.875689\pi
182182 0 0
183183 −1398.00 −0.564717
184184 0 0
185185 724.000 0.287727
186186 0 0
187187 − 600.000i − 0.234633i
188188 0 0
189189 − 324.000i − 0.124696i
190190 0 0
191191 −1344.00 −0.509154 −0.254577 0.967052i 0.581936π-0.581936\pi
−0.254577 + 0.967052i 0.581936π0.581936\pi
192192 0 0
193193 −1262.00 −0.470677 −0.235339 0.971913i 0.575620π-0.575620\pi
−0.235339 + 0.971913i 0.575620π0.575620\pi
194194 0 0
195195 − 252.000i − 0.0925441i
196196 0 0
197197 − 4294.00i − 1.55297i −0.630137 0.776484i 0.717001π-0.717001\pi
0.630137 0.776484i 0.282999π-0.282999\pi
198198 0 0
199199 4308.00 1.53460 0.767302 0.641286i 0.221599π-0.221599\pi
0.767302 + 0.641286i 0.221599π0.221599\pi
200200 0 0
201201 −612.000 −0.214762
202202 0 0
203203 − 2712.00i − 0.937661i
204204 0 0
205205 188.000i 0.0640512i
206206 0 0
207207 432.000 0.145054
208208 0 0
209209 7920.00 2.62123
210210 0 0
211211 1212.00i 0.395438i 0.980259 + 0.197719i 0.0633534π0.0633534\pi
−0.980259 + 0.197719i 0.936647π0.936647\pi
212212 0 0
213213 3168.00i 1.01910i
214214 0 0
215215 −456.000 −0.144646
216216 0 0
217217 3024.00 0.946002
218218 0 0
219219 − 990.000i − 0.305470i
220220 0 0
221221 420.000i 0.127838i
222222 0 0
223223 −2172.00 −0.652233 −0.326116 0.945330i 0.605740π-0.605740\pi
−0.326116 + 0.945330i 0.605740π0.605740\pi
224224 0 0
225225 −1089.00 −0.322667
226226 0 0
227227 − 3948.00i − 1.15435i −0.816620 0.577176i 0.804155π-0.804155\pi
0.816620 0.577176i 0.195845π-0.195845\pi
228228 0 0
229229 − 3522.00i − 1.01633i −0.861259 0.508167i 0.830323π-0.830323\pi
0.861259 0.508167i 0.169677π-0.169677\pi
230230 0 0
231231 2160.00 0.615228
232232 0 0
233233 2774.00 0.779960 0.389980 0.920823i 0.372482π-0.372482\pi
0.389980 + 0.920823i 0.372482π0.372482\pi
234234 0 0
235235 816.000i 0.226511i
236236 0 0
237237 − 1836.00i − 0.503211i
238238 0 0
239239 −2784.00 −0.753481 −0.376741 0.926319i 0.622955π-0.622955\pi
−0.376741 + 0.926319i 0.622955π0.622955\pi
240240 0 0
241241 −4686.00 −1.25250 −0.626249 0.779623i 0.715410π-0.715410\pi
−0.626249 + 0.779623i 0.715410π0.715410\pi
242242 0 0
243243 243.000i 0.0641500i
244244 0 0
245245 − 398.000i − 0.103785i
246246 0 0
247247 −5544.00 −1.42816
248248 0 0
249249 −1692.00 −0.430627
250250 0 0
251251 2484.00i 0.624656i 0.949974 + 0.312328i 0.101109π0.101109\pi
−0.949974 + 0.312328i 0.898891π0.898891\pi
252252 0 0
253253 2880.00i 0.715668i
254254 0 0
255255 −60.0000 −0.0147347
256256 0 0
257257 6658.00 1.61601 0.808005 0.589175i 0.200547π-0.200547\pi
0.808005 + 0.589175i 0.200547π0.200547\pi
258258 0 0
259259 − 4344.00i − 1.04217i
260260 0 0
261261 2034.00i 0.482381i
262262 0 0
263263 2904.00 0.680868 0.340434 0.940268i 0.389426π-0.389426\pi
0.340434 + 0.940268i 0.389426π0.389426\pi
264264 0 0
265265 −692.000 −0.160412
266266 0 0
267267 4530.00i 1.03832i
268268 0 0
269269 1006.00i 0.228018i 0.993480 + 0.114009i 0.0363693π0.0363693\pi
−0.993480 + 0.114009i 0.963631π0.963631\pi
270270 0 0
271271 −876.000 −0.196359 −0.0981794 0.995169i 0.531302π-0.531302\pi
−0.0981794 + 0.995169i 0.531302π0.531302\pi
272272 0 0
273273 −1512.00 −0.335203
274274 0 0
275275 − 7260.00i − 1.59198i
276276 0 0
277277 2718.00i 0.589562i 0.955565 + 0.294781i 0.0952468π0.0952468\pi
−0.955565 + 0.294781i 0.904753π0.904753\pi
278278 0 0
279279 −2268.00 −0.486672
280280 0 0
281281 −5354.00 −1.13663 −0.568315 0.822811i 0.692404π-0.692404\pi
−0.568315 + 0.822811i 0.692404π0.692404\pi
282282 0 0
283283 780.000i 0.163838i 0.996639 + 0.0819191i 0.0261049π0.0261049\pi
−0.996639 + 0.0819191i 0.973895π0.973895\pi
284284 0 0
285285 − 792.000i − 0.164611i
286286 0 0
287287 1128.00 0.231999
288288 0 0
289289 −4813.00 −0.979646
290290 0 0
291291 1782.00i 0.358978i
292292 0 0
293293 − 3350.00i − 0.667949i −0.942582 0.333975i 0.891610π-0.891610\pi
0.942582 0.333975i 0.108390π-0.108390\pi
294294 0 0
295295 −600.000 −0.118418
296296 0 0
297297 −1620.00 −0.316505
298298 0 0
299299 − 2016.00i − 0.389927i
300300 0 0
301301 2736.00i 0.523922i
302302 0 0
303303 −1662.00 −0.315114
304304 0 0
305305 −932.000 −0.174971
306306 0 0
307307 − 9636.00i − 1.79139i −0.444673 0.895693i 0.646680π-0.646680\pi
0.444673 0.895693i 0.353320π-0.353320\pi
308308 0 0
309309 3852.00i 0.709167i
310310 0 0
311311 −7560.00 −1.37842 −0.689209 0.724562i 0.742042π-0.742042\pi
−0.689209 + 0.724562i 0.742042π0.742042\pi
312312 0 0
313313 3526.00 0.636745 0.318373 0.947966i 0.396864π-0.396864\pi
0.318373 + 0.947966i 0.396864π0.396864\pi
314314 0 0
315315 − 216.000i − 0.0386356i
316316 0 0
317317 − 7634.00i − 1.35258i −0.736635 0.676290i 0.763586π-0.763586\pi
0.736635 0.676290i 0.236414π-0.236414\pi
318318 0 0
319319 −13560.0 −2.37998
320320 0 0
321321 −4068.00 −0.707332
322322 0 0
323323 1320.00i 0.227389i
324324 0 0
325325 5082.00i 0.867380i
326326 0 0
327327 1170.00 0.197863
328328 0 0
329329 4896.00 0.820441
330330 0 0
331331 − 7572.00i − 1.25739i −0.777654 0.628693i 0.783590π-0.783590\pi
0.777654 0.628693i 0.216410π-0.216410\pi
332332 0 0
333333 3258.00i 0.536148i
334334 0 0
335335 −408.000 −0.0665416
336336 0 0
337337 162.000 0.0261861 0.0130930 0.999914i 0.495832π-0.495832\pi
0.0130930 + 0.999914i 0.495832π0.495832\pi
338338 0 0
339339 − 2298.00i − 0.368172i
340340 0 0
341341 − 15120.0i − 2.40116i
342342 0 0
343343 −6504.00 −1.02386
344344 0 0
345345 288.000 0.0449432
346346 0 0
347347 − 6636.00i − 1.02663i −0.858202 0.513313i 0.828418π-0.828418\pi
0.858202 0.513313i 0.171582π-0.171582\pi
348348 0 0
349349 − 4430.00i − 0.679463i −0.940523 0.339731i 0.889664π-0.889664\pi
0.940523 0.339731i 0.110336π-0.110336\pi
350350 0 0
351351 1134.00 0.172446
352352 0 0
353353 8402.00 1.26684 0.633418 0.773810i 0.281651π-0.281651\pi
0.633418 + 0.773810i 0.281651π0.281651\pi
354354 0 0
355355 2112.00i 0.315756i
356356 0 0
357357 360.000i 0.0533704i
358358 0 0
359359 11520.0 1.69360 0.846800 0.531912i 0.178526π-0.178526\pi
0.846800 + 0.531912i 0.178526π0.178526\pi
360360 0 0
361361 −10565.0 −1.54031
362362 0 0
363363 − 6807.00i − 0.984228i
364364 0 0
365365 − 660.000i − 0.0946465i
366366 0 0
367367 7404.00 1.05309 0.526547 0.850146i 0.323486π-0.323486\pi
0.526547 + 0.850146i 0.323486π0.323486\pi
368368 0 0
369369 −846.000 −0.119352
370370 0 0
371371 4152.00i 0.581027i
372372 0 0
373373 1910.00i 0.265137i 0.991174 + 0.132568i 0.0423224π0.0423224\pi
−0.991174 + 0.132568i 0.957678π0.957678\pi
374374 0 0
375375 −1476.00 −0.203254
376376 0 0
377377 9492.00 1.29672
378378 0 0
379379 − 10332.0i − 1.40031i −0.713989 0.700157i 0.753113π-0.753113\pi
0.713989 0.700157i 0.246887π-0.246887\pi
380380 0 0
381381 7164.00i 0.963315i
382382 0 0
383383 −6624.00 −0.883735 −0.441868 0.897080i 0.645684π-0.645684\pi
−0.441868 + 0.897080i 0.645684π0.645684\pi
384384 0 0
385385 1440.00 0.190621
386386 0 0
387387 − 2052.00i − 0.269532i
388388 0 0
389389 10210.0i 1.33076i 0.746503 + 0.665382i 0.231732π0.231732\pi
−0.746503 + 0.665382i 0.768268π0.768268\pi
390390 0 0
391391 −480.000 −0.0620835
392392 0 0
393393 −1188.00 −0.152485
394394 0 0
395395 − 1224.00i − 0.155914i
396396 0 0
397397 4066.00i 0.514022i 0.966408 + 0.257011i 0.0827376π0.0827376\pi
−0.966408 + 0.257011i 0.917262π0.917262\pi
398398 0 0
399399 −4752.00 −0.596234
400400 0 0
401401 −5510.00 −0.686175 −0.343088 0.939303i 0.611473π-0.611473\pi
−0.343088 + 0.939303i 0.611473π0.611473\pi
402402 0 0
403403 10584.0i 1.30825i
404404 0 0
405405 162.000i 0.0198762i
406406 0 0
407407 −21720.0 −2.64526
408408 0 0
409409 −15450.0 −1.86786 −0.933928 0.357460i 0.883643π-0.883643\pi
−0.933928 + 0.357460i 0.883643π0.883643\pi
410410 0 0
411411 330.000i 0.0396051i
412412 0 0
413413 3600.00i 0.428921i
414414 0 0
415415 −1128.00 −0.133425
416416 0 0
417417 −2196.00 −0.257886
418418 0 0
419419 − 3084.00i − 0.359578i −0.983705 0.179789i 0.942458π-0.942458\pi
0.983705 0.179789i 0.0575415π-0.0575415\pi
420420 0 0
421421 10446.0i 1.20928i 0.796499 + 0.604640i 0.206683π0.206683\pi
−0.796499 + 0.604640i 0.793317π0.793317\pi
422422 0 0
423423 −3672.00 −0.422077
424424 0 0
425425 1210.00 0.138103
426426 0 0
427427 5592.00i 0.633761i
428428 0 0
429429 7560.00i 0.850816i
430430 0 0
431431 2184.00 0.244083 0.122041 0.992525i 0.461056π-0.461056\pi
0.122041 + 0.992525i 0.461056π0.461056\pi
432432 0 0
433433 −110.000 −0.0122085 −0.00610423 0.999981i 0.501943π-0.501943\pi
−0.00610423 + 0.999981i 0.501943π0.501943\pi
434434 0 0
435435 1356.00i 0.149460i
436436 0 0
437437 − 6336.00i − 0.693574i
438438 0 0
439439 −2412.00 −0.262229 −0.131114 0.991367i 0.541856π-0.541856\pi
−0.131114 + 0.991367i 0.541856π0.541856\pi
440440 0 0
441441 1791.00 0.193392
442442 0 0
443443 − 6540.00i − 0.701410i −0.936486 0.350705i 0.885942π-0.885942\pi
0.936486 0.350705i 0.114058π-0.114058\pi
444444 0 0
445445 3020.00i 0.321712i
446446 0 0
447447 5802.00 0.613927
448448 0 0
449449 −9670.00 −1.01638 −0.508191 0.861244i 0.669686π-0.669686\pi
−0.508191 + 0.861244i 0.669686π0.669686\pi
450450 0 0
451451 − 5640.00i − 0.588863i
452452 0 0
453453 − 3276.00i − 0.339779i
454454 0 0
455455 −1008.00 −0.103859
456456 0 0
457457 6774.00 0.693379 0.346690 0.937980i 0.387306π-0.387306\pi
0.346690 + 0.937980i 0.387306π0.387306\pi
458458 0 0
459459 − 270.000i − 0.0274565i
460460 0 0
461461 − 14602.0i − 1.47523i −0.675219 0.737617i 0.735951π-0.735951\pi
0.675219 0.737617i 0.264049π-0.264049\pi
462462 0 0
463463 13620.0 1.36712 0.683558 0.729896i 0.260431π-0.260431\pi
0.683558 + 0.729896i 0.260431π0.260431\pi
464464 0 0
465465 −1512.00 −0.150790
466466 0 0
467467 − 8508.00i − 0.843048i −0.906817 0.421524i 0.861495π-0.861495\pi
0.906817 0.421524i 0.138505π-0.138505\pi
468468 0 0
469469 2448.00i 0.241019i
470470 0 0
471471 −1734.00 −0.169636
472472 0 0
473473 13680.0 1.32982
474474 0 0
475475 15972.0i 1.54283i
476476 0 0
477477 − 3114.00i − 0.298910i
478478 0 0
479479 −6312.00 −0.602093 −0.301047 0.953609i 0.597336π-0.597336\pi
−0.301047 + 0.953609i 0.597336π0.597336\pi
480480 0 0
481481 15204.0 1.44125
482482 0 0
483483 − 1728.00i − 0.162788i
484484 0 0
485485 1188.00i 0.111225i
486486 0 0
487487 10572.0 0.983702 0.491851 0.870679i 0.336320π-0.336320\pi
0.491851 + 0.870679i 0.336320π0.336320\pi
488488 0 0
489489 −7596.00 −0.702460
490490 0 0
491491 4332.00i 0.398168i 0.979982 + 0.199084i 0.0637966π0.0637966\pi
−0.979982 + 0.199084i 0.936203π0.936203\pi
492492 0 0
493493 − 2260.00i − 0.206461i
494494 0 0
495495 −1080.00 −0.0980654
496496 0 0
497497 12672.0 1.14370
498498 0 0
499499 − 3684.00i − 0.330498i −0.986252 0.165249i 0.947157π-0.947157\pi
0.986252 0.165249i 0.0528428π-0.0528428\pi
500500 0 0
501501 − 1944.00i − 0.173356i
502502 0 0
503503 −11184.0 −0.991391 −0.495696 0.868496i 0.665087π-0.665087\pi
−0.495696 + 0.868496i 0.665087π0.665087\pi
504504 0 0
505505 −1108.00 −0.0976344
506506 0 0
507507 1299.00i 0.113788i
508508 0 0
509509 − 12946.0i − 1.12735i −0.825997 0.563675i 0.809387π-0.809387\pi
0.825997 0.563675i 0.190613π-0.190613\pi
510510 0 0
511511 −3960.00 −0.342818
512512 0 0
513513 3564.00 0.306734
514514 0 0
515515 2568.00i 0.219727i
516516 0 0
517517 − 24480.0i − 2.08245i
518518 0 0
519519 10014.0 0.846948
520520 0 0
521521 17150.0 1.44214 0.721070 0.692862i 0.243651π-0.243651\pi
0.721070 + 0.692862i 0.243651π0.243651\pi
522522 0 0
523523 − 7884.00i − 0.659165i −0.944127 0.329582i 0.893092π-0.893092\pi
0.944127 0.329582i 0.106908π-0.106908\pi
524524 0 0
525525 4356.00i 0.362117i
526526 0 0
527527 2520.00 0.208298
528528 0 0
529529 −9863.00 −0.810635
530530 0 0
531531 − 2700.00i − 0.220659i
532532 0 0
533533 3948.00i 0.320838i
534534 0 0
535535 −2712.00 −0.219159
536536 0 0
537537 −11412.0 −0.917065
538538 0 0
539539 11940.0i 0.954160i
540540 0 0
541541 − 5910.00i − 0.469669i −0.972035 0.234834i 0.924545π-0.924545\pi
0.972035 0.234834i 0.0754548π-0.0754548\pi
542542 0 0
543543 −5562.00 −0.439573
544544 0 0
545545 780.000 0.0613056
546546 0 0
547547 − 972.000i − 0.0759775i −0.999278 0.0379888i 0.987905π-0.987905\pi
0.999278 0.0379888i 0.0120951π-0.0120951\pi
548548 0 0
549549 − 4194.00i − 0.326039i
550550 0 0
551551 29832.0 2.30651
552552 0 0
553553 −7344.00 −0.564735
554554 0 0
555555 2172.00i 0.166119i
556556 0 0
557557 − 2458.00i − 0.186982i −0.995620 0.0934908i 0.970197π-0.970197\pi
0.995620 0.0934908i 0.0298026π-0.0298026\pi
558558 0 0
559559 −9576.00 −0.724547
560560 0 0
561561 1800.00 0.135465
562562 0 0
563563 11316.0i 0.847092i 0.905875 + 0.423546i 0.139215π0.139215\pi
−0.905875 + 0.423546i 0.860785π0.860785\pi
564564 0 0
565565 − 1532.00i − 0.114074i
566566 0 0
567567 972.000 0.0719932
568568 0 0
569569 −1810.00 −0.133355 −0.0666776 0.997775i 0.521240π-0.521240\pi
−0.0666776 + 0.997775i 0.521240π0.521240\pi
570570 0 0
571571 − 10500.0i − 0.769547i −0.923011 0.384773i 0.874280π-0.874280\pi
0.923011 0.384773i 0.125720π-0.125720\pi
572572 0 0
573573 − 4032.00i − 0.293960i
574574 0 0
575575 −5808.00 −0.421235
576576 0 0
577577 −19438.0 −1.40245 −0.701226 0.712939i 0.747363π-0.747363\pi
−0.701226 + 0.712939i 0.747363π0.747363\pi
578578 0 0
579579 − 3786.00i − 0.271746i
580580 0 0
581581 6768.00i 0.483277i
582582 0 0
583583 20760.0 1.47477
584584 0 0
585585 756.000 0.0534303
586586 0 0
587587 15084.0i 1.06062i 0.847804 + 0.530309i 0.177924π0.177924\pi
−0.847804 + 0.530309i 0.822076π0.822076\pi
588588 0 0
589589 33264.0i 2.32703i
590590 0 0
591591 12882.0 0.896607
592592 0 0
593593 5794.00 0.401233 0.200616 0.979670i 0.435706π-0.435706\pi
0.200616 + 0.979670i 0.435706π0.435706\pi
594594 0 0
595595 240.000i 0.0165362i
596596 0 0
597597 12924.0i 0.886004i
598598 0 0
599599 25152.0 1.71566 0.857832 0.513930i 0.171811π-0.171811\pi
0.857832 + 0.513930i 0.171811π0.171811\pi
600600 0 0
601601 11846.0 0.804007 0.402004 0.915638i 0.368314π-0.368314\pi
0.402004 + 0.915638i 0.368314π0.368314\pi
602602 0 0
603603 − 1836.00i − 0.123993i
604604 0 0
605605 − 4538.00i − 0.304952i
606606 0 0
607607 −8940.00 −0.597798 −0.298899 0.954285i 0.596619π-0.596619\pi
−0.298899 + 0.954285i 0.596619π0.596619\pi
608608 0 0
609609 8136.00 0.541359
610610 0 0
611611 17136.0i 1.13461i
612612 0 0
613613 − 4570.00i − 0.301110i −0.988602 0.150555i 0.951894π-0.951894\pi
0.988602 0.150555i 0.0481061π-0.0481061\pi
614614 0 0
615615 −564.000 −0.0369800
616616 0 0
617617 −17786.0 −1.16051 −0.580257 0.814433i 0.697048π-0.697048\pi
−0.580257 + 0.814433i 0.697048π0.697048\pi
618618 0 0
619619 15804.0i 1.02620i 0.858330 + 0.513099i 0.171503π0.171503\pi
−0.858330 + 0.513099i 0.828497π0.828497\pi
620620 0 0
621621 1296.00i 0.0837467i
622622 0 0
623623 18120.0 1.16527
624624 0 0
625625 14141.0 0.905024
626626 0 0
627627 23760.0i 1.51337i
628628 0 0
629629 − 3620.00i − 0.229474i
630630 0 0
631631 −18468.0 −1.16513 −0.582567 0.812783i 0.697952π-0.697952\pi
−0.582567 + 0.812783i 0.697952π0.697952\pi
632632 0 0
633633 −3636.00 −0.228307
634634 0 0
635635 4776.00i 0.298472i
636636 0 0
637637 − 8358.00i − 0.519868i
638638 0 0
639639 −9504.00 −0.588376
640640 0 0
641641 −7814.00 −0.481489 −0.240744 0.970589i 0.577392π-0.577392\pi
−0.240744 + 0.970589i 0.577392π0.577392\pi
642642 0 0
643643 5364.00i 0.328982i 0.986379 + 0.164491i 0.0525982π0.0525982\pi
−0.986379 + 0.164491i 0.947402π0.947402\pi
644644 0 0
645645 − 1368.00i − 0.0835115i
646646 0 0
647647 −3936.00 −0.239166 −0.119583 0.992824i 0.538156π-0.538156\pi
−0.119583 + 0.992824i 0.538156π0.538156\pi
648648 0 0
649649 18000.0 1.08869
650650 0 0
651651 9072.00i 0.546175i
652652 0 0
653653 − 7610.00i − 0.456053i −0.973655 0.228026i 0.926773π-0.926773\pi
0.973655 0.228026i 0.0732272π-0.0732272\pi
654654 0 0
655655 −792.000 −0.0472458
656656 0 0
657657 2970.00 0.176363
658658 0 0
659659 − 13620.0i − 0.805098i −0.915398 0.402549i 0.868124π-0.868124\pi
0.915398 0.402549i 0.131876π-0.131876\pi
660660 0 0
661661 8710.00i 0.512526i 0.966607 + 0.256263i 0.0824913π0.0824913\pi
−0.966607 + 0.256263i 0.917509π0.917509\pi
662662 0 0
663663 −1260.00 −0.0738075
664664 0 0
665665 −3168.00 −0.184736
666666 0 0
667667 10848.0i 0.629739i
668668 0 0
669669 − 6516.00i − 0.376567i
670670 0 0
671671 27960.0 1.60862
672672 0 0
673673 −12094.0 −0.692703 −0.346352 0.938105i 0.612580π-0.612580\pi
−0.346352 + 0.938105i 0.612580π0.612580\pi
674674 0 0
675675 − 3267.00i − 0.186292i
676676 0 0
677677 16466.0i 0.934771i 0.884054 + 0.467385i 0.154804π0.154804\pi
−0.884054 + 0.467385i 0.845196π0.845196\pi
678678 0 0
679679 7128.00 0.402868
680680 0 0
681681 11844.0 0.666466
682682 0 0
683683 − 16428.0i − 0.920351i −0.887828 0.460176i 0.847786π-0.847786\pi
0.887828 0.460176i 0.152214π-0.152214\pi
684684 0 0
685685 220.000i 0.0122712i
686686 0 0
687687 10566.0 0.586780
688688 0 0
689689 −14532.0 −0.803520
690690 0 0
691691 13332.0i 0.733970i 0.930227 + 0.366985i 0.119610π0.119610\pi
−0.930227 + 0.366985i 0.880390π0.880390\pi
692692 0 0
693693 6480.00i 0.355202i
694694 0 0
695695 −1464.00 −0.0799031
696696 0 0
697697 940.000 0.0510833
698698 0 0
699699 8322.00i 0.450310i
700700 0 0
701701 19118.0i 1.03007i 0.857170 + 0.515033i 0.172221π0.172221\pi
−0.857170 + 0.515033i 0.827779π0.827779\pi
702702 0 0
703703 47784.0 2.56360
704704 0 0
705705 −2448.00 −0.130776
706706 0 0
707707 6648.00i 0.353640i
708708 0 0
709709 798.000i 0.0422701i 0.999777 + 0.0211351i 0.00672800π0.00672800\pi
−0.999777 + 0.0211351i 0.993272π0.993272\pi
710710 0 0
711711 5508.00 0.290529
712712 0 0
713713 −12096.0 −0.635342
714714 0 0
715715 5040.00i 0.263616i
716716 0 0
717717 − 8352.00i − 0.435023i
718718 0 0
719719 8856.00 0.459351 0.229675 0.973267i 0.426234π-0.426234\pi
0.229675 + 0.973267i 0.426234π0.426234\pi
720720 0 0
721721 15408.0 0.795872
722722 0 0
723723 − 14058.0i − 0.723130i
724724 0 0
725725 − 27346.0i − 1.40083i
726726 0 0
727727 −13764.0 −0.702171 −0.351086 0.936343i 0.614187π-0.614187\pi
−0.351086 + 0.936343i 0.614187π0.614187\pi
728728 0 0
729729 −729.000 −0.0370370
730730 0 0
731731 2280.00i 0.115361i
732732 0 0
733733 20538.0i 1.03491i 0.855711 + 0.517455i 0.173120π0.173120\pi
−0.855711 + 0.517455i 0.826880π0.826880\pi
734734 0 0
735735 1194.00 0.0599202
736736 0 0
737737 12240.0 0.611759
738738 0 0
739739 15900.0i 0.791463i 0.918366 + 0.395731i 0.129509π0.129509\pi
−0.918366 + 0.395731i 0.870491π0.870491\pi
740740 0 0
741741 − 16632.0i − 0.824550i
742742 0 0
743743 −20856.0 −1.02979 −0.514894 0.857254i 0.672169π-0.672169\pi
−0.514894 + 0.857254i 0.672169π0.672169\pi
744744 0 0
745745 3868.00 0.190218
746746 0 0
747747 − 5076.00i − 0.248623i
748748 0 0
749749 16272.0i 0.793813i
750750 0 0
751751 10332.0 0.502024 0.251012 0.967984i 0.419237π-0.419237\pi
0.251012 + 0.967984i 0.419237π0.419237\pi
752752 0 0
753753 −7452.00 −0.360645
754754 0 0
755755 − 2184.00i − 0.105277i
756756 0 0
757757 13806.0i 0.662863i 0.943479 + 0.331432i 0.107532π0.107532\pi
−0.943479 + 0.331432i 0.892468π0.892468\pi
758758 0 0
759759 −8640.00 −0.413191
760760 0 0
761761 −15554.0 −0.740909 −0.370455 0.928851i 0.620798π-0.620798\pi
−0.370455 + 0.928851i 0.620798π0.620798\pi
762762 0 0
763763 − 4680.00i − 0.222054i
764764 0 0
765765 − 180.000i − 0.00850708i
766766 0 0
767767 −12600.0 −0.593168
768768 0 0
769769 13106.0 0.614583 0.307292 0.951615i 0.400577π-0.400577\pi
0.307292 + 0.951615i 0.400577π0.400577\pi
770770 0 0
771771 19974.0i 0.933004i
772772 0 0
773773 18874.0i 0.878203i 0.898438 + 0.439101i 0.144703π0.144703\pi
−0.898438 + 0.439101i 0.855297π0.855297\pi
774774 0 0
775775 30492.0 1.41330
776776 0 0
777777 13032.0 0.601699
778778 0 0
779779 12408.0i 0.570684i
780780 0 0
781781 − 63360.0i − 2.90294i
782782 0 0
783783 −6102.00 −0.278503
784784 0 0
785785 −1156.00 −0.0525598
786786 0 0
787787 15444.0i 0.699516i 0.936840 + 0.349758i 0.113736π0.113736\pi
−0.936840 + 0.349758i 0.886264π0.886264\pi
788788 0 0
789789 8712.00i 0.393099i
790790 0 0
791791 −9192.00 −0.413186
792792 0 0
793793 −19572.0 −0.876447
794794 0 0
795795 − 2076.00i − 0.0926140i
796796 0 0
797797 39286.0i 1.74602i 0.487698 + 0.873012i 0.337837π0.337837\pi
−0.487698 + 0.873012i 0.662163π0.662163\pi
798798 0 0
799799 4080.00 0.180651
800800 0 0
801801 −13590.0 −0.599474
802802 0 0
803803 19800.0i 0.870145i
804804 0 0
805805 − 1152.00i − 0.0504381i
806806 0 0
807807 −3018.00 −0.131646
808808 0 0
809809 −20018.0 −0.869957 −0.434979 0.900441i 0.643244π-0.643244\pi
−0.434979 + 0.900441i 0.643244π0.643244\pi
810810 0 0
811811 8388.00i 0.363184i 0.983374 + 0.181592i 0.0581251π0.0581251\pi
−0.983374 + 0.181592i 0.941875π0.941875\pi
812812 0 0
813813 − 2628.00i − 0.113368i
814814 0 0
815815 −5064.00 −0.217649
816816 0 0
817817 −30096.0 −1.28877
818818 0 0
819819 − 4536.00i − 0.193530i
820820 0 0
821821 − 37942.0i − 1.61289i −0.591307 0.806446i 0.701388π-0.701388\pi
0.591307 0.806446i 0.298612π-0.298612\pi
822822 0 0
823823 11628.0 0.492499 0.246249 0.969206i 0.420802π-0.420802\pi
0.246249 + 0.969206i 0.420802π0.420802\pi
824824 0 0
825825 21780.0 0.919130
826826 0 0
827827 − 32388.0i − 1.36184i −0.732358 0.680920i 0.761580π-0.761580\pi
0.732358 0.680920i 0.238420π-0.238420\pi
828828 0 0
829829 − 9846.00i − 0.412504i −0.978499 0.206252i 0.933873π-0.933873\pi
0.978499 0.206252i 0.0661266π-0.0661266\pi
830830 0 0
831831 −8154.00 −0.340384
832832 0 0
833833 −1990.00 −0.0827724
834834 0 0
835835 − 1296.00i − 0.0537125i
836836 0 0
837837 − 6804.00i − 0.280980i
838838 0 0
839839 16848.0 0.693275 0.346637 0.937999i 0.387323π-0.387323\pi
0.346637 + 0.937999i 0.387323π0.387323\pi
840840 0 0
841841 −26687.0 −1.09422
842842 0 0
843843 − 16062.0i − 0.656233i
844844 0 0
845845 866.000i 0.0352560i
846846 0 0
847847 −27228.0 −1.10456
848848 0 0
849849 −2340.00 −0.0945920
850850 0 0
851851 17376.0i 0.699931i
852852 0 0
853853 18214.0i 0.731108i 0.930790 + 0.365554i 0.119121π0.119121\pi
−0.930790 + 0.365554i 0.880879π0.880879\pi
854854 0 0
855855 2376.00 0.0950380
856856 0 0
857857 2446.00 0.0974956 0.0487478 0.998811i 0.484477π-0.484477\pi
0.0487478 + 0.998811i 0.484477π0.484477\pi
858858 0 0
859859 26244.0i 1.04241i 0.853430 + 0.521207i 0.174518π0.174518\pi
−0.853430 + 0.521207i 0.825482π0.825482\pi
860860 0 0
861861 3384.00i 0.133945i
862862 0 0
863863 −25248.0 −0.995889 −0.497944 0.867209i 0.665912π-0.665912\pi
−0.497944 + 0.867209i 0.665912π0.665912\pi
864864 0 0
865865 6676.00 0.262417
866866 0 0
867867 − 14439.0i − 0.565599i
868868 0 0
869869 36720.0i 1.43342i
870870 0 0
871871 −8568.00 −0.333313
872872 0 0
873873 −5346.00 −0.207256
874874 0 0
875875 5904.00i 0.228105i
876876 0 0
877877 34.0000i 0.00130912i 1.00000 0.000654560i 0.000208353π0.000208353\pi
−1.00000 0.000654560i 0.999792π0.999792\pi
878878 0 0
879879 10050.0 0.385641
880880 0 0
881881 −19022.0 −0.727432 −0.363716 0.931510i 0.618492π-0.618492\pi
−0.363716 + 0.931510i 0.618492π0.618492\pi
882882 0 0
883883 12852.0i 0.489812i 0.969547 + 0.244906i 0.0787571π0.0787571\pi
−0.969547 + 0.244906i 0.921243π0.921243\pi
884884 0 0
885885 − 1800.00i − 0.0683687i
886886 0 0
887887 40104.0 1.51811 0.759053 0.651028i 0.225662π-0.225662\pi
0.759053 + 0.651028i 0.225662π0.225662\pi
888888 0 0
889889 28656.0 1.08109
890890 0 0
891891 − 4860.00i − 0.182734i
892892 0 0
893893 53856.0i 2.01817i
894894 0 0
895895 −7608.00 −0.284142
896896 0 0
897897 6048.00 0.225125
898898 0 0
899899 − 56952.0i − 2.11285i
900900 0 0
901901 3460.00i 0.127935i
902902 0 0
903903 −8208.00 −0.302486
904904 0 0
905905 −3708.00 −0.136197
906906 0 0
907907 − 42540.0i − 1.55735i −0.627427 0.778676i 0.715892π-0.715892\pi
0.627427 0.778676i 0.284108π-0.284108\pi
908908 0 0
909909 − 4986.00i − 0.181931i
910910 0 0
911911 18528.0 0.673831 0.336915 0.941535i 0.390616π-0.390616\pi
0.336915 + 0.941535i 0.390616π0.390616\pi
912912 0 0
913913 33840.0 1.22666
914914 0 0
915915 − 2796.00i − 0.101020i
916916 0 0
917917 4752.00i 0.171129i
918918 0 0
919919 15756.0 0.565552 0.282776 0.959186i 0.408745π-0.408745\pi
0.282776 + 0.959186i 0.408745π0.408745\pi
920920 0 0
921921 28908.0 1.03426
922922 0 0
923923 44352.0i 1.58165i
924924 0 0
925925 − 43802.0i − 1.55697i
926926 0 0
927927 −11556.0 −0.409438
928928 0 0
929929 −15542.0 −0.548887 −0.274444 0.961603i 0.588494π-0.588494\pi
−0.274444 + 0.961603i 0.588494π0.588494\pi
930930 0 0
931931 − 26268.0i − 0.924703i
932932 0 0
933933 − 22680.0i − 0.795831i
934934 0 0
935935 1200.00 0.0419724
936936 0 0
937937 29702.0 1.03556 0.517781 0.855513i 0.326758π-0.326758\pi
0.517781 + 0.855513i 0.326758π0.326758\pi
938938 0 0
939939 10578.0i 0.367625i
940940 0 0
941941 − 2890.00i − 0.100118i −0.998746 0.0500591i 0.984059π-0.984059\pi
0.998746 0.0500591i 0.0159410π-0.0159410\pi
942942 0 0
943943 −4512.00 −0.155812
944944 0 0
945945 648.000 0.0223063
946946 0 0
947947 9180.00i 0.315005i 0.987519 + 0.157503i 0.0503443π0.0503443\pi
−0.987519 + 0.157503i 0.949656π0.949656\pi
948948 0 0
949949 − 13860.0i − 0.474093i
950950 0 0
951951 22902.0 0.780913
952952 0 0
953953 −37906.0 −1.28845 −0.644227 0.764835i 0.722821π-0.722821\pi
−0.644227 + 0.764835i 0.722821π0.722821\pi
954954 0 0
955955 − 2688.00i − 0.0910802i
956956 0 0
957957 − 40680.0i − 1.37408i
958958 0 0
959959 1320.00 0.0444474
960960 0 0
961961 33713.0 1.13165
962962 0 0
963963 − 12204.0i − 0.408378i
964964 0 0
965965 − 2524.00i − 0.0841973i
966966 0 0
967967 −41916.0 −1.39393 −0.696964 0.717106i 0.745466π-0.745466\pi
−0.696964 + 0.717106i 0.745466π0.745466\pi
968968 0 0
969969 −3960.00 −0.131283
970970 0 0
971971 7764.00i 0.256600i 0.991735 + 0.128300i 0.0409520π0.0409520\pi
−0.991735 + 0.128300i 0.959048π0.959048\pi
972972 0 0
973973 8784.00i 0.289416i
974974 0 0
975975 −15246.0 −0.500782
976976 0 0
977977 32666.0 1.06968 0.534840 0.844953i 0.320372π-0.320372\pi
0.534840 + 0.844953i 0.320372π0.320372\pi
978978 0 0
979979 − 90600.0i − 2.95770i
980980 0 0
981981 3510.00i 0.114236i
982982 0 0
983983 −53016.0 −1.72019 −0.860096 0.510133i 0.829596π-0.829596\pi
−0.860096 + 0.510133i 0.829596π0.829596\pi
984984 0 0
985985 8588.00 0.277803
986986 0 0
987987 14688.0i 0.473682i
988988 0 0
989989 − 10944.0i − 0.351870i
990990 0 0
991991 −17844.0 −0.571981 −0.285991 0.958232i 0.592323π-0.592323\pi
−0.285991 + 0.958232i 0.592323π0.592323\pi
992992 0 0
993993 22716.0 0.725952
994994 0 0
995995 8616.00i 0.274518i
996996 0 0
997997 − 55834.0i − 1.77360i −0.462152 0.886801i 0.652923π-0.652923\pi
0.462152 0.886801i 0.347077π-0.347077\pi
998998 0 0
999999 −9774.00 −0.309545
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.4.d.m.385.2 2
4.3 odd 2 768.4.d.d.385.1 2
8.3 odd 2 768.4.d.d.385.2 2
8.5 even 2 inner 768.4.d.m.385.1 2
16.3 odd 4 96.4.a.e.1.1 yes 1
16.5 even 4 192.4.a.j.1.1 1
16.11 odd 4 192.4.a.d.1.1 1
16.13 even 4 96.4.a.b.1.1 1
48.5 odd 4 576.4.a.n.1.1 1
48.11 even 4 576.4.a.o.1.1 1
48.29 odd 4 288.4.a.e.1.1 1
48.35 even 4 288.4.a.f.1.1 1
80.19 odd 4 2400.4.a.c.1.1 1
80.29 even 4 2400.4.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.4.a.b.1.1 1 16.13 even 4
96.4.a.e.1.1 yes 1 16.3 odd 4
192.4.a.d.1.1 1 16.11 odd 4
192.4.a.j.1.1 1 16.5 even 4
288.4.a.e.1.1 1 48.29 odd 4
288.4.a.f.1.1 1 48.35 even 4
576.4.a.n.1.1 1 48.5 odd 4
576.4.a.o.1.1 1 48.11 even 4
768.4.d.d.385.1 2 4.3 odd 2
768.4.d.d.385.2 2 8.3 odd 2
768.4.d.m.385.1 2 8.5 even 2 inner
768.4.d.m.385.2 2 1.1 even 1 trivial
2400.4.a.c.1.1 1 80.19 odd 4
2400.4.a.t.1.1 1 80.29 even 4