Properties

Label 77.4.a.c.1.1
Level $77$
Weight $4$
Character 77.1
Self dual yes
Analytic conductor $4.543$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [77,4,Mod(1,77)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(77, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("77.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 77.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.54314707044\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.59222\) of defining polynomial
Character \(\chi\) \(=\) 77.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.05706 q^{2} -9.64416 q^{3} +17.5738 q^{4} +12.9427 q^{5} +48.7711 q^{6} -7.00000 q^{7} -48.4155 q^{8} +66.0098 q^{9} -65.4521 q^{10} +11.0000 q^{11} -169.485 q^{12} -55.5473 q^{13} +35.3994 q^{14} -124.822 q^{15} +104.249 q^{16} +59.2511 q^{17} -333.816 q^{18} -33.1777 q^{19} +227.453 q^{20} +67.5091 q^{21} -55.6276 q^{22} +26.0532 q^{23} +466.927 q^{24} +42.5139 q^{25} +280.906 q^{26} -376.217 q^{27} -123.017 q^{28} -188.479 q^{29} +631.230 q^{30} -278.333 q^{31} -139.870 q^{32} -106.086 q^{33} -299.636 q^{34} -90.5990 q^{35} +1160.05 q^{36} +201.567 q^{37} +167.781 q^{38} +535.707 q^{39} -626.628 q^{40} -126.784 q^{41} -341.398 q^{42} -454.826 q^{43} +193.312 q^{44} +854.347 q^{45} -131.753 q^{46} -129.710 q^{47} -1005.40 q^{48} +49.0000 q^{49} -214.995 q^{50} -571.427 q^{51} -976.179 q^{52} +79.8855 q^{53} +1902.55 q^{54} +142.370 q^{55} +338.908 q^{56} +319.971 q^{57} +953.150 q^{58} -593.670 q^{59} -2193.60 q^{60} -49.8622 q^{61} +1407.55 q^{62} -462.069 q^{63} -126.661 q^{64} -718.932 q^{65} +536.482 q^{66} +295.997 q^{67} +1041.27 q^{68} -251.262 q^{69} +458.164 q^{70} +546.422 q^{71} -3195.90 q^{72} -809.232 q^{73} -1019.34 q^{74} -410.011 q^{75} -583.059 q^{76} -77.0000 q^{77} -2709.10 q^{78} -375.244 q^{79} +1349.27 q^{80} +1846.03 q^{81} +641.154 q^{82} +85.9037 q^{83} +1186.39 q^{84} +766.870 q^{85} +2300.08 q^{86} +1817.72 q^{87} -532.570 q^{88} +750.306 q^{89} -4320.48 q^{90} +388.831 q^{91} +457.856 q^{92} +2684.29 q^{93} +655.953 q^{94} -429.409 q^{95} +1348.93 q^{96} -451.876 q^{97} -247.796 q^{98} +726.108 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9} - 92 q^{10} + 44 q^{11} - 186 q^{12} - 134 q^{13} + 28 q^{14} - 62 q^{15} - 6 q^{16} - 74 q^{17} - 256 q^{18} - 164 q^{19}+ \cdots + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.05706 −1.78794 −0.893970 0.448127i \(-0.852091\pi\)
−0.893970 + 0.448127i \(0.852091\pi\)
\(3\) −9.64416 −1.85602 −0.928010 0.372556i \(-0.878482\pi\)
−0.928010 + 0.372556i \(0.878482\pi\)
\(4\) 17.5738 2.19673
\(5\) 12.9427 1.15763 0.578816 0.815458i \(-0.303515\pi\)
0.578816 + 0.815458i \(0.303515\pi\)
\(6\) 48.7711 3.31845
\(7\) −7.00000 −0.377964
\(8\) −48.4155 −2.13968
\(9\) 66.0098 2.44481
\(10\) −65.4521 −2.06978
\(11\) 11.0000 0.301511
\(12\) −169.485 −4.07717
\(13\) −55.5473 −1.18508 −0.592540 0.805541i \(-0.701875\pi\)
−0.592540 + 0.805541i \(0.701875\pi\)
\(14\) 35.3994 0.675778
\(15\) −124.822 −2.14859
\(16\) 104.249 1.62889
\(17\) 59.2511 0.845324 0.422662 0.906287i \(-0.361096\pi\)
0.422662 + 0.906287i \(0.361096\pi\)
\(18\) −333.816 −4.37117
\(19\) −33.1777 −0.400604 −0.200302 0.979734i \(-0.564192\pi\)
−0.200302 + 0.979734i \(0.564192\pi\)
\(20\) 227.453 2.54300
\(21\) 67.5091 0.701510
\(22\) −55.6276 −0.539084
\(23\) 26.0532 0.236195 0.118097 0.993002i \(-0.462321\pi\)
0.118097 + 0.993002i \(0.462321\pi\)
\(24\) 466.927 3.97129
\(25\) 42.5139 0.340111
\(26\) 280.906 2.11885
\(27\) −376.217 −2.68159
\(28\) −123.017 −0.830286
\(29\) −188.479 −1.20689 −0.603443 0.797406i \(-0.706205\pi\)
−0.603443 + 0.797406i \(0.706205\pi\)
\(30\) 631.230 3.84155
\(31\) −278.333 −1.61259 −0.806293 0.591516i \(-0.798529\pi\)
−0.806293 + 0.591516i \(0.798529\pi\)
\(32\) −139.870 −0.772682
\(33\) −106.086 −0.559611
\(34\) −299.636 −1.51139
\(35\) −90.5990 −0.437544
\(36\) 1160.05 5.37059
\(37\) 201.567 0.895608 0.447804 0.894132i \(-0.352206\pi\)
0.447804 + 0.894132i \(0.352206\pi\)
\(38\) 167.781 0.716256
\(39\) 535.707 2.19953
\(40\) −626.628 −2.47696
\(41\) −126.784 −0.482935 −0.241467 0.970409i \(-0.577629\pi\)
−0.241467 + 0.970409i \(0.577629\pi\)
\(42\) −341.398 −1.25426
\(43\) −454.826 −1.61303 −0.806514 0.591214i \(-0.798649\pi\)
−0.806514 + 0.591214i \(0.798649\pi\)
\(44\) 193.312 0.662339
\(45\) 854.347 2.83019
\(46\) −131.753 −0.422302
\(47\) −129.710 −0.402558 −0.201279 0.979534i \(-0.564510\pi\)
−0.201279 + 0.979534i \(0.564510\pi\)
\(48\) −1005.40 −3.02326
\(49\) 49.0000 0.142857
\(50\) −214.995 −0.608098
\(51\) −571.427 −1.56894
\(52\) −976.179 −2.60330
\(53\) 79.8855 0.207040 0.103520 0.994627i \(-0.466989\pi\)
0.103520 + 0.994627i \(0.466989\pi\)
\(54\) 1902.55 4.79453
\(55\) 142.370 0.349039
\(56\) 338.908 0.808724
\(57\) 319.971 0.743529
\(58\) 953.150 2.15784
\(59\) −593.670 −1.30999 −0.654994 0.755634i \(-0.727329\pi\)
−0.654994 + 0.755634i \(0.727329\pi\)
\(60\) −2193.60 −4.71987
\(61\) −49.8622 −0.104659 −0.0523295 0.998630i \(-0.516665\pi\)
−0.0523295 + 0.998630i \(0.516665\pi\)
\(62\) 1407.55 2.88321
\(63\) −462.069 −0.924051
\(64\) −126.661 −0.247385
\(65\) −718.932 −1.37189
\(66\) 536.482 1.00055
\(67\) 295.997 0.539728 0.269864 0.962898i \(-0.413021\pi\)
0.269864 + 0.962898i \(0.413021\pi\)
\(68\) 1041.27 1.85695
\(69\) −251.262 −0.438382
\(70\) 458.164 0.782302
\(71\) 546.422 0.913357 0.456679 0.889632i \(-0.349039\pi\)
0.456679 + 0.889632i \(0.349039\pi\)
\(72\) −3195.90 −5.23111
\(73\) −809.232 −1.29744 −0.648722 0.761025i \(-0.724696\pi\)
−0.648722 + 0.761025i \(0.724696\pi\)
\(74\) −1019.34 −1.60129
\(75\) −410.011 −0.631253
\(76\) −583.059 −0.880019
\(77\) −77.0000 −0.113961
\(78\) −2709.10 −3.93263
\(79\) −375.244 −0.534408 −0.267204 0.963640i \(-0.586100\pi\)
−0.267204 + 0.963640i \(0.586100\pi\)
\(80\) 1349.27 1.88566
\(81\) 1846.03 2.53228
\(82\) 641.154 0.863459
\(83\) 85.9037 0.113604 0.0568022 0.998385i \(-0.481910\pi\)
0.0568022 + 0.998385i \(0.481910\pi\)
\(84\) 1186.39 1.54103
\(85\) 766.870 0.978574
\(86\) 2300.08 2.88400
\(87\) 1817.72 2.24000
\(88\) −532.570 −0.645138
\(89\) 750.306 0.893621 0.446810 0.894629i \(-0.352560\pi\)
0.446810 + 0.894629i \(0.352560\pi\)
\(90\) −4320.48 −5.06021
\(91\) 388.831 0.447918
\(92\) 457.856 0.518856
\(93\) 2684.29 2.99299
\(94\) 655.953 0.719749
\(95\) −429.409 −0.463752
\(96\) 1348.93 1.43411
\(97\) −451.876 −0.473001 −0.236500 0.971631i \(-0.576000\pi\)
−0.236500 + 0.971631i \(0.576000\pi\)
\(98\) −247.796 −0.255420
\(99\) 726.108 0.737138
\(100\) 747.132 0.747132
\(101\) −1414.20 −1.39325 −0.696626 0.717434i \(-0.745316\pi\)
−0.696626 + 0.717434i \(0.745316\pi\)
\(102\) 2889.74 2.80517
\(103\) −27.8798 −0.0266707 −0.0133354 0.999911i \(-0.504245\pi\)
−0.0133354 + 0.999911i \(0.504245\pi\)
\(104\) 2689.35 2.53569
\(105\) 873.751 0.812090
\(106\) −403.985 −0.370175
\(107\) −778.142 −0.703045 −0.351523 0.936179i \(-0.614336\pi\)
−0.351523 + 0.936179i \(0.614336\pi\)
\(108\) −6611.58 −5.89074
\(109\) −219.545 −0.192923 −0.0964615 0.995337i \(-0.530752\pi\)
−0.0964615 + 0.995337i \(0.530752\pi\)
\(110\) −719.973 −0.624061
\(111\) −1943.95 −1.66227
\(112\) −729.744 −0.615664
\(113\) 607.402 0.505660 0.252830 0.967511i \(-0.418639\pi\)
0.252830 + 0.967511i \(0.418639\pi\)
\(114\) −1618.11 −1.32939
\(115\) 337.200 0.273426
\(116\) −3312.30 −2.65120
\(117\) −3666.67 −2.89729
\(118\) 3002.22 2.34218
\(119\) −414.758 −0.319502
\(120\) 6043.30 4.59729
\(121\) 121.000 0.0909091
\(122\) 252.156 0.187124
\(123\) 1222.73 0.896337
\(124\) −4891.39 −3.54242
\(125\) −1067.59 −0.763908
\(126\) 2336.71 1.65215
\(127\) 1949.05 1.36181 0.680905 0.732372i \(-0.261587\pi\)
0.680905 + 0.732372i \(0.261587\pi\)
\(128\) 1759.49 1.21499
\(129\) 4386.41 2.99381
\(130\) 3635.68 2.45285
\(131\) −1782.57 −1.18888 −0.594442 0.804138i \(-0.702627\pi\)
−0.594442 + 0.804138i \(0.702627\pi\)
\(132\) −1864.33 −1.22931
\(133\) 232.244 0.151414
\(134\) −1496.87 −0.965001
\(135\) −4869.27 −3.10430
\(136\) −2868.67 −1.80872
\(137\) −3080.56 −1.92109 −0.960546 0.278120i \(-0.910289\pi\)
−0.960546 + 0.278120i \(0.910289\pi\)
\(138\) 1270.65 0.783801
\(139\) 1171.35 0.714769 0.357384 0.933957i \(-0.383669\pi\)
0.357384 + 0.933957i \(0.383669\pi\)
\(140\) −1592.17 −0.961165
\(141\) 1250.95 0.747155
\(142\) −2763.29 −1.63303
\(143\) −611.020 −0.357315
\(144\) 6881.47 3.98233
\(145\) −2439.43 −1.39713
\(146\) 4092.33 2.31975
\(147\) −472.564 −0.265146
\(148\) 3542.31 1.96741
\(149\) 1237.66 0.680492 0.340246 0.940337i \(-0.389490\pi\)
0.340246 + 0.940337i \(0.389490\pi\)
\(150\) 2073.45 1.12864
\(151\) 1581.62 0.852388 0.426194 0.904632i \(-0.359854\pi\)
0.426194 + 0.904632i \(0.359854\pi\)
\(152\) 1606.31 0.857165
\(153\) 3911.16 2.06666
\(154\) 389.394 0.203755
\(155\) −3602.39 −1.86678
\(156\) 9414.42 4.83178
\(157\) −3209.77 −1.63164 −0.815821 0.578304i \(-0.803715\pi\)
−0.815821 + 0.578304i \(0.803715\pi\)
\(158\) 1897.63 0.955489
\(159\) −770.428 −0.384270
\(160\) −1810.30 −0.894481
\(161\) −182.373 −0.0892732
\(162\) −9335.50 −4.52757
\(163\) −139.967 −0.0672579 −0.0336290 0.999434i \(-0.510706\pi\)
−0.0336290 + 0.999434i \(0.510706\pi\)
\(164\) −2228.08 −1.06088
\(165\) −1373.04 −0.647823
\(166\) −434.420 −0.203118
\(167\) 1425.74 0.660641 0.330320 0.943869i \(-0.392843\pi\)
0.330320 + 0.943869i \(0.392843\pi\)
\(168\) −3268.49 −1.50101
\(169\) 888.497 0.404414
\(170\) −3878.11 −1.74963
\(171\) −2190.05 −0.979400
\(172\) −7993.03 −3.54339
\(173\) 1527.01 0.671077 0.335538 0.942027i \(-0.391082\pi\)
0.335538 + 0.942027i \(0.391082\pi\)
\(174\) −9192.33 −4.00499
\(175\) −297.597 −0.128550
\(176\) 1146.74 0.491130
\(177\) 5725.45 2.43136
\(178\) −3794.34 −1.59774
\(179\) 4512.37 1.88419 0.942095 0.335346i \(-0.108853\pi\)
0.942095 + 0.335346i \(0.108853\pi\)
\(180\) 15014.2 6.21716
\(181\) −2973.55 −1.22112 −0.610559 0.791970i \(-0.709055\pi\)
−0.610559 + 0.791970i \(0.709055\pi\)
\(182\) −1966.34 −0.800851
\(183\) 480.879 0.194249
\(184\) −1261.38 −0.505381
\(185\) 2608.83 1.03678
\(186\) −13574.6 −5.35129
\(187\) 651.762 0.254875
\(188\) −2279.51 −0.884311
\(189\) 2633.52 1.01355
\(190\) 2171.55 0.829161
\(191\) −1275.56 −0.483225 −0.241613 0.970373i \(-0.577676\pi\)
−0.241613 + 0.970373i \(0.577676\pi\)
\(192\) 1221.54 0.459151
\(193\) −121.983 −0.0454950 −0.0227475 0.999741i \(-0.507241\pi\)
−0.0227475 + 0.999741i \(0.507241\pi\)
\(194\) 2285.17 0.845697
\(195\) 6933.50 2.54625
\(196\) 861.118 0.313819
\(197\) −3483.97 −1.26001 −0.630007 0.776589i \(-0.716948\pi\)
−0.630007 + 0.776589i \(0.716948\pi\)
\(198\) −3671.97 −1.31796
\(199\) 2655.65 0.946002 0.473001 0.881062i \(-0.343171\pi\)
0.473001 + 0.881062i \(0.343171\pi\)
\(200\) −2058.33 −0.727730
\(201\) −2854.64 −1.00175
\(202\) 7151.71 2.49105
\(203\) 1319.35 0.456160
\(204\) −10042.2 −3.44653
\(205\) −1640.93 −0.559061
\(206\) 140.990 0.0476856
\(207\) 1719.77 0.577451
\(208\) −5790.75 −1.93037
\(209\) −364.954 −0.120787
\(210\) −4418.61 −1.45197
\(211\) 1909.91 0.623147 0.311573 0.950222i \(-0.399144\pi\)
0.311573 + 0.950222i \(0.399144\pi\)
\(212\) 1403.89 0.454811
\(213\) −5269.78 −1.69521
\(214\) 3935.11 1.25700
\(215\) −5886.68 −1.86729
\(216\) 18214.7 5.73776
\(217\) 1948.33 0.609500
\(218\) 1110.25 0.344935
\(219\) 7804.37 2.40808
\(220\) 2501.99 0.766745
\(221\) −3291.24 −1.00178
\(222\) 9830.66 2.97203
\(223\) −4381.22 −1.31564 −0.657821 0.753174i \(-0.728522\pi\)
−0.657821 + 0.753174i \(0.728522\pi\)
\(224\) 979.092 0.292046
\(225\) 2806.33 0.831507
\(226\) −3071.67 −0.904090
\(227\) 1711.28 0.500359 0.250180 0.968199i \(-0.419510\pi\)
0.250180 + 0.968199i \(0.419510\pi\)
\(228\) 5623.11 1.63333
\(229\) 2617.84 0.755423 0.377712 0.925923i \(-0.376711\pi\)
0.377712 + 0.925923i \(0.376711\pi\)
\(230\) −1705.24 −0.488870
\(231\) 742.600 0.211513
\(232\) 9125.31 2.58235
\(233\) 3593.09 1.01026 0.505131 0.863043i \(-0.331444\pi\)
0.505131 + 0.863043i \(0.331444\pi\)
\(234\) 18542.5 5.18019
\(235\) −1678.81 −0.466014
\(236\) −10433.1 −2.87769
\(237\) 3618.91 0.991871
\(238\) 2097.45 0.571251
\(239\) 1841.19 0.498312 0.249156 0.968463i \(-0.419847\pi\)
0.249156 + 0.968463i \(0.419847\pi\)
\(240\) −13012.6 −3.49982
\(241\) 2209.45 0.590552 0.295276 0.955412i \(-0.404588\pi\)
0.295276 + 0.955412i \(0.404588\pi\)
\(242\) −611.904 −0.162540
\(243\) −7645.58 −2.01837
\(244\) −876.270 −0.229907
\(245\) 634.193 0.165376
\(246\) −6183.39 −1.60260
\(247\) 1842.93 0.474748
\(248\) 13475.6 3.45042
\(249\) −828.469 −0.210852
\(250\) 5398.89 1.36582
\(251\) 1066.68 0.268240 0.134120 0.990965i \(-0.457179\pi\)
0.134120 + 0.990965i \(0.457179\pi\)
\(252\) −8120.33 −2.02989
\(253\) 286.586 0.0712154
\(254\) −9856.44 −2.43483
\(255\) −7395.82 −1.81625
\(256\) −7884.58 −1.92495
\(257\) 2990.18 0.725769 0.362884 0.931834i \(-0.381792\pi\)
0.362884 + 0.931834i \(0.381792\pi\)
\(258\) −22182.3 −5.35276
\(259\) −1410.97 −0.338508
\(260\) −12634.4 −3.01366
\(261\) −12441.5 −2.95061
\(262\) 9014.56 2.12565
\(263\) 4240.32 0.994181 0.497090 0.867699i \(-0.334402\pi\)
0.497090 + 0.867699i \(0.334402\pi\)
\(264\) 5136.19 1.19739
\(265\) 1033.93 0.239676
\(266\) −1174.47 −0.270719
\(267\) −7236.07 −1.65858
\(268\) 5201.80 1.18564
\(269\) 5364.21 1.21584 0.607922 0.793997i \(-0.292003\pi\)
0.607922 + 0.793997i \(0.292003\pi\)
\(270\) 24624.2 5.55030
\(271\) 1476.11 0.330876 0.165438 0.986220i \(-0.447096\pi\)
0.165438 + 0.986220i \(0.447096\pi\)
\(272\) 6176.88 1.37694
\(273\) −3749.95 −0.831345
\(274\) 15578.6 3.43480
\(275\) 467.653 0.102547
\(276\) −4415.63 −0.963007
\(277\) 2371.67 0.514439 0.257219 0.966353i \(-0.417194\pi\)
0.257219 + 0.966353i \(0.417194\pi\)
\(278\) −5923.60 −1.27796
\(279\) −18372.7 −3.94246
\(280\) 4386.39 0.936204
\(281\) −1619.54 −0.343821 −0.171911 0.985113i \(-0.554994\pi\)
−0.171911 + 0.985113i \(0.554994\pi\)
\(282\) −6326.12 −1.33587
\(283\) −3779.82 −0.793947 −0.396973 0.917830i \(-0.629939\pi\)
−0.396973 + 0.917830i \(0.629939\pi\)
\(284\) 9602.73 2.00640
\(285\) 4141.29 0.860733
\(286\) 3089.96 0.638858
\(287\) 887.488 0.182532
\(288\) −9232.82 −1.88906
\(289\) −1402.31 −0.285427
\(290\) 12336.4 2.49798
\(291\) 4357.97 0.877899
\(292\) −14221.3 −2.85014
\(293\) 2884.18 0.575070 0.287535 0.957770i \(-0.407164\pi\)
0.287535 + 0.957770i \(0.407164\pi\)
\(294\) 2389.78 0.474065
\(295\) −7683.70 −1.51648
\(296\) −9758.98 −1.91632
\(297\) −4138.39 −0.808531
\(298\) −6258.93 −1.21668
\(299\) −1447.19 −0.279909
\(300\) −7205.46 −1.38669
\(301\) 3183.78 0.609668
\(302\) −7998.35 −1.52402
\(303\) 13638.8 2.58590
\(304\) −3458.74 −0.652541
\(305\) −645.352 −0.121156
\(306\) −19779.0 −3.69506
\(307\) −4242.88 −0.788774 −0.394387 0.918944i \(-0.629043\pi\)
−0.394387 + 0.918944i \(0.629043\pi\)
\(308\) −1353.19 −0.250341
\(309\) 268.878 0.0495013
\(310\) 18217.5 3.33769
\(311\) −9658.23 −1.76099 −0.880495 0.474055i \(-0.842790\pi\)
−0.880495 + 0.474055i \(0.842790\pi\)
\(312\) −25936.5 −4.70630
\(313\) 10683.6 1.92930 0.964651 0.263529i \(-0.0848866\pi\)
0.964651 + 0.263529i \(0.0848866\pi\)
\(314\) 16232.0 2.91728
\(315\) −5980.43 −1.06971
\(316\) −6594.47 −1.17395
\(317\) −2077.90 −0.368160 −0.184080 0.982911i \(-0.558931\pi\)
−0.184080 + 0.982911i \(0.558931\pi\)
\(318\) 3896.10 0.687052
\(319\) −2073.27 −0.363890
\(320\) −1639.34 −0.286380
\(321\) 7504.53 1.30487
\(322\) 922.269 0.159615
\(323\) −1965.81 −0.338640
\(324\) 32441.9 5.56274
\(325\) −2361.53 −0.403059
\(326\) 707.820 0.120253
\(327\) 2117.33 0.358069
\(328\) 6138.31 1.03333
\(329\) 907.973 0.152153
\(330\) 6943.53 1.15827
\(331\) −11020.5 −1.83004 −0.915019 0.403410i \(-0.867825\pi\)
−0.915019 + 0.403410i \(0.867825\pi\)
\(332\) 1509.66 0.249558
\(333\) 13305.4 2.18959
\(334\) −7210.05 −1.18119
\(335\) 3831.00 0.624806
\(336\) 7037.77 1.14268
\(337\) −5932.54 −0.958950 −0.479475 0.877556i \(-0.659173\pi\)
−0.479475 + 0.877556i \(0.659173\pi\)
\(338\) −4493.18 −0.723068
\(339\) −5857.88 −0.938515
\(340\) 13476.9 2.14966
\(341\) −3061.67 −0.486213
\(342\) 11075.2 1.75111
\(343\) −343.000 −0.0539949
\(344\) 22020.6 3.45137
\(345\) −3252.01 −0.507485
\(346\) −7722.17 −1.19985
\(347\) −4115.57 −0.636701 −0.318351 0.947973i \(-0.603129\pi\)
−0.318351 + 0.947973i \(0.603129\pi\)
\(348\) 31944.4 4.92069
\(349\) −3760.31 −0.576746 −0.288373 0.957518i \(-0.593114\pi\)
−0.288373 + 0.957518i \(0.593114\pi\)
\(350\) 1504.97 0.229840
\(351\) 20897.8 3.17790
\(352\) −1538.57 −0.232972
\(353\) −888.701 −0.133997 −0.0669983 0.997753i \(-0.521342\pi\)
−0.0669983 + 0.997753i \(0.521342\pi\)
\(354\) −28953.9 −4.34713
\(355\) 7072.18 1.05733
\(356\) 13185.8 1.96304
\(357\) 3999.99 0.593003
\(358\) −22819.3 −3.36882
\(359\) 10561.1 1.55263 0.776314 0.630347i \(-0.217087\pi\)
0.776314 + 0.630347i \(0.217087\pi\)
\(360\) −41363.6 −6.05570
\(361\) −5758.24 −0.839516
\(362\) 15037.4 2.18329
\(363\) −1166.94 −0.168729
\(364\) 6833.25 0.983955
\(365\) −10473.7 −1.50196
\(366\) −2431.83 −0.347306
\(367\) 2773.62 0.394500 0.197250 0.980353i \(-0.436799\pi\)
0.197250 + 0.980353i \(0.436799\pi\)
\(368\) 2716.03 0.384736
\(369\) −8368.99 −1.18068
\(370\) −13193.0 −1.85371
\(371\) −559.198 −0.0782537
\(372\) 47173.3 6.57479
\(373\) −11360.2 −1.57697 −0.788484 0.615056i \(-0.789134\pi\)
−0.788484 + 0.615056i \(0.789134\pi\)
\(374\) −3296.00 −0.455701
\(375\) 10296.1 1.41783
\(376\) 6279.99 0.861346
\(377\) 10469.5 1.43026
\(378\) −13317.9 −1.81216
\(379\) −10948.5 −1.48387 −0.741936 0.670470i \(-0.766092\pi\)
−0.741936 + 0.670470i \(0.766092\pi\)
\(380\) −7546.37 −1.01874
\(381\) −18796.9 −2.52755
\(382\) 6450.56 0.863978
\(383\) 11122.1 1.48385 0.741923 0.670485i \(-0.233914\pi\)
0.741923 + 0.670485i \(0.233914\pi\)
\(384\) −16968.8 −2.25505
\(385\) −996.589 −0.131924
\(386\) 616.875 0.0813423
\(387\) −30023.0 −3.94355
\(388\) −7941.20 −1.03906
\(389\) −7938.70 −1.03473 −0.517363 0.855766i \(-0.673086\pi\)
−0.517363 + 0.855766i \(0.673086\pi\)
\(390\) −35063.1 −4.55254
\(391\) 1543.68 0.199661
\(392\) −2372.36 −0.305669
\(393\) 17191.4 2.20659
\(394\) 17618.7 2.25283
\(395\) −4856.67 −0.618647
\(396\) 12760.5 1.61929
\(397\) 1060.60 0.134080 0.0670402 0.997750i \(-0.478644\pi\)
0.0670402 + 0.997750i \(0.478644\pi\)
\(398\) −13429.8 −1.69139
\(399\) −2239.79 −0.281028
\(400\) 4432.04 0.554005
\(401\) −2776.24 −0.345733 −0.172866 0.984945i \(-0.555303\pi\)
−0.172866 + 0.984945i \(0.555303\pi\)
\(402\) 14436.1 1.79106
\(403\) 15460.7 1.91104
\(404\) −24853.0 −3.06060
\(405\) 23892.7 2.93145
\(406\) −6672.05 −0.815587
\(407\) 2217.24 0.270036
\(408\) 27665.9 3.35703
\(409\) 8725.98 1.05494 0.527472 0.849573i \(-0.323140\pi\)
0.527472 + 0.849573i \(0.323140\pi\)
\(410\) 8298.27 0.999567
\(411\) 29709.4 3.56559
\(412\) −489.956 −0.0585883
\(413\) 4155.69 0.495129
\(414\) −8696.98 −1.03245
\(415\) 1111.83 0.131512
\(416\) 7769.41 0.915689
\(417\) −11296.7 −1.32662
\(418\) 1845.59 0.215959
\(419\) −2390.49 −0.278719 −0.139359 0.990242i \(-0.544504\pi\)
−0.139359 + 0.990242i \(0.544504\pi\)
\(420\) 15355.2 1.78394
\(421\) −8626.42 −0.998636 −0.499318 0.866419i \(-0.666416\pi\)
−0.499318 + 0.866419i \(0.666416\pi\)
\(422\) −9658.55 −1.11415
\(423\) −8562.17 −0.984177
\(424\) −3867.69 −0.442999
\(425\) 2519.00 0.287504
\(426\) 26649.6 3.03093
\(427\) 349.035 0.0395574
\(428\) −13674.9 −1.54440
\(429\) 5892.77 0.663184
\(430\) 29769.3 3.33861
\(431\) 4143.05 0.463025 0.231512 0.972832i \(-0.425633\pi\)
0.231512 + 0.972832i \(0.425633\pi\)
\(432\) −39220.3 −4.36803
\(433\) 161.696 0.0179460 0.00897302 0.999960i \(-0.497144\pi\)
0.00897302 + 0.999960i \(0.497144\pi\)
\(434\) −9852.84 −1.08975
\(435\) 23526.3 2.59310
\(436\) −3858.25 −0.423800
\(437\) −864.386 −0.0946205
\(438\) −39467.1 −4.30551
\(439\) 12921.0 1.40475 0.702376 0.711806i \(-0.252123\pi\)
0.702376 + 0.711806i \(0.252123\pi\)
\(440\) −6892.90 −0.746833
\(441\) 3234.48 0.349258
\(442\) 16644.0 1.79112
\(443\) −10175.2 −1.09128 −0.545640 0.838020i \(-0.683713\pi\)
−0.545640 + 0.838020i \(0.683713\pi\)
\(444\) −34162.7 −3.65155
\(445\) 9711.00 1.03448
\(446\) 22156.1 2.35229
\(447\) −11936.2 −1.26301
\(448\) 886.626 0.0935026
\(449\) 3995.27 0.419930 0.209965 0.977709i \(-0.432665\pi\)
0.209965 + 0.977709i \(0.432665\pi\)
\(450\) −14191.8 −1.48668
\(451\) −1394.62 −0.145610
\(452\) 10674.4 1.11080
\(453\) −15253.4 −1.58205
\(454\) −8654.04 −0.894613
\(455\) 5032.53 0.518524
\(456\) −15491.5 −1.59092
\(457\) 12445.5 1.27391 0.636956 0.770900i \(-0.280193\pi\)
0.636956 + 0.770900i \(0.280193\pi\)
\(458\) −13238.6 −1.35065
\(459\) −22291.3 −2.26682
\(460\) 5925.89 0.600644
\(461\) 11977.5 1.21009 0.605043 0.796193i \(-0.293156\pi\)
0.605043 + 0.796193i \(0.293156\pi\)
\(462\) −3755.37 −0.378173
\(463\) 17335.0 1.74002 0.870009 0.493037i \(-0.164113\pi\)
0.870009 + 0.493037i \(0.164113\pi\)
\(464\) −19648.8 −1.96589
\(465\) 34742.0 3.46478
\(466\) −18170.4 −1.80629
\(467\) 4014.05 0.397747 0.198874 0.980025i \(-0.436272\pi\)
0.198874 + 0.980025i \(0.436272\pi\)
\(468\) −64437.4 −6.36457
\(469\) −2071.98 −0.203998
\(470\) 8489.82 0.833204
\(471\) 30955.6 3.02836
\(472\) 28742.8 2.80296
\(473\) −5003.08 −0.486346
\(474\) −18301.0 −1.77341
\(475\) −1410.51 −0.136250
\(476\) −7288.89 −0.701861
\(477\) 5273.23 0.506173
\(478\) −9310.99 −0.890952
\(479\) −6809.91 −0.649588 −0.324794 0.945785i \(-0.605295\pi\)
−0.324794 + 0.945785i \(0.605295\pi\)
\(480\) 17458.8 1.66017
\(481\) −11196.5 −1.06137
\(482\) −11173.3 −1.05587
\(483\) 1758.83 0.165693
\(484\) 2126.43 0.199703
\(485\) −5848.51 −0.547561
\(486\) 38664.2 3.60873
\(487\) −16342.2 −1.52060 −0.760302 0.649570i \(-0.774949\pi\)
−0.760302 + 0.649570i \(0.774949\pi\)
\(488\) 2414.10 0.223937
\(489\) 1349.86 0.124832
\(490\) −3207.15 −0.295682
\(491\) 1686.53 0.155014 0.0775070 0.996992i \(-0.475304\pi\)
0.0775070 + 0.996992i \(0.475304\pi\)
\(492\) 21488.0 1.96901
\(493\) −11167.6 −1.02021
\(494\) −9319.79 −0.848821
\(495\) 9397.81 0.853334
\(496\) −29016.0 −2.62673
\(497\) −3824.95 −0.345217
\(498\) 4189.62 0.376991
\(499\) 1992.19 0.178723 0.0893616 0.995999i \(-0.471517\pi\)
0.0893616 + 0.995999i \(0.471517\pi\)
\(500\) −18761.7 −1.67810
\(501\) −13750.1 −1.22616
\(502\) −5394.27 −0.479597
\(503\) 11525.3 1.02165 0.510824 0.859685i \(-0.329340\pi\)
0.510824 + 0.859685i \(0.329340\pi\)
\(504\) 22371.3 1.97718
\(505\) −18303.6 −1.61287
\(506\) −1449.28 −0.127329
\(507\) −8568.81 −0.750600
\(508\) 34252.2 2.99153
\(509\) −12191.9 −1.06168 −0.530842 0.847471i \(-0.678124\pi\)
−0.530842 + 0.847471i \(0.678124\pi\)
\(510\) 37401.1 3.24735
\(511\) 5664.63 0.490388
\(512\) 25796.8 2.22670
\(513\) 12482.0 1.07426
\(514\) −15121.5 −1.29763
\(515\) −360.841 −0.0308748
\(516\) 77086.1 6.57660
\(517\) −1426.81 −0.121376
\(518\) 7135.37 0.605232
\(519\) −14726.7 −1.24553
\(520\) 34807.4 2.93540
\(521\) 11196.1 0.941482 0.470741 0.882271i \(-0.343987\pi\)
0.470741 + 0.882271i \(0.343987\pi\)
\(522\) 62917.3 5.27551
\(523\) −11969.2 −1.00072 −0.500361 0.865817i \(-0.666799\pi\)
−0.500361 + 0.865817i \(0.666799\pi\)
\(524\) −31326.6 −2.61166
\(525\) 2870.08 0.238591
\(526\) −21443.6 −1.77754
\(527\) −16491.6 −1.36316
\(528\) −11059.4 −0.911547
\(529\) −11488.2 −0.944212
\(530\) −5228.67 −0.428526
\(531\) −39188.1 −3.20267
\(532\) 4081.41 0.332616
\(533\) 7042.50 0.572316
\(534\) 36593.2 2.96544
\(535\) −10071.3 −0.813867
\(536\) −14330.8 −1.15485
\(537\) −43518.0 −3.49709
\(538\) −27127.1 −2.17385
\(539\) 539.000 0.0430730
\(540\) −85571.8 −6.81931
\(541\) 10468.1 0.831905 0.415953 0.909386i \(-0.363448\pi\)
0.415953 + 0.909386i \(0.363448\pi\)
\(542\) −7464.78 −0.591587
\(543\) 28677.4 2.26642
\(544\) −8287.47 −0.653166
\(545\) −2841.51 −0.223334
\(546\) 18963.7 1.48639
\(547\) −18969.5 −1.48277 −0.741386 0.671078i \(-0.765831\pi\)
−0.741386 + 0.671078i \(0.765831\pi\)
\(548\) −54137.2 −4.22012
\(549\) −3291.39 −0.255871
\(550\) −2364.95 −0.183349
\(551\) 6253.30 0.483484
\(552\) 12165.0 0.937998
\(553\) 2626.71 0.201987
\(554\) −11993.6 −0.919786
\(555\) −25160.0 −1.92429
\(556\) 20585.2 1.57015
\(557\) 11524.3 0.876658 0.438329 0.898815i \(-0.355570\pi\)
0.438329 + 0.898815i \(0.355570\pi\)
\(558\) 92912.1 7.04889
\(559\) 25264.3 1.91157
\(560\) −9444.87 −0.712712
\(561\) −6285.70 −0.473053
\(562\) 8190.12 0.614732
\(563\) 14117.8 1.05683 0.528415 0.848986i \(-0.322787\pi\)
0.528415 + 0.848986i \(0.322787\pi\)
\(564\) 21984.0 1.64130
\(565\) 7861.43 0.585368
\(566\) 19114.8 1.41953
\(567\) −12922.2 −0.957113
\(568\) −26455.3 −1.95429
\(569\) −16291.9 −1.20034 −0.600168 0.799874i \(-0.704899\pi\)
−0.600168 + 0.799874i \(0.704899\pi\)
\(570\) −20942.7 −1.53894
\(571\) 4581.10 0.335750 0.167875 0.985808i \(-0.446310\pi\)
0.167875 + 0.985808i \(0.446310\pi\)
\(572\) −10738.0 −0.784925
\(573\) 12301.7 0.896876
\(574\) −4488.08 −0.326357
\(575\) 1107.62 0.0803324
\(576\) −8360.87 −0.604808
\(577\) 20971.6 1.51310 0.756550 0.653935i \(-0.226883\pi\)
0.756550 + 0.653935i \(0.226883\pi\)
\(578\) 7091.54 0.510327
\(579\) 1176.42 0.0844396
\(580\) −42870.2 −3.06912
\(581\) −601.326 −0.0429384
\(582\) −22038.5 −1.56963
\(583\) 878.740 0.0624249
\(584\) 39179.4 2.77612
\(585\) −47456.6 −3.35400
\(586\) −14585.5 −1.02819
\(587\) 26603.0 1.87057 0.935283 0.353900i \(-0.115145\pi\)
0.935283 + 0.353900i \(0.115145\pi\)
\(588\) −8304.76 −0.582453
\(589\) 9234.45 0.646008
\(590\) 38856.9 2.71138
\(591\) 33600.0 2.33861
\(592\) 21013.2 1.45885
\(593\) −13431.6 −0.930135 −0.465068 0.885275i \(-0.653970\pi\)
−0.465068 + 0.885275i \(0.653970\pi\)
\(594\) 20928.1 1.44561
\(595\) −5368.09 −0.369866
\(596\) 21750.5 1.49486
\(597\) −25611.6 −1.75580
\(598\) 7318.50 0.500461
\(599\) −7329.80 −0.499979 −0.249990 0.968249i \(-0.580427\pi\)
−0.249990 + 0.968249i \(0.580427\pi\)
\(600\) 19850.9 1.35068
\(601\) −9241.26 −0.627219 −0.313610 0.949552i \(-0.601538\pi\)
−0.313610 + 0.949552i \(0.601538\pi\)
\(602\) −16100.6 −1.09005
\(603\) 19538.7 1.31953
\(604\) 27795.2 1.87247
\(605\) 1566.07 0.105239
\(606\) −68972.3 −4.62344
\(607\) 11068.2 0.740109 0.370054 0.929010i \(-0.379339\pi\)
0.370054 + 0.929010i \(0.379339\pi\)
\(608\) 4640.57 0.309539
\(609\) −12724.1 −0.846642
\(610\) 3263.58 0.216621
\(611\) 7205.06 0.477063
\(612\) 68734.1 4.53988
\(613\) −22528.7 −1.48438 −0.742191 0.670189i \(-0.766213\pi\)
−0.742191 + 0.670189i \(0.766213\pi\)
\(614\) 21456.5 1.41028
\(615\) 15825.4 1.03763
\(616\) 3727.99 0.243839
\(617\) 6859.59 0.447579 0.223790 0.974637i \(-0.428157\pi\)
0.223790 + 0.974637i \(0.428157\pi\)
\(618\) −1359.73 −0.0885055
\(619\) 14905.2 0.967833 0.483917 0.875114i \(-0.339214\pi\)
0.483917 + 0.875114i \(0.339214\pi\)
\(620\) −63307.8 −4.10081
\(621\) −9801.68 −0.633378
\(622\) 48842.2 3.14854
\(623\) −5252.14 −0.337757
\(624\) 55847.0 3.58280
\(625\) −19131.8 −1.22444
\(626\) −54027.5 −3.44948
\(627\) 3519.68 0.224182
\(628\) −56408.1 −3.58428
\(629\) 11943.1 0.757079
\(630\) 30243.4 1.91258
\(631\) 20709.3 1.30653 0.653267 0.757128i \(-0.273398\pi\)
0.653267 + 0.757128i \(0.273398\pi\)
\(632\) 18167.6 1.14346
\(633\) −18419.5 −1.15657
\(634\) 10508.1 0.658248
\(635\) 25225.9 1.57647
\(636\) −13539.4 −0.844138
\(637\) −2721.82 −0.169297
\(638\) 10484.7 0.650613
\(639\) 36069.2 2.23298
\(640\) 22772.6 1.40651
\(641\) 30663.6 1.88945 0.944727 0.327859i \(-0.106327\pi\)
0.944727 + 0.327859i \(0.106327\pi\)
\(642\) −37950.8 −2.33302
\(643\) −12820.9 −0.786326 −0.393163 0.919469i \(-0.628619\pi\)
−0.393163 + 0.919469i \(0.628619\pi\)
\(644\) −3204.99 −0.196109
\(645\) 56772.1 3.46573
\(646\) 9941.23 0.605468
\(647\) −21345.2 −1.29701 −0.648506 0.761209i \(-0.724606\pi\)
−0.648506 + 0.761209i \(0.724606\pi\)
\(648\) −89376.6 −5.41828
\(649\) −6530.37 −0.394976
\(650\) 11942.4 0.720645
\(651\) −18790.0 −1.13124
\(652\) −2459.75 −0.147748
\(653\) −17194.7 −1.03044 −0.515222 0.857057i \(-0.672291\pi\)
−0.515222 + 0.857057i \(0.672291\pi\)
\(654\) −10707.5 −0.640206
\(655\) −23071.3 −1.37629
\(656\) −13217.1 −0.786649
\(657\) −53417.3 −3.17200
\(658\) −4591.67 −0.272040
\(659\) 27892.6 1.64877 0.824386 0.566027i \(-0.191520\pi\)
0.824386 + 0.566027i \(0.191520\pi\)
\(660\) −24129.6 −1.42309
\(661\) −17082.0 −1.00516 −0.502582 0.864529i \(-0.667617\pi\)
−0.502582 + 0.864529i \(0.667617\pi\)
\(662\) 55731.4 3.27200
\(663\) 31741.2 1.85932
\(664\) −4159.07 −0.243077
\(665\) 3005.86 0.175282
\(666\) −67286.4 −3.91486
\(667\) −4910.49 −0.285060
\(668\) 25055.7 1.45125
\(669\) 42253.2 2.44186
\(670\) −19373.6 −1.11712
\(671\) −548.484 −0.0315559
\(672\) −9442.52 −0.542044
\(673\) −27727.6 −1.58814 −0.794071 0.607825i \(-0.792042\pi\)
−0.794071 + 0.607825i \(0.792042\pi\)
\(674\) 30001.2 1.71454
\(675\) −15994.5 −0.912040
\(676\) 15614.3 0.888388
\(677\) −3018.10 −0.171337 −0.0856685 0.996324i \(-0.527303\pi\)
−0.0856685 + 0.996324i \(0.527303\pi\)
\(678\) 29623.7 1.67801
\(679\) 3163.13 0.178778
\(680\) −37128.4 −2.09384
\(681\) −16503.9 −0.928677
\(682\) 15483.0 0.869320
\(683\) 33614.8 1.88321 0.941607 0.336714i \(-0.109316\pi\)
0.941607 + 0.336714i \(0.109316\pi\)
\(684\) −38487.6 −2.15148
\(685\) −39870.8 −2.22392
\(686\) 1734.57 0.0965397
\(687\) −25246.9 −1.40208
\(688\) −47415.2 −2.62745
\(689\) −4437.42 −0.245359
\(690\) 16445.6 0.907352
\(691\) −14923.1 −0.821565 −0.410783 0.911733i \(-0.634744\pi\)
−0.410783 + 0.911733i \(0.634744\pi\)
\(692\) 26835.4 1.47417
\(693\) −5082.76 −0.278612
\(694\) 20812.7 1.13838
\(695\) 15160.5 0.827439
\(696\) −88005.9 −4.79290
\(697\) −7512.09 −0.408236
\(698\) 19016.1 1.03119
\(699\) −34652.3 −1.87507
\(700\) −5229.93 −0.282389
\(701\) 15440.5 0.831928 0.415964 0.909381i \(-0.363444\pi\)
0.415964 + 0.909381i \(0.363444\pi\)
\(702\) −105682. −5.68190
\(703\) −6687.54 −0.358784
\(704\) −1393.27 −0.0745893
\(705\) 16190.7 0.864930
\(706\) 4494.21 0.239578
\(707\) 9899.43 0.526600
\(708\) 100618. 5.34105
\(709\) 25441.7 1.34765 0.673825 0.738891i \(-0.264650\pi\)
0.673825 + 0.738891i \(0.264650\pi\)
\(710\) −35764.5 −1.89044
\(711\) −24769.8 −1.30652
\(712\) −36326.4 −1.91206
\(713\) −7251.49 −0.380884
\(714\) −20228.2 −1.06025
\(715\) −7908.26 −0.413639
\(716\) 79299.6 4.13906
\(717\) −17756.7 −0.924876
\(718\) −53408.1 −2.77601
\(719\) −11335.3 −0.587951 −0.293976 0.955813i \(-0.594978\pi\)
−0.293976 + 0.955813i \(0.594978\pi\)
\(720\) 89064.9 4.61007
\(721\) 195.159 0.0100806
\(722\) 29119.8 1.50101
\(723\) −21308.3 −1.09608
\(724\) −52256.8 −2.68247
\(725\) −8012.98 −0.410475
\(726\) 5901.30 0.301677
\(727\) −11169.8 −0.569830 −0.284915 0.958553i \(-0.591965\pi\)
−0.284915 + 0.958553i \(0.591965\pi\)
\(728\) −18825.4 −0.958402
\(729\) 23892.3 1.21386
\(730\) 52965.9 2.68542
\(731\) −26948.9 −1.36353
\(732\) 8450.89 0.426713
\(733\) 25635.5 1.29177 0.645885 0.763435i \(-0.276488\pi\)
0.645885 + 0.763435i \(0.276488\pi\)
\(734\) −14026.3 −0.705343
\(735\) −6116.26 −0.306941
\(736\) −3644.08 −0.182503
\(737\) 3255.97 0.162734
\(738\) 42322.5 2.11099
\(739\) 20947.2 1.04270 0.521350 0.853343i \(-0.325429\pi\)
0.521350 + 0.853343i \(0.325429\pi\)
\(740\) 45847.2 2.27753
\(741\) −17773.5 −0.881141
\(742\) 2827.90 0.139913
\(743\) −4063.24 −0.200627 −0.100314 0.994956i \(-0.531985\pi\)
−0.100314 + 0.994956i \(0.531985\pi\)
\(744\) −129961. −6.40405
\(745\) 16018.7 0.787759
\(746\) 57449.2 2.81952
\(747\) 5670.49 0.277741
\(748\) 11454.0 0.559891
\(749\) 5446.99 0.265726
\(750\) −52067.7 −2.53499
\(751\) 24644.9 1.19747 0.598737 0.800945i \(-0.295669\pi\)
0.598737 + 0.800945i \(0.295669\pi\)
\(752\) −13522.2 −0.655724
\(753\) −10287.2 −0.497859
\(754\) −52944.9 −2.55721
\(755\) 20470.5 0.986751
\(756\) 46281.1 2.22649
\(757\) −17258.3 −0.828618 −0.414309 0.910136i \(-0.635977\pi\)
−0.414309 + 0.910136i \(0.635977\pi\)
\(758\) 55367.3 2.65308
\(759\) −2763.88 −0.132177
\(760\) 20790.0 0.992282
\(761\) 12931.6 0.615990 0.307995 0.951388i \(-0.400342\pi\)
0.307995 + 0.951388i \(0.400342\pi\)
\(762\) 95057.1 4.51910
\(763\) 1536.82 0.0729180
\(764\) −22416.4 −1.06152
\(765\) 50621.0 2.39243
\(766\) −56245.1 −2.65303
\(767\) 32976.7 1.55244
\(768\) 76040.1 3.57274
\(769\) 13584.8 0.637034 0.318517 0.947917i \(-0.396815\pi\)
0.318517 + 0.947917i \(0.396815\pi\)
\(770\) 5039.81 0.235873
\(771\) −28837.8 −1.34704
\(772\) −2143.71 −0.0999402
\(773\) 2239.95 0.104224 0.0521121 0.998641i \(-0.483405\pi\)
0.0521121 + 0.998641i \(0.483405\pi\)
\(774\) 151828. 7.05083
\(775\) −11833.0 −0.548458
\(776\) 21877.8 1.01207
\(777\) 13607.6 0.628277
\(778\) 40146.5 1.85003
\(779\) 4206.40 0.193466
\(780\) 121848. 5.59342
\(781\) 6010.64 0.275388
\(782\) −7806.50 −0.356982
\(783\) 70909.1 3.23638
\(784\) 5108.21 0.232699
\(785\) −41543.2 −1.88884
\(786\) −86937.9 −3.94526
\(787\) 10614.2 0.480758 0.240379 0.970679i \(-0.422728\pi\)
0.240379 + 0.970679i \(0.422728\pi\)
\(788\) −61226.8 −2.76791
\(789\) −40894.4 −1.84522
\(790\) 24560.5 1.10610
\(791\) −4251.82 −0.191122
\(792\) −35154.9 −1.57724
\(793\) 2769.71 0.124029
\(794\) −5363.51 −0.239728
\(795\) −9971.43 −0.444843
\(796\) 46670.1 2.07811
\(797\) 1020.65 0.0453616 0.0226808 0.999743i \(-0.492780\pi\)
0.0226808 + 0.999743i \(0.492780\pi\)
\(798\) 11326.8 0.502460
\(799\) −7685.49 −0.340292
\(800\) −5946.43 −0.262798
\(801\) 49527.6 2.18473
\(802\) 14039.6 0.618150
\(803\) −8901.55 −0.391194
\(804\) −50167.0 −2.20057
\(805\) −2360.40 −0.103345
\(806\) −78185.5 −3.41683
\(807\) −51733.3 −2.25663
\(808\) 68469.4 2.98112
\(809\) −44041.1 −1.91397 −0.956985 0.290139i \(-0.906298\pi\)
−0.956985 + 0.290139i \(0.906298\pi\)
\(810\) −120827. −5.24126
\(811\) −16722.4 −0.724048 −0.362024 0.932169i \(-0.617914\pi\)
−0.362024 + 0.932169i \(0.617914\pi\)
\(812\) 23186.1 1.00206
\(813\) −14235.9 −0.614113
\(814\) −11212.7 −0.482808
\(815\) −1811.55 −0.0778599
\(816\) −59570.8 −2.55563
\(817\) 15090.0 0.646186
\(818\) −44127.8 −1.88618
\(819\) 25666.7 1.09507
\(820\) −28837.4 −1.22811
\(821\) 30420.1 1.29314 0.646570 0.762855i \(-0.276203\pi\)
0.646570 + 0.762855i \(0.276203\pi\)
\(822\) −150242. −6.37506
\(823\) −330.412 −0.0139945 −0.00699724 0.999976i \(-0.502227\pi\)
−0.00699724 + 0.999976i \(0.502227\pi\)
\(824\) 1349.82 0.0570668
\(825\) −4510.12 −0.190330
\(826\) −21015.6 −0.885261
\(827\) 4475.72 0.188194 0.0940968 0.995563i \(-0.470004\pi\)
0.0940968 + 0.995563i \(0.470004\pi\)
\(828\) 30223.0 1.26850
\(829\) −10923.6 −0.457651 −0.228825 0.973467i \(-0.573489\pi\)
−0.228825 + 0.973467i \(0.573489\pi\)
\(830\) −5622.58 −0.235136
\(831\) −22872.7 −0.954809
\(832\) 7035.67 0.293170
\(833\) 2903.30 0.120761
\(834\) 57128.1 2.37193
\(835\) 18452.9 0.764779
\(836\) −6413.65 −0.265336
\(837\) 104714. 4.32430
\(838\) 12088.8 0.498332
\(839\) −28354.8 −1.16677 −0.583383 0.812197i \(-0.698271\pi\)
−0.583383 + 0.812197i \(0.698271\pi\)
\(840\) −42303.1 −1.73761
\(841\) 11135.4 0.456574
\(842\) 43624.3 1.78550
\(843\) 15619.1 0.638139
\(844\) 33564.5 1.36888
\(845\) 11499.6 0.468162
\(846\) 43299.4 1.75965
\(847\) −847.000 −0.0343604
\(848\) 8327.99 0.337246
\(849\) 36453.2 1.47358
\(850\) −12738.7 −0.514040
\(851\) 5251.49 0.211538
\(852\) −92610.3 −3.72392
\(853\) 39699.8 1.59355 0.796774 0.604278i \(-0.206538\pi\)
0.796774 + 0.604278i \(0.206538\pi\)
\(854\) −1765.09 −0.0707262
\(855\) −28345.2 −1.13378
\(856\) 37674.1 1.50429
\(857\) 6093.09 0.242866 0.121433 0.992600i \(-0.461251\pi\)
0.121433 + 0.992600i \(0.461251\pi\)
\(858\) −29800.1 −1.18573
\(859\) 20688.1 0.821733 0.410867 0.911695i \(-0.365226\pi\)
0.410867 + 0.911695i \(0.365226\pi\)
\(860\) −103452. −4.10194
\(861\) −8559.08 −0.338783
\(862\) −20951.6 −0.827860
\(863\) −38835.1 −1.53182 −0.765910 0.642948i \(-0.777711\pi\)
−0.765910 + 0.642948i \(0.777711\pi\)
\(864\) 52621.6 2.07202
\(865\) 19763.6 0.776860
\(866\) −817.708 −0.0320864
\(867\) 13524.1 0.529759
\(868\) 34239.7 1.33891
\(869\) −4127.68 −0.161130
\(870\) −118974. −4.63631
\(871\) −16441.8 −0.639621
\(872\) 10629.4 0.412794
\(873\) −29828.3 −1.15640
\(874\) 4371.25 0.169176
\(875\) 7473.16 0.288730
\(876\) 137153. 5.28991
\(877\) −14454.3 −0.556543 −0.278272 0.960502i \(-0.589762\pi\)
−0.278272 + 0.960502i \(0.589762\pi\)
\(878\) −65342.3 −2.51161
\(879\) −27815.5 −1.06734
\(880\) 14841.9 0.568547
\(881\) −21890.5 −0.837130 −0.418565 0.908187i \(-0.637467\pi\)
−0.418565 + 0.908187i \(0.637467\pi\)
\(882\) −16357.0 −0.624453
\(883\) −34415.2 −1.31162 −0.655812 0.754924i \(-0.727674\pi\)
−0.655812 + 0.754924i \(0.727674\pi\)
\(884\) −57839.7 −2.20063
\(885\) 74102.9 2.81462
\(886\) 51456.4 1.95114
\(887\) −288.789 −0.0109319 −0.00546594 0.999985i \(-0.501740\pi\)
−0.00546594 + 0.999985i \(0.501740\pi\)
\(888\) 94117.2 3.55672
\(889\) −13643.3 −0.514716
\(890\) −49109.1 −1.84960
\(891\) 20306.4 0.763512
\(892\) −76994.9 −2.89011
\(893\) 4303.49 0.161266
\(894\) 60362.1 2.25818
\(895\) 58402.3 2.18120
\(896\) −12316.5 −0.459223
\(897\) 13956.9 0.519517
\(898\) −20204.3 −0.750809
\(899\) 52460.1 1.94621
\(900\) 49318.1 1.82660
\(901\) 4733.30 0.175016
\(902\) 7052.69 0.260343
\(903\) −30704.9 −1.13156
\(904\) −29407.7 −1.08195
\(905\) −38485.9 −1.41361
\(906\) 77137.4 2.82861
\(907\) −36248.0 −1.32701 −0.663503 0.748174i \(-0.730931\pi\)
−0.663503 + 0.748174i \(0.730931\pi\)
\(908\) 30073.7 1.09915
\(909\) −93351.4 −3.40624
\(910\) −25449.8 −0.927090
\(911\) −4600.52 −0.167313 −0.0836564 0.996495i \(-0.526660\pi\)
−0.0836564 + 0.996495i \(0.526660\pi\)
\(912\) 33356.7 1.21113
\(913\) 944.941 0.0342530
\(914\) −62937.8 −2.27768
\(915\) 6223.88 0.224869
\(916\) 46005.6 1.65946
\(917\) 12478.0 0.449356
\(918\) 112728. 4.05293
\(919\) −46257.9 −1.66040 −0.830200 0.557466i \(-0.811774\pi\)
−0.830200 + 0.557466i \(0.811774\pi\)
\(920\) −16325.7 −0.585046
\(921\) 40919.0 1.46398
\(922\) −60571.1 −2.16356
\(923\) −30352.2 −1.08240
\(924\) 13050.3 0.464637
\(925\) 8569.42 0.304606
\(926\) −87664.3 −3.11105
\(927\) −1840.34 −0.0652048
\(928\) 26362.6 0.932539
\(929\) −3303.31 −0.116661 −0.0583305 0.998297i \(-0.518578\pi\)
−0.0583305 + 0.998297i \(0.518578\pi\)
\(930\) −175693. −6.19482
\(931\) −1625.71 −0.0572291
\(932\) 63144.3 2.21927
\(933\) 93145.5 3.26843
\(934\) −20299.3 −0.711148
\(935\) 8435.57 0.295051
\(936\) 177523. 6.19929
\(937\) −44736.9 −1.55975 −0.779877 0.625932i \(-0.784719\pi\)
−0.779877 + 0.625932i \(0.784719\pi\)
\(938\) 10478.1 0.364736
\(939\) −103034. −3.58082
\(940\) −29503.1 −1.02371
\(941\) −21009.4 −0.727829 −0.363914 0.931432i \(-0.618560\pi\)
−0.363914 + 0.931432i \(0.618560\pi\)
\(942\) −156544. −5.41453
\(943\) −3303.13 −0.114067
\(944\) −61889.6 −2.13383
\(945\) 34084.9 1.17331
\(946\) 25300.9 0.869558
\(947\) 11343.0 0.389227 0.194613 0.980880i \(-0.437655\pi\)
0.194613 + 0.980880i \(0.437655\pi\)
\(948\) 63598.1 2.17887
\(949\) 44950.6 1.53758
\(950\) 7133.04 0.243607
\(951\) 20039.6 0.683312
\(952\) 20080.7 0.683634
\(953\) −45452.4 −1.54496 −0.772481 0.635038i \(-0.780985\pi\)
−0.772481 + 0.635038i \(0.780985\pi\)
\(954\) −26667.0 −0.905007
\(955\) −16509.2 −0.559397
\(956\) 32356.7 1.09466
\(957\) 19995.0 0.675387
\(958\) 34438.1 1.16142
\(959\) 21563.9 0.726105
\(960\) 15810.0 0.531527
\(961\) 47678.5 1.60043
\(962\) 56621.5 1.89766
\(963\) −51365.0 −1.71881
\(964\) 38828.5 1.29728
\(965\) −1578.79 −0.0526664
\(966\) −8894.52 −0.296249
\(967\) 4435.17 0.147493 0.0737464 0.997277i \(-0.476504\pi\)
0.0737464 + 0.997277i \(0.476504\pi\)
\(968\) −5858.27 −0.194517
\(969\) 18958.6 0.628523
\(970\) 29576.2 0.979006
\(971\) −33349.3 −1.10219 −0.551097 0.834441i \(-0.685791\pi\)
−0.551097 + 0.834441i \(0.685791\pi\)
\(972\) −134362. −4.43382
\(973\) −8199.47 −0.270157
\(974\) 82643.3 2.71875
\(975\) 22775.0 0.748085
\(976\) −5198.09 −0.170478
\(977\) −39719.6 −1.30066 −0.650328 0.759653i \(-0.725369\pi\)
−0.650328 + 0.759653i \(0.725369\pi\)
\(978\) −6826.33 −0.223192
\(979\) 8253.36 0.269437
\(980\) 11145.2 0.363286
\(981\) −14492.1 −0.471660
\(982\) −8528.86 −0.277156
\(983\) 16117.6 0.522963 0.261482 0.965208i \(-0.415789\pi\)
0.261482 + 0.965208i \(0.415789\pi\)
\(984\) −59198.8 −1.91788
\(985\) −45092.1 −1.45863
\(986\) 56475.2 1.82407
\(987\) −8756.64 −0.282398
\(988\) 32387.3 1.04289
\(989\) −11849.7 −0.380989
\(990\) −47525.3 −1.52571
\(991\) −14926.8 −0.478471 −0.239236 0.970962i \(-0.576897\pi\)
−0.239236 + 0.970962i \(0.576897\pi\)
\(992\) 38930.6 1.24602
\(993\) 106284. 3.39659
\(994\) 19343.0 0.617227
\(995\) 34371.4 1.09512
\(996\) −14559.4 −0.463185
\(997\) 51206.2 1.62660 0.813298 0.581847i \(-0.197670\pi\)
0.813298 + 0.581847i \(0.197670\pi\)
\(998\) −10074.6 −0.319546
\(999\) −75833.2 −2.40166
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.4.a.c.1.1 4
3.2 odd 2 693.4.a.m.1.4 4
4.3 odd 2 1232.4.a.w.1.4 4
5.4 even 2 1925.4.a.q.1.4 4
7.6 odd 2 539.4.a.f.1.1 4
11.10 odd 2 847.4.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.1 4 1.1 even 1 trivial
539.4.a.f.1.1 4 7.6 odd 2
693.4.a.m.1.4 4 3.2 odd 2
847.4.a.e.1.4 4 11.10 odd 2
1232.4.a.w.1.4 4 4.3 odd 2
1925.4.a.q.1.4 4 5.4 even 2