Properties

Label 772.1.u.a.147.1
Level $772$
Weight $1$
Character 772.147
Analytic conductor $0.385$
Analytic rank $0$
Dimension $16$
Projective image $D_{48}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [772,1,Mod(59,772)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(772, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([24, 37]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("772.59");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 772 = 2^{2} \cdot 193 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 772.u (of order \(48\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.385278189753\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{48}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{48} - \cdots)\)

Embedding invariants

Embedding label 147.1
Root \(-0.130526 - 0.991445i\) of defining polynomial
Character \(\chi\) \(=\) 772.147
Dual form 772.1.u.a.751.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.608761 + 0.793353i) q^{2} +(-0.258819 - 0.965926i) q^{4} +(0.0255190 - 0.389345i) q^{5} +(0.923880 + 0.382683i) q^{8} -1.00000i q^{9} +(0.293353 + 0.257264i) q^{10} +(-0.257264 - 1.29335i) q^{13} +(-0.866025 + 0.500000i) q^{16} +(-1.49144 - 0.735499i) q^{17} +(0.793353 + 0.608761i) q^{18} +(-0.382683 + 0.0761205i) q^{20} +(0.840506 + 0.110655i) q^{25} +(1.18270 + 0.583242i) q^{26} +(1.47479 + 0.293353i) q^{29} +(0.130526 - 0.991445i) q^{32} +(1.49144 - 0.735499i) q^{34} +(-0.965926 + 0.258819i) q^{36} +(0.641502 - 1.88981i) q^{37} +(0.172572 - 0.349942i) q^{40} +(-0.837633 + 1.69855i) q^{41} +(-0.389345 - 0.0255190i) q^{45} +(0.500000 + 0.866025i) q^{49} +(-0.599456 + 0.599456i) q^{50} +(-1.18270 + 0.583242i) q^{52} +(0.837633 + 0.284338i) q^{53} +(-1.13053 + 0.991445i) q^{58} +(0.0420463 + 0.641502i) q^{61} +(0.707107 + 0.707107i) q^{64} +(-0.510126 + 0.0671594i) q^{65} +(-0.324423 + 1.63099i) q^{68} +(0.382683 - 0.923880i) q^{72} +(-0.576581 - 1.69855i) q^{73} +(1.10876 + 1.65938i) q^{74} +(0.172572 + 0.349942i) q^{80} -1.00000 q^{81} +(-0.837633 - 1.69855i) q^{82} +(-0.324423 + 0.561918i) q^{85} +(-0.382683 + 1.92388i) q^{89} +(0.257264 - 0.293353i) q^{90} +(1.17604 + 1.53264i) q^{97} +(-0.991445 - 0.130526i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{10} - 8 q^{17} + 8 q^{34} + 8 q^{49} - 16 q^{58} + 8 q^{65} + 8 q^{74} - 16 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/772\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(387\)
\(\chi(n)\) \(e\left(\frac{25}{48}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.608761 + 0.793353i −0.608761 + 0.793353i
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) −0.258819 0.965926i −0.258819 0.965926i
\(5\) 0.0255190 0.389345i 0.0255190 0.389345i −0.965926 0.258819i \(-0.916667\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(9\) 1.00000i 1.00000i
\(10\) 0.293353 + 0.257264i 0.293353 + 0.257264i
\(11\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(12\) 0 0
\(13\) −0.257264 1.29335i −0.257264 1.29335i −0.866025 0.500000i \(-0.833333\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(17\) −1.49144 0.735499i −1.49144 0.735499i −0.500000 0.866025i \(-0.666667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(18\) 0.793353 + 0.608761i 0.793353 + 0.608761i
\(19\) 0 0 0.0654031 0.997859i \(-0.479167\pi\)
−0.0654031 + 0.997859i \(0.520833\pi\)
\(20\) −0.382683 + 0.0761205i −0.382683 + 0.0761205i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(24\) 0 0
\(25\) 0.840506 + 0.110655i 0.840506 + 0.110655i
\(26\) 1.18270 + 0.583242i 1.18270 + 0.583242i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.47479 + 0.293353i 1.47479 + 0.293353i 0.866025 0.500000i \(-0.166667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(30\) 0 0
\(31\) 0 0 0.608761 0.793353i \(-0.291667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(32\) 0.130526 0.991445i 0.130526 0.991445i
\(33\) 0 0
\(34\) 1.49144 0.735499i 1.49144 0.735499i
\(35\) 0 0
\(36\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(37\) 0.641502 1.88981i 0.641502 1.88981i 0.258819 0.965926i \(-0.416667\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.172572 0.349942i 0.172572 0.349942i
\(41\) −0.837633 + 1.69855i −0.837633 + 1.69855i −0.130526 + 0.991445i \(0.541667\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −0.389345 0.0255190i −0.389345 0.0255190i
\(46\) 0 0
\(47\) 0 0 −0.946930 0.321439i \(-0.895833\pi\)
0.946930 + 0.321439i \(0.104167\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) −0.599456 + 0.599456i −0.599456 + 0.599456i
\(51\) 0 0
\(52\) −1.18270 + 0.583242i −1.18270 + 0.583242i
\(53\) 0.837633 + 0.284338i 0.837633 + 0.284338i 0.707107 0.707107i \(-0.250000\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.13053 + 0.991445i −1.13053 + 0.991445i
\(59\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(60\) 0 0
\(61\) 0.0420463 + 0.641502i 0.0420463 + 0.641502i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(65\) −0.510126 + 0.0671594i −0.510126 + 0.0671594i
\(66\) 0 0
\(67\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(68\) −0.324423 + 1.63099i −0.324423 + 1.63099i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(72\) 0.382683 0.923880i 0.382683 0.923880i
\(73\) −0.576581 1.69855i −0.576581 1.69855i −0.707107 0.707107i \(-0.750000\pi\)
0.130526 0.991445i \(-0.458333\pi\)
\(74\) 1.10876 + 1.65938i 1.10876 + 1.65938i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.997859 0.0654031i \(-0.0208333\pi\)
−0.997859 + 0.0654031i \(0.979167\pi\)
\(80\) 0.172572 + 0.349942i 0.172572 + 0.349942i
\(81\) −1.00000 −1.00000
\(82\) −0.837633 1.69855i −0.837633 1.69855i
\(83\) 0 0 0.130526 0.991445i \(-0.458333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(84\) 0 0
\(85\) −0.324423 + 0.561918i −0.324423 + 0.561918i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.382683 + 1.92388i −0.382683 + 1.92388i 1.00000i \(0.5\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(90\) 0.257264 0.293353i 0.257264 0.293353i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.17604 + 1.53264i 1.17604 + 1.53264i 0.793353 + 0.608761i \(0.208333\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(98\) −0.991445 0.130526i −0.991445 0.130526i
\(99\) 0 0
\(100\) −0.110655 0.840506i −0.110655 0.840506i
\(101\) −0.410670 + 0.315118i −0.410670 + 0.315118i −0.793353 0.608761i \(-0.791667\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(102\) 0 0
\(103\) 0 0 0.659346 0.751840i \(-0.270833\pi\)
−0.659346 + 0.751840i \(0.729167\pi\)
\(104\) 0.257264 1.29335i 0.257264 1.29335i
\(105\) 0 0
\(106\) −0.735499 + 0.491445i −0.735499 + 0.491445i
\(107\) 0 0 −0.793353 0.608761i \(-0.791667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(108\) 0 0
\(109\) −0.991445 1.71723i −0.991445 1.71723i −0.608761 0.793353i \(-0.708333\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.0578541 + 0.117317i 0.0578541 + 0.117317i 0.923880 0.382683i \(-0.125000\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.0983454 1.50046i −0.0983454 1.50046i
\(117\) −1.29335 + 0.257264i −1.29335 + 0.257264i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(122\) −0.534534 0.357164i −0.534534 0.357164i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.140652 0.707107i 0.140652 0.707107i
\(126\) 0 0
\(127\) 0 0 0.751840 0.659346i \(-0.229167\pi\)
−0.751840 + 0.659346i \(0.770833\pi\)
\(128\) −0.991445 + 0.130526i −0.991445 + 0.130526i
\(129\) 0 0
\(130\) 0.257264 0.445594i 0.257264 0.445594i
\(131\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −1.09645 1.25026i −1.09645 1.25026i
\(137\) 0 0 0.793353 0.608761i \(-0.208333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(138\) 0 0
\(139\) 0 0 0.991445 0.130526i \(-0.0416667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(145\) 0.151851 0.566715i 0.151851 0.566715i
\(146\) 1.69855 + 0.576581i 1.69855 + 0.576581i
\(147\) 0 0
\(148\) −1.99144 0.130526i −1.99144 0.130526i
\(149\) 0.732626 0.835400i 0.732626 0.835400i −0.258819 0.965926i \(-0.583333\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(150\) 0 0
\(151\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(152\) 0 0
\(153\) −0.735499 + 1.49144i −0.735499 + 1.49144i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.53264 + 0.410670i −1.53264 + 0.410670i −0.923880 0.382683i \(-0.875000\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.382683 0.0761205i −0.382683 0.0761205i
\(161\) 0 0
\(162\) 0.608761 0.793353i 0.608761 0.793353i
\(163\) 0 0 0.997859 0.0654031i \(-0.0208333\pi\)
−0.997859 + 0.0654031i \(0.979167\pi\)
\(164\) 1.85747 + 0.369474i 1.85747 + 0.369474i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.896873 0.442289i \(-0.854167\pi\)
0.896873 + 0.442289i \(0.145833\pi\)
\(168\) 0 0
\(169\) −0.682699 + 0.282783i −0.682699 + 0.282783i
\(170\) −0.248303 0.599456i −0.248303 0.599456i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.128293 0.0255190i 0.128293 0.0255190i −0.130526 0.991445i \(-0.541667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −1.29335 1.47479i −1.29335 1.47479i
\(179\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(180\) 0.0761205 + 0.382683i 0.0761205 + 0.382683i
\(181\) 1.71723 + 0.991445i 1.71723 + 0.991445i 0.923880 + 0.382683i \(0.125000\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.719416 0.297992i −0.719416 0.297992i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.608761 0.793353i \(-0.291667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(192\) 0 0
\(193\) 0.707107 0.707107i 0.707107 0.707107i
\(194\) −1.93185 −1.93185
\(195\) 0 0
\(196\) 0.707107 0.707107i 0.707107 0.707107i
\(197\) 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 0 0 −0.130526 0.991445i \(-0.541667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(200\) 0.734181 + 0.423880i 0.734181 + 0.423880i
\(201\) 0 0
\(202\) 0.517638i 0.517638i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.639947 + 0.369474i 0.639947 + 0.369474i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.869474 + 0.991445i 0.869474 + 0.991445i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.793353 0.608761i \(-0.791667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(212\) 0.0578541 0.882683i 0.0578541 0.882683i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.96593 + 0.258819i 1.96593 + 0.258819i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.567565 + 2.11818i −0.567565 + 2.11818i
\(222\) 0 0
\(223\) 0 0 0.997859 0.0654031i \(-0.0208333\pi\)
−0.997859 + 0.0654031i \(0.979167\pi\)
\(224\) 0 0
\(225\) 0.110655 0.840506i 0.110655 0.840506i
\(226\) −0.128293 0.0255190i −0.128293 0.0255190i
\(227\) 0 0 0.896873 0.442289i \(-0.145833\pi\)
−0.896873 + 0.442289i \(0.854167\pi\)
\(228\) 0 0
\(229\) 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i \(-0.333333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.25026 + 0.835400i 1.25026 + 0.835400i
\(233\) −0.867580 + 1.75928i −0.867580 + 1.75928i −0.258819 + 0.965926i \(0.583333\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(234\) 0.583242 1.18270i 0.583242 1.18270i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(240\) 0 0
\(241\) −0.198092 + 0.739288i −0.198092 + 0.739288i 0.793353 + 0.608761i \(0.208333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(242\) −0.500000 0.866025i −0.500000 0.866025i
\(243\) 0 0
\(244\) 0.608761 0.206647i 0.608761 0.206647i
\(245\) 0.349942 0.172572i 0.349942 0.172572i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0.475362 + 0.542046i 0.475362 + 0.542046i
\(251\) 0 0 0.751840 0.659346i \(-0.229167\pi\)
−0.751840 + 0.659346i \(0.770833\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.500000 0.866025i 0.500000 0.866025i
\(257\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.196901 + 0.475362i 0.196901 + 0.475362i
\(261\) 0.293353 1.47479i 0.293353 1.47479i
\(262\) 0 0
\(263\) 0 0 −0.321439 0.946930i \(-0.604167\pi\)
0.321439 + 0.946930i \(0.395833\pi\)
\(264\) 0 0
\(265\) 0.132081 0.318872i 0.132081 0.318872i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.75928 0.349942i 1.75928 0.349942i 0.793353 0.608761i \(-0.208333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(270\) 0 0
\(271\) 0 0 0.946930 0.321439i \(-0.104167\pi\)
−0.946930 + 0.321439i \(0.895833\pi\)
\(272\) 1.65938 0.108761i 1.65938 0.108761i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.793353 + 1.37413i 0.793353 + 1.37413i 0.923880 + 0.382683i \(0.125000\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.382683 1.92388i −0.382683 1.92388i −0.382683 0.923880i \(-0.625000\pi\)
1.00000i \(-0.5\pi\)
\(282\) 0 0
\(283\) 0 0 0.659346 0.751840i \(-0.270833\pi\)
−0.659346 + 0.751840i \(0.729167\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.991445 0.130526i −0.991445 0.130526i
\(289\) 1.07469 + 1.40056i 1.07469 + 1.40056i
\(290\) 0.357164 + 0.465466i 0.357164 + 0.465466i
\(291\) 0 0
\(292\) −1.49144 + 0.996552i −1.49144 + 0.996552i
\(293\) −0.158919 1.20711i −0.158919 1.20711i −0.866025 0.500000i \(-0.833333\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.31587 1.50046i 1.31587 1.50046i
\(297\) 0 0
\(298\) 0.216773 + 1.08979i 0.216773 + 1.08979i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.250839 0.250839
\(306\) −0.735499 1.49144i −0.735499 1.49144i
\(307\) 0 0 0.997859 0.0654031i \(-0.0208333\pi\)
−0.997859 + 0.0654031i \(0.979167\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.793353 0.608761i \(-0.208333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(312\) 0 0
\(313\) −0.0420463 0.123864i −0.0420463 0.123864i 0.923880 0.382683i \(-0.125000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(314\) 0.607206 1.46593i 0.607206 1.46593i
\(315\) 0 0
\(316\) 0 0
\(317\) −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.293353 0.257264i 0.293353 0.257264i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(325\) −0.0731163 1.11554i −0.0731163 1.11554i
\(326\) 0 0
\(327\) 0 0
\(328\) −1.42388 + 1.24871i −1.42388 + 1.24871i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) −1.88981 0.641502i −1.88981 0.641502i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(338\) 0.191254 0.713769i 0.191254 0.713769i
\(339\) 0 0
\(340\) 0.626738 + 0.167934i 0.626738 + 0.167934i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.0578541 + 0.117317i −0.0578541 + 0.117317i
\(347\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(348\) 0 0
\(349\) 0.206647 0.608761i 0.206647 0.608761i −0.793353 0.608761i \(-0.791667\pi\)
1.00000 \(0\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.867580 + 0.172572i 0.867580 + 0.172572i 0.608761 0.793353i \(-0.291667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.95737 0.128293i 1.95737 0.128293i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) −0.349942 0.172572i −0.349942 0.172572i
\(361\) −0.991445 0.130526i −0.991445 0.130526i
\(362\) −1.83195 + 0.758819i −1.83195 + 0.758819i
\(363\) 0 0
\(364\) 0 0
\(365\) −0.676037 + 0.181144i −0.676037 + 0.181144i
\(366\) 0 0
\(367\) 0 0 0.0654031 0.997859i \(-0.479167\pi\)
−0.0654031 + 0.997859i \(0.520833\pi\)
\(368\) 0 0
\(369\) 1.69855 + 0.837633i 1.69855 + 0.837633i
\(370\) 0.674366 0.389345i 0.674366 0.389345i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.0255190 + 0.128293i 0.0255190 + 0.128293i 0.991445 0.130526i \(-0.0416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.98289i 1.98289i
\(378\) 0 0
\(379\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.130526 + 0.991445i 0.130526 + 0.991445i
\(387\) 0 0
\(388\) 1.17604 1.53264i 1.17604 1.53264i
\(389\) 1.36603 1.36603i 1.36603 1.36603i 0.500000 0.866025i \(-0.333333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.130526 + 0.991445i 0.130526 + 0.991445i
\(393\) 0 0
\(394\) −0.923880 0.382683i −0.923880 0.382683i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.617317 + 0.923880i 0.617317 + 0.923880i 1.00000 \(0\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.783227 + 0.324423i −0.783227 + 0.324423i
\(401\) −0.732626 0.835400i −0.732626 0.835400i 0.258819 0.965926i \(-0.416667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.410670 + 0.315118i 0.410670 + 0.315118i
\(405\) −0.0255190 + 0.389345i −0.0255190 + 0.389345i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.198092 + 0.478235i 0.198092 + 0.478235i 0.991445 0.130526i \(-0.0416667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(410\) −0.682699 + 0.282783i −0.682699 + 0.282783i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −1.31587 + 0.0862466i −1.31587 + 0.0862466i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(420\) 0 0
\(421\) −0.617317 + 0.923880i −0.617317 + 0.923880i 0.382683 + 0.923880i \(0.375000\pi\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.665060 + 0.583242i 0.665060 + 0.583242i
\(425\) −1.17218 0.783227i −1.17218 0.783227i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.997859 0.0654031i \(-0.979167\pi\)
0.997859 + 0.0654031i \(0.0208333\pi\)
\(432\) 0 0
\(433\) 0.837633 + 0.284338i 0.837633 + 0.284338i 0.707107 0.707107i \(-0.250000\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.40211 + 1.40211i −1.40211 + 1.40211i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.946930 0.321439i \(-0.895833\pi\)
0.946930 + 0.321439i \(0.104167\pi\)
\(440\) 0 0
\(441\) 0.866025 0.500000i 0.866025 0.500000i
\(442\) −1.33496 1.73975i −1.33496 1.73975i
\(443\) 0 0 −0.659346 0.751840i \(-0.729167\pi\)
0.659346 + 0.751840i \(0.270833\pi\)
\(444\) 0 0
\(445\) 0.739288 + 0.198092i 0.739288 + 0.198092i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.258819 + 0.448288i −0.258819 + 0.448288i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(450\) 0.599456 + 0.599456i 0.599456 + 0.599456i
\(451\) 0 0
\(452\) 0.0983454 0.0862466i 0.0983454 0.0862466i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.57469 1.05217i −1.57469 1.05217i −0.965926 0.258819i \(-0.916667\pi\)
−0.608761 0.793353i \(-0.708333\pi\)
\(458\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(459\) 0 0
\(460\) 0 0
\(461\) −1.12197 + 0.860919i −1.12197 + 0.860919i −0.991445 0.130526i \(-0.958333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(462\) 0 0
\(463\) 0 0 −0.0654031 0.997859i \(-0.520833\pi\)
0.0654031 + 0.997859i \(0.479167\pi\)
\(464\) −1.42388 + 0.483342i −1.42388 + 0.483342i
\(465\) 0 0
\(466\) −0.867580 1.75928i −0.867580 1.75928i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0.583242 + 1.18270i 0.583242 + 1.18270i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.284338 0.837633i 0.284338 0.837633i
\(478\) 0 0
\(479\) 0 0 −0.130526 0.991445i \(-0.541667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(480\) 0 0
\(481\) −2.60922 0.343511i −2.60922 0.343511i
\(482\) −0.465926 0.607206i −0.465926 0.607206i
\(483\) 0 0
\(484\) 0.991445 + 0.130526i 0.991445 + 0.130526i
\(485\) 0.626738 0.418773i 0.626738 0.418773i
\(486\) 0 0
\(487\) 0 0 0.793353 0.608761i \(-0.208333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(488\) −0.206647 + 0.608761i −0.206647 + 0.608761i
\(489\) 0 0
\(490\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(491\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(492\) 0 0
\(493\) −1.98380 1.52222i −1.98380 1.52222i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.442289 0.896873i \(-0.645833\pi\)
0.442289 + 0.896873i \(0.354167\pi\)
\(500\) −0.719416 + 0.0471530i −0.719416 + 0.0471530i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(504\) 0 0
\(505\) 0.112210 + 0.167934i 0.112210 + 0.167934i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.608761 1.79335i −0.608761 1.79335i −0.608761 0.793353i \(-0.708333\pi\)
1.00000i \(-0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(513\) 0 0
\(514\) −0.991445 + 0.130526i −0.991445 + 0.130526i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.496996 0.133170i −0.496996 0.133170i
\(521\) 1.34861 1.18270i 1.34861 1.18270i 0.382683 0.923880i \(-0.375000\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(522\) 0.991445 + 1.13053i 0.991445 + 1.13053i
\(523\) 0 0 −0.608761 0.793353i \(-0.708333\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(530\) 0.172572 + 0.298904i 0.172572 + 0.298904i
\(531\) 0 0
\(532\) 0 0
\(533\) 2.41232 + 0.646379i 2.41232 + 0.646379i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.793353 + 1.60876i −0.793353 + 1.60876i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.47479 + 1.29335i 1.47479 + 1.29335i 0.866025 + 0.500000i \(0.166667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.923880 + 1.38268i −0.923880 + 1.38268i
\(545\) −0.693897 + 0.342192i −0.693897 + 0.342192i
\(546\) 0 0
\(547\) 0 0 0.130526 0.991445i \(-0.458333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(548\) 0 0
\(549\) 0.641502 0.0420463i 0.641502 0.0420463i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.57313 0.207107i −1.57313 0.207107i
\(555\) 0 0
\(556\) 0 0
\(557\) −1.99144 0.130526i −1.99144 0.130526i −0.991445 0.130526i \(-0.958333\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.75928 + 0.867580i 1.75928 + 0.867580i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0.0471530 0.0195314i 0.0471530 0.0195314i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.42388 1.24871i −1.42388 1.24871i −0.923880 0.382683i \(-0.875000\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.707107 0.707107i 0.707107 0.707107i
\(577\) −1.05441 + 1.37413i −1.05441 + 1.37413i −0.130526 + 0.991445i \(0.541667\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(578\) −1.76537 −1.76537
\(579\) 0 0
\(580\) −0.586707 −0.586707
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.117317 1.78990i 0.117317 1.78990i
\(585\) 0.0671594 + 0.510126i 0.0671594 + 0.510126i
\(586\) 1.05441 + 0.608761i 1.05441 + 0.608761i
\(587\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.389345 + 1.95737i 0.389345 + 1.95737i
\(593\) 1.12484 0.465926i 1.12484 0.465926i 0.258819 0.965926i \(-0.416667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.996552 0.491445i −0.996552 0.491445i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(600\) 0 0
\(601\) −1.99144 0.130526i −1.99144 0.130526i −0.991445 0.130526i \(-0.958333\pi\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.349942 + 0.172572i 0.349942 + 0.172572i
\(606\) 0 0
\(607\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.152701 + 0.199004i −0.152701 + 0.199004i
\(611\) 0 0
\(612\) 1.63099 + 0.324423i 1.63099 + 0.324423i
\(613\) 0.576581 0.284338i 0.576581 0.284338i −0.130526 0.991445i \(-0.541667\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.483342 + 0.423880i 0.483342 + 0.423880i 0.866025 0.500000i \(-0.166667\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(618\) 0 0
\(619\) 0 0 0.442289 0.896873i \(-0.354167\pi\)
−0.442289 + 0.896873i \(0.645833\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.547153 + 0.146609i 0.547153 + 0.146609i
\(626\) 0.123864 + 0.0420463i 0.123864 + 0.0420463i
\(627\) 0 0
\(628\) 0.793353 + 1.37413i 0.793353 + 1.37413i
\(629\) −2.34672 + 2.34672i −2.34672 + 2.34672i
\(630\) 0 0
\(631\) 0 0 0.896873 0.442289i \(-0.145833\pi\)
−0.896873 + 0.442289i \(0.854167\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.22474 0.707107i 1.22474 0.707107i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.991445 0.869474i 0.991445 0.869474i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.0255190 + 0.389345i 0.0255190 + 0.389345i
\(641\) −0.410670 1.53264i −0.410670 1.53264i −0.793353 0.608761i \(-0.791667\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(648\) −0.923880 0.382683i −0.923880 0.382683i
\(649\) 0 0
\(650\) 0.929527 + 0.621090i 0.929527 + 0.621090i
\(651\) 0 0
\(652\) 0 0
\(653\) −0.835400 1.25026i −0.835400 1.25026i −0.965926 0.258819i \(-0.916667\pi\)
0.130526 0.991445i \(-0.458333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.123864 1.88981i −0.123864 1.88981i
\(657\) −1.69855 + 0.576581i −1.69855 + 0.576581i
\(658\) 0 0
\(659\) 0 0 −0.442289 0.896873i \(-0.645833\pi\)
0.442289 + 0.896873i \(0.354167\pi\)
\(660\) 0 0
\(661\) −0.665060 1.34861i −0.665060 1.34861i −0.923880 0.382683i \(-0.875000\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.65938 1.10876i 1.65938 1.10876i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.49144 0.996552i 1.49144 0.996552i 0.500000 0.866025i \(-0.333333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(674\) −1.71723 0.226078i −1.71723 0.226078i
\(675\) 0 0
\(676\) 0.449843 + 0.586247i 0.449843 + 0.586247i
\(677\) 0.758819 + 0.0999004i 0.758819 + 0.0999004i 0.500000 0.866025i \(-0.333333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.514765 + 0.394993i −0.514765 + 0.394993i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.152257 1.15651i 0.152257 1.15651i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −0.0578541 0.117317i −0.0578541 0.117317i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.49857 1.91722i 2.49857 1.91722i
\(698\) 0.357164 + 0.534534i 0.357164 + 0.534534i
\(699\) 0 0
\(700\) 0 0
\(701\) 1.49144 + 0.996552i 1.49144 + 0.996552i 0.991445 + 0.130526i \(0.0416667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.665060 + 0.583242i −0.665060 + 0.583242i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.608761 1.05441i 0.608761 1.05441i −0.382683 0.923880i \(-0.625000\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.08979 + 1.63099i −1.08979 + 1.63099i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.946930 0.321439i \(-0.895833\pi\)
0.946930 + 0.321439i \(0.104167\pi\)
\(720\) 0.349942 0.172572i 0.349942 0.172572i
\(721\) 0 0
\(722\) 0.707107 0.707107i 0.707107 0.707107i
\(723\) 0 0
\(724\) 0.513210 1.91532i 0.513210 1.91532i
\(725\) 1.20711 + 0.409758i 1.20711 + 0.409758i
\(726\) 0 0
\(727\) 0 0 −0.997859 0.0654031i \(-0.979167\pi\)
0.997859 + 0.0654031i \(0.0208333\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0.267834 0.646609i 0.267834 0.646609i
\(731\) 0 0
\(732\) 0 0
\(733\) −0.735499 0.491445i −0.735499 0.491445i 0.130526 0.991445i \(-0.458333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.69855 + 0.837633i −1.69855 + 0.837633i
\(739\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(740\) −0.101640 + 0.772029i −0.101640 + 0.772029i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(744\) 0 0
\(745\) −0.306563 0.306563i −0.306563 0.306563i
\(746\) −0.117317 0.0578541i −0.117317 0.0578541i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.57313 + 1.20711i 1.57313 + 1.20711i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.31587 + 1.50046i 1.31587 + 1.50046i 0.707107 + 0.707107i \(0.250000\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.835400 + 1.25026i 0.835400 + 1.25026i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.561918 + 0.324423i 0.561918 + 0.324423i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.866025 0.500000i −0.866025 0.500000i
\(773\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.500000 + 1.86603i 0.500000 + 1.86603i
\(777\) 0 0
\(778\) 0.252157 + 1.91532i 0.252157 + 1.91532i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.866025 0.500000i −0.866025 0.500000i
\(785\) 0.120781 + 0.607206i 0.120781 + 0.607206i
\(786\) 0 0
\(787\) 0 0 −0.659346 0.751840i \(-0.729167\pi\)
0.659346 + 0.751840i \(0.270833\pi\)
\(788\) 0.866025 0.500000i 0.866025 0.500000i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.818872 0.219416i 0.818872 0.219416i
\(794\) −1.10876 0.0726721i −1.10876 0.0726721i
\(795\) 0 0
\(796\) 0 0
\(797\) −1.83195 0.241181i −1.83195 0.241181i −0.866025 0.500000i \(-0.833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.219416 0.818872i 0.219416 0.818872i
\(801\) 1.92388 + 0.382683i 1.92388 + 0.382683i
\(802\) 1.10876 0.0726721i 1.10876 0.0726721i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.500000 + 0.133975i −0.500000 + 0.133975i
\(809\) −0.206647 + 0.608761i −0.206647 + 0.608761i 0.793353 + 0.608761i \(0.208333\pi\)
−1.00000 \(1.00000\pi\)
\(810\) −0.293353 0.257264i −0.293353 0.257264i
\(811\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.500000 0.133975i −0.500000 0.133975i
\(819\) 0 0
\(820\) 0.191254 0.713769i 0.191254 0.713769i
\(821\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 0 0 0.946930 0.321439i \(-0.104167\pi\)
−0.946930 + 0.321439i \(0.895833\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(828\) 0 0
\(829\) 0.583242 + 0.665060i 0.583242 + 0.665060i 0.965926 0.258819i \(-0.0833333\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.732626 1.09645i 0.732626 1.09645i
\(833\) −0.108761 1.65938i −0.108761 1.65938i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(840\) 0 0
\(841\) 1.16506 + 0.482584i 1.16506 + 0.482584i
\(842\) −0.357164 1.05217i −0.357164 1.05217i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0926784 + 0.273022i 0.0926784 + 0.273022i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.867580 + 0.172572i −0.867580 + 0.172572i
\(849\) 0 0
\(850\) 1.33496 0.453156i 1.33496 0.453156i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.130526 0.226078i 0.130526 0.226078i −0.793353 0.608761i \(-0.791667\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(858\) 0 0
\(859\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.321439 0.946930i \(-0.395833\pi\)
−0.321439 + 0.946930i \(0.604167\pi\)
\(864\) 0 0
\(865\) −0.00666180 0.0506014i −0.00666180 0.0506014i
\(866\) −0.735499 + 0.491445i −0.735499 + 0.491445i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.258819 1.96593i −0.258819 1.96593i
\(873\) 1.53264 1.17604i 1.53264 1.17604i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.382683 + 1.92388i 0.382683 + 1.92388i 0.382683 + 0.923880i \(0.375000\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(882\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(883\) 0 0 −0.442289 0.896873i \(-0.645833\pi\)
0.442289 + 0.896873i \(0.354167\pi\)
\(884\) 2.19290 2.19290
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.946930 0.321439i \(-0.104167\pi\)
−0.946930 + 0.321439i \(0.895833\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.607206 + 0.465926i −0.607206 + 0.465926i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.198092 0.478235i −0.198092 0.478235i
\(899\) 0 0
\(900\) −0.840506 + 0.110655i −0.840506 + 0.110655i
\(901\) −1.04015 1.04015i −1.04015 1.04015i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.00855514 + 0.130526i 0.00855514 + 0.130526i
\(905\) 0.429836 0.643296i 0.429836 0.643296i
\(906\) 0 0
\(907\) 0 0 0.751840 0.659346i \(-0.229167\pi\)
−0.751840 + 0.659346i \(0.770833\pi\)
\(908\) 0 0
\(909\) 0.315118 + 0.410670i 0.315118 + 0.410670i
\(910\) 0 0
\(911\) 0 0 0.991445 0.130526i \(-0.0416667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.79335 0.608761i 1.79335 0.608761i
\(915\) 0 0
\(916\) −0.707107 1.22474i −0.707107 1.22474i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.41421i 1.41421i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.748303 1.51741i 0.748303 1.51741i
\(926\) 0 0
\(927\) 0 0
\(928\) 0.483342 1.42388i 0.483342 1.42388i
\(929\) 1.17604 0.315118i 1.17604 0.315118i 0.382683 0.923880i \(-0.375000\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.92388 + 0.382683i 1.92388 + 0.382683i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −1.29335 0.257264i −1.29335 0.257264i
\(937\) −0.0675653 + 0.252157i −0.0675653 + 0.252157i −0.991445 0.130526i \(-0.958333\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.793353 0.608761i \(-0.791667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(948\) 0 0
\(949\) −2.04849 + 1.18270i −2.04849 + 1.18270i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.37413 0.793353i −1.37413 0.793353i −0.382683 0.923880i \(-0.625000\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(954\) 0.491445 + 0.735499i 0.491445 + 0.735499i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.258819 0.965926i −0.258819 0.965926i
\(962\) 1.86092 1.86092i 1.86092 1.86092i
\(963\) 0 0
\(964\) 0.765367 0.765367
\(965\) −0.257264 0.293353i −0.257264 0.293353i
\(966\) 0 0
\(967\) 0 0 0.608761 0.793353i \(-0.291667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(968\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(969\) 0 0
\(970\) −0.0492990 + 0.752157i −0.0492990 + 0.752157i
\(971\) 0 0 −0.130526 0.991445i \(-0.541667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.357164 0.534534i −0.357164 0.534534i
\(977\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.257264 0.293353i −0.257264 0.293353i
\(981\) −1.71723 + 0.991445i −1.71723 + 0.991445i
\(982\) 0 0
\(983\) 0 0 −0.793353 0.608761i \(-0.791667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(984\) 0 0
\(985\) 0.382683 0.0761205i 0.382683 0.0761205i
\(986\) 2.41532 0.647184i 2.41532 0.647184i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.896873 0.442289i \(-0.854167\pi\)
0.896873 + 0.442289i \(0.145833\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.158919 + 1.20711i −0.158919 + 1.20711i 0.707107 + 0.707107i \(0.250000\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 772.1.u.a.147.1 16
4.3 odd 2 CM 772.1.u.a.147.1 16
193.172 even 48 inner 772.1.u.a.751.1 yes 16
772.751 odd 48 inner 772.1.u.a.751.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
772.1.u.a.147.1 16 1.1 even 1 trivial
772.1.u.a.147.1 16 4.3 odd 2 CM
772.1.u.a.751.1 yes 16 193.172 even 48 inner
772.1.u.a.751.1 yes 16 772.751 odd 48 inner