Properties

Label 78.6.a.h
Level $78$
Weight $6$
Character orbit 78.a
Self dual yes
Analytic conductor $12.510$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,6,Mod(1,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 78.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.5099379454\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3241}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 810 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3241}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} + ( - \beta + 5) q^{5} + 36 q^{6} + (\beta + 69) q^{7} + 64 q^{8} + 81 q^{9} + ( - 4 \beta + 20) q^{10} + (8 \beta + 272) q^{11} + 144 q^{12} + 169 q^{13} + (4 \beta + 276) q^{14}+ \cdots + (648 \beta + 22032) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} + 10 q^{5} + 72 q^{6} + 138 q^{7} + 128 q^{8} + 162 q^{9} + 40 q^{10} + 544 q^{11} + 288 q^{12} + 338 q^{13} + 552 q^{14} + 90 q^{15} + 512 q^{16} + 1228 q^{17} + 648 q^{18}+ \cdots + 44064 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
28.9649
−27.9649
4.00000 9.00000 16.0000 −51.9298 36.0000 125.930 64.0000 81.0000 −207.719
1.2 4.00000 9.00000 16.0000 61.9298 36.0000 12.0702 64.0000 81.0000 247.719
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 78.6.a.h 2
3.b odd 2 1 234.6.a.i 2
4.b odd 2 1 624.6.a.j 2
13.b even 2 1 1014.6.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.6.a.h 2 1.a even 1 1 trivial
234.6.a.i 2 3.b odd 2 1
624.6.a.j 2 4.b odd 2 1
1014.6.a.i 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(78))\):

\( T_{5}^{2} - 10T_{5} - 3216 \) Copy content Toggle raw display
\( T_{7}^{2} - 138T_{7} + 1520 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 10T - 3216 \) Copy content Toggle raw display
$7$ \( T^{2} - 138T + 1520 \) Copy content Toggle raw display
$11$ \( T^{2} - 544T - 133440 \) Copy content Toggle raw display
$13$ \( (T - 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1228 T - 919404 \) Copy content Toggle raw display
$19$ \( T^{2} + 522 T - 2657560 \) Copy content Toggle raw display
$23$ \( T^{2} + 1632 T - 6801408 \) Copy content Toggle raw display
$29$ \( T^{2} - 2208 T - 12898980 \) Copy content Toggle raw display
$31$ \( T^{2} - 874 T - 3338480 \) Copy content Toggle raw display
$37$ \( T^{2} + 2160 T - 2580196 \) Copy content Toggle raw display
$41$ \( T^{2} + 12638 T - 52636440 \) Copy content Toggle raw display
$43$ \( T^{2} + 17760 T - 8315536 \) Copy content Toggle raw display
$47$ \( T^{2} - 4300 T - 540189600 \) Copy content Toggle raw display
$53$ \( T^{2} + 12020 T + 35290404 \) Copy content Toggle raw display
$59$ \( T^{2} + 27532 T - 19593600 \) Copy content Toggle raw display
$61$ \( T^{2} + 38016 T - 941435332 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1816784488 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1055598480 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 2256976540 \) Copy content Toggle raw display
$79$ \( T^{2} + 62168 T - 64734080 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2367643392 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2883762000 \) Copy content Toggle raw display
$97$ \( T^{2} - 4896 T - 890714212 \) Copy content Toggle raw display
show more
show less