Properties

Label 78.6.b.a.25.5
Level $78$
Weight $6$
Character 78.25
Analytic conductor $12.510$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,6,Mod(25,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 78.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5099379454\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.5
Root \(-15.0768 + 15.0768i\) of defining polynomial
Character \(\chi\) \(=\) 78.25
Dual form 78.6.b.a.25.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -9.00000 q^{3} -16.0000 q^{4} +9.73803i q^{5} -36.0000i q^{6} -105.184i q^{7} -64.0000i q^{8} +81.0000 q^{9} -38.9521 q^{10} -269.350i q^{11} +144.000 q^{12} +(227.464 + 565.290i) q^{13} +420.736 q^{14} -87.6423i q^{15} +256.000 q^{16} +1663.75 q^{17} +324.000i q^{18} +2.82742i q^{19} -155.809i q^{20} +946.657i q^{21} +1077.40 q^{22} +2151.14 q^{23} +576.000i q^{24} +3030.17 q^{25} +(-2261.16 + 909.856i) q^{26} -729.000 q^{27} +1682.95i q^{28} +220.829 q^{29} +350.569 q^{30} +788.106i q^{31} +1024.00i q^{32} +2424.15i q^{33} +6654.98i q^{34} +1024.29 q^{35} -1296.00 q^{36} +980.445i q^{37} -11.3097 q^{38} +(-2047.18 - 5087.61i) q^{39} +623.234 q^{40} -14809.7i q^{41} -3786.63 q^{42} +14142.2 q^{43} +4309.61i q^{44} +788.781i q^{45} +8604.55i q^{46} -25181.2i q^{47} -2304.00 q^{48} +5743.31 q^{49} +12120.7i q^{50} -14973.7 q^{51} +(-3639.42 - 9044.65i) q^{52} -30900.9 q^{53} -2916.00i q^{54} +2622.94 q^{55} -6731.78 q^{56} -25.4468i q^{57} +883.317i q^{58} -25094.7i q^{59} +1402.28i q^{60} +12060.8 q^{61} -3152.42 q^{62} -8519.91i q^{63} -4096.00 q^{64} +(-5504.81 + 2215.05i) q^{65} -9696.61 q^{66} -14450.5i q^{67} -26619.9 q^{68} -19360.2 q^{69} +4097.14i q^{70} +33547.5i q^{71} -5184.00i q^{72} +25805.7i q^{73} -3921.78 q^{74} -27271.5 q^{75} -45.2388i q^{76} -28331.4 q^{77} +(20350.5 - 8188.70i) q^{78} +15620.3 q^{79} +2492.94i q^{80} +6561.00 q^{81} +59238.7 q^{82} -2819.78i q^{83} -15146.5i q^{84} +16201.6i q^{85} +56568.8i q^{86} -1987.46 q^{87} -17238.4 q^{88} +16227.2i q^{89} -3155.12 q^{90} +(59459.6 - 23925.6i) q^{91} -34418.2 q^{92} -7092.95i q^{93} +100725. q^{94} -27.5335 q^{95} -9216.00i q^{96} +126289. i q^{97} +22973.2i q^{98} -21817.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{3} - 96 q^{4} + 486 q^{9} + 320 q^{10} + 864 q^{12} + 530 q^{13} - 1360 q^{14} + 1536 q^{16} - 836 q^{17} - 1296 q^{22} - 416 q^{23} + 718 q^{25} - 1360 q^{26} - 4374 q^{27} + 18788 q^{29} - 2880 q^{30}+ \cdots + 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) −9.00000 −0.577350
\(4\) −16.0000 −0.500000
\(5\) 9.73803i 0.174199i 0.996200 + 0.0870996i \(0.0277598\pi\)
−0.996200 + 0.0870996i \(0.972240\pi\)
\(6\) 36.0000i 0.408248i
\(7\) 105.184i 0.811344i −0.914019 0.405672i \(-0.867038\pi\)
0.914019 0.405672i \(-0.132962\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 81.0000 0.333333
\(10\) −38.9521 −0.123177
\(11\) 269.350i 0.671175i −0.942009 0.335588i \(-0.891065\pi\)
0.942009 0.335588i \(-0.108935\pi\)
\(12\) 144.000 0.288675
\(13\) 227.464 + 565.290i 0.373297 + 0.927712i
\(14\) 420.736 0.573707
\(15\) 87.6423i 0.100574i
\(16\) 256.000 0.250000
\(17\) 1663.75 1.39625 0.698127 0.715974i \(-0.254017\pi\)
0.698127 + 0.715974i \(0.254017\pi\)
\(18\) 324.000i 0.235702i
\(19\) 2.82742i 0.00179683i 1.00000 0.000898415i \(0.000285974\pi\)
−1.00000 0.000898415i \(0.999714\pi\)
\(20\) 155.809i 0.0870996i
\(21\) 946.657i 0.468430i
\(22\) 1077.40 0.474592
\(23\) 2151.14 0.847908 0.423954 0.905684i \(-0.360642\pi\)
0.423954 + 0.905684i \(0.360642\pi\)
\(24\) 576.000i 0.204124i
\(25\) 3030.17 0.969655
\(26\) −2261.16 + 909.856i −0.655991 + 0.263961i
\(27\) −729.000 −0.192450
\(28\) 1682.95i 0.405672i
\(29\) 220.829 0.0487598 0.0243799 0.999703i \(-0.492239\pi\)
0.0243799 + 0.999703i \(0.492239\pi\)
\(30\) 350.569 0.0711165
\(31\) 788.106i 0.147292i 0.997284 + 0.0736462i \(0.0234636\pi\)
−0.997284 + 0.0736462i \(0.976536\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 2424.15i 0.387503i
\(34\) 6654.98i 0.987301i
\(35\) 1024.29 0.141335
\(36\) −1296.00 −0.166667
\(37\) 980.445i 0.117739i 0.998266 + 0.0588693i \(0.0187495\pi\)
−0.998266 + 0.0588693i \(0.981250\pi\)
\(38\) −11.3097 −0.00127055
\(39\) −2047.18 5087.61i −0.215523 0.535615i
\(40\) 623.234 0.0615887
\(41\) 14809.7i 1.37590i −0.725759 0.687949i \(-0.758511\pi\)
0.725759 0.687949i \(-0.241489\pi\)
\(42\) −3786.63 −0.331230
\(43\) 14142.2 1.16640 0.583198 0.812330i \(-0.301801\pi\)
0.583198 + 0.812330i \(0.301801\pi\)
\(44\) 4309.61i 0.335588i
\(45\) 788.781i 0.0580664i
\(46\) 8604.55i 0.599561i
\(47\) 25181.2i 1.66277i −0.555699 0.831383i \(-0.687549\pi\)
0.555699 0.831383i \(-0.312451\pi\)
\(48\) −2304.00 −0.144338
\(49\) 5743.31 0.341721
\(50\) 12120.7i 0.685649i
\(51\) −14973.7 −0.806128
\(52\) −3639.42 9044.65i −0.186648 0.463856i
\(53\) −30900.9 −1.51106 −0.755530 0.655114i \(-0.772621\pi\)
−0.755530 + 0.655114i \(0.772621\pi\)
\(54\) 2916.00i 0.136083i
\(55\) 2622.94 0.116918
\(56\) −6731.78 −0.286853
\(57\) 25.4468i 0.00103740i
\(58\) 883.317i 0.0344784i
\(59\) 25094.7i 0.938538i −0.883055 0.469269i \(-0.844517\pi\)
0.883055 0.469269i \(-0.155483\pi\)
\(60\) 1402.28i 0.0502870i
\(61\) 12060.8 0.415003 0.207501 0.978235i \(-0.433467\pi\)
0.207501 + 0.978235i \(0.433467\pi\)
\(62\) −3152.42 −0.104151
\(63\) 8519.91i 0.270448i
\(64\) −4096.00 −0.125000
\(65\) −5504.81 + 2215.05i −0.161607 + 0.0650280i
\(66\) −9696.61 −0.274006
\(67\) 14450.5i 0.393276i −0.980476 0.196638i \(-0.936998\pi\)
0.980476 0.196638i \(-0.0630023\pi\)
\(68\) −26619.9 −0.698127
\(69\) −19360.2 −0.489540
\(70\) 4097.14i 0.0999393i
\(71\) 33547.5i 0.789795i 0.918725 + 0.394897i \(0.129220\pi\)
−0.918725 + 0.394897i \(0.870780\pi\)
\(72\) 5184.00i 0.117851i
\(73\) 25805.7i 0.566772i 0.959006 + 0.283386i \(0.0914578\pi\)
−0.959006 + 0.283386i \(0.908542\pi\)
\(74\) −3921.78 −0.0832538
\(75\) −27271.5 −0.559830
\(76\) 45.2388i 0.000898415i
\(77\) −28331.4 −0.544554
\(78\) 20350.5 8188.70i 0.378737 0.152398i
\(79\) 15620.3 0.281593 0.140797 0.990039i \(-0.455034\pi\)
0.140797 + 0.990039i \(0.455034\pi\)
\(80\) 2492.94i 0.0435498i
\(81\) 6561.00 0.111111
\(82\) 59238.7 0.972906
\(83\) 2819.78i 0.0449284i −0.999748 0.0224642i \(-0.992849\pi\)
0.999748 0.0224642i \(-0.00715117\pi\)
\(84\) 15146.5i 0.234215i
\(85\) 16201.6i 0.243226i
\(86\) 56568.8i 0.824766i
\(87\) −1987.46 −0.0281515
\(88\) −17238.4 −0.237296
\(89\) 16227.2i 0.217154i 0.994088 + 0.108577i \(0.0346294\pi\)
−0.994088 + 0.108577i \(0.965371\pi\)
\(90\) −3155.12 −0.0410591
\(91\) 59459.6 23925.6i 0.752693 0.302872i
\(92\) −34418.2 −0.423954
\(93\) 7092.95i 0.0850393i
\(94\) 100725. 1.17575
\(95\) −27.5335 −0.000313006
\(96\) 9216.00i 0.102062i
\(97\) 126289.i 1.36281i 0.731906 + 0.681406i \(0.238631\pi\)
−0.731906 + 0.681406i \(0.761369\pi\)
\(98\) 22973.2i 0.241633i
\(99\) 21817.4i 0.223725i
\(100\) −48482.7 −0.484827
\(101\) 92398.8 0.901287 0.450643 0.892704i \(-0.351195\pi\)
0.450643 + 0.892704i \(0.351195\pi\)
\(102\) 59894.8i 0.570018i
\(103\) 148091. 1.37542 0.687711 0.725985i \(-0.258616\pi\)
0.687711 + 0.725985i \(0.258616\pi\)
\(104\) 36178.6 14557.7i 0.327996 0.131980i
\(105\) −9218.57 −0.0816001
\(106\) 123604.i 1.06848i
\(107\) 88180.1 0.744580 0.372290 0.928117i \(-0.378573\pi\)
0.372290 + 0.928117i \(0.378573\pi\)
\(108\) 11664.0 0.0962250
\(109\) 61467.2i 0.495538i 0.968819 + 0.247769i \(0.0796974\pi\)
−0.968819 + 0.247769i \(0.920303\pi\)
\(110\) 10491.8i 0.0826736i
\(111\) 8824.01i 0.0679764i
\(112\) 26927.1i 0.202836i
\(113\) −82256.1 −0.605999 −0.303000 0.952991i \(-0.597988\pi\)
−0.303000 + 0.952991i \(0.597988\pi\)
\(114\) 101.787 0.000733553
\(115\) 20947.8i 0.147705i
\(116\) −3533.27 −0.0243799
\(117\) 18424.6 + 45788.5i 0.124432 + 0.309237i
\(118\) 100379. 0.663647
\(119\) 175000.i 1.13284i
\(120\) −5609.11 −0.0355583
\(121\) 88501.4 0.549524
\(122\) 48243.1i 0.293451i
\(123\) 133287.i 0.794375i
\(124\) 12609.7i 0.0736462i
\(125\) 59939.2i 0.343112i
\(126\) 34079.6 0.191236
\(127\) −143150. −0.787556 −0.393778 0.919206i \(-0.628832\pi\)
−0.393778 + 0.919206i \(0.628832\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −127280. −0.673419
\(130\) −8860.20 22019.3i −0.0459817 0.114273i
\(131\) −141329. −0.719539 −0.359769 0.933041i \(-0.617145\pi\)
−0.359769 + 0.933041i \(0.617145\pi\)
\(132\) 38786.4i 0.193752i
\(133\) 297.400 0.00145785
\(134\) 57802.2 0.278088
\(135\) 7099.02i 0.0335247i
\(136\) 106480.i 0.493650i
\(137\) 3958.33i 0.0180182i −0.999959 0.00900909i \(-0.997132\pi\)
0.999959 0.00900909i \(-0.00286772\pi\)
\(138\) 77440.9i 0.346157i
\(139\) −445579. −1.95608 −0.978042 0.208408i \(-0.933172\pi\)
−0.978042 + 0.208408i \(0.933172\pi\)
\(140\) −16388.6 −0.0706677
\(141\) 226631.i 0.959999i
\(142\) −134190. −0.558469
\(143\) 152261. 61267.5i 0.622657 0.250547i
\(144\) 20736.0 0.0833333
\(145\) 2150.44i 0.00849391i
\(146\) −103223. −0.400769
\(147\) −51689.7 −0.197293
\(148\) 15687.1i 0.0588693i
\(149\) 49619.3i 0.183098i 0.995801 + 0.0915492i \(0.0291819\pi\)
−0.995801 + 0.0915492i \(0.970818\pi\)
\(150\) 109086.i 0.395860i
\(151\) 402323.i 1.43593i 0.696081 + 0.717964i \(0.254926\pi\)
−0.696081 + 0.717964i \(0.745074\pi\)
\(152\) 180.955 0.000635275
\(153\) 134763. 0.465418
\(154\) 113325.i 0.385058i
\(155\) −7674.60 −0.0256582
\(156\) 32754.8 + 81401.8i 0.107761 + 0.267807i
\(157\) −562429. −1.82104 −0.910519 0.413468i \(-0.864317\pi\)
−0.910519 + 0.413468i \(0.864317\pi\)
\(158\) 62481.3i 0.199116i
\(159\) 278108. 0.872411
\(160\) −9971.74 −0.0307944
\(161\) 226265.i 0.687945i
\(162\) 26244.0i 0.0785674i
\(163\) 313878.i 0.925319i −0.886536 0.462659i \(-0.846895\pi\)
0.886536 0.462659i \(-0.153105\pi\)
\(164\) 236955.i 0.687949i
\(165\) −23606.5 −0.0675027
\(166\) 11279.1 0.0317691
\(167\) 602228.i 1.67097i −0.549510 0.835487i \(-0.685186\pi\)
0.549510 0.835487i \(-0.314814\pi\)
\(168\) 60586.0 0.165615
\(169\) −267813. + 257166.i −0.721299 + 0.692624i
\(170\) −64806.4 −0.171987
\(171\) 229.021i 0.000598943i
\(172\) −226275. −0.583198
\(173\) 304021. 0.772304 0.386152 0.922435i \(-0.373804\pi\)
0.386152 + 0.922435i \(0.373804\pi\)
\(174\) 7949.85i 0.0199061i
\(175\) 318726.i 0.786723i
\(176\) 68953.7i 0.167794i
\(177\) 225852.i 0.541865i
\(178\) −64908.7 −0.153551
\(179\) 406190. 0.947539 0.473769 0.880649i \(-0.342893\pi\)
0.473769 + 0.880649i \(0.342893\pi\)
\(180\) 12620.5i 0.0290332i
\(181\) −240967. −0.546714 −0.273357 0.961913i \(-0.588134\pi\)
−0.273357 + 0.961913i \(0.588134\pi\)
\(182\) 95702.4 + 237838.i 0.214163 + 0.532235i
\(183\) −108547. −0.239602
\(184\) 137673.i 0.299781i
\(185\) −9547.60 −0.0205100
\(186\) 28371.8 0.0601319
\(187\) 448130.i 0.937131i
\(188\) 402899.i 0.831383i
\(189\) 76679.2i 0.156143i
\(190\) 110.134i 0.000221329i
\(191\) 226140. 0.448532 0.224266 0.974528i \(-0.428001\pi\)
0.224266 + 0.974528i \(0.428001\pi\)
\(192\) 36864.0 0.0721688
\(193\) 406075.i 0.784717i −0.919812 0.392359i \(-0.871659\pi\)
0.919812 0.392359i \(-0.128341\pi\)
\(194\) −505156. −0.963653
\(195\) 49543.3 19935.5i 0.0933037 0.0375439i
\(196\) −91892.9 −0.170861
\(197\) 407390.i 0.747902i −0.927449 0.373951i \(-0.878003\pi\)
0.927449 0.373951i \(-0.121997\pi\)
\(198\) 87269.5 0.158197
\(199\) 202865. 0.363140 0.181570 0.983378i \(-0.441882\pi\)
0.181570 + 0.983378i \(0.441882\pi\)
\(200\) 193931.i 0.342825i
\(201\) 130055.i 0.227058i
\(202\) 369595.i 0.637306i
\(203\) 23227.7i 0.0395609i
\(204\) 239579. 0.403064
\(205\) 144217. 0.239680
\(206\) 592364.i 0.972570i
\(207\) 174242. 0.282636
\(208\) 58230.8 + 144714.i 0.0933242 + 0.231928i
\(209\) 761.568 0.00120599
\(210\) 36874.3i 0.0577000i
\(211\) 657970. 1.01742 0.508710 0.860938i \(-0.330123\pi\)
0.508710 + 0.860938i \(0.330123\pi\)
\(212\) 494415. 0.755530
\(213\) 301927.i 0.455988i
\(214\) 352720.i 0.526497i
\(215\) 137717.i 0.203185i
\(216\) 46656.0i 0.0680414i
\(217\) 82896.2 0.119505
\(218\) −245869. −0.350398
\(219\) 232251.i 0.327226i
\(220\) −41967.1 −0.0584591
\(221\) 378442. + 940499.i 0.521217 + 1.29532i
\(222\) 35296.0 0.0480666
\(223\) 978060.i 1.31705i −0.752558 0.658527i \(-0.771180\pi\)
0.752558 0.658527i \(-0.228820\pi\)
\(224\) 107709. 0.143427
\(225\) 245444. 0.323218
\(226\) 329024.i 0.428506i
\(227\) 812137.i 1.04608i 0.852308 + 0.523040i \(0.175202\pi\)
−0.852308 + 0.523040i \(0.824798\pi\)
\(228\) 407.149i 0.000518700i
\(229\) 1.36329e6i 1.71790i 0.512058 + 0.858951i \(0.328883\pi\)
−0.512058 + 0.858951i \(0.671117\pi\)
\(230\) −83791.4 −0.104443
\(231\) 254982. 0.314398
\(232\) 14133.1i 0.0172392i
\(233\) 931926. 1.12458 0.562292 0.826939i \(-0.309920\pi\)
0.562292 + 0.826939i \(0.309920\pi\)
\(234\) −183154. + 73698.3i −0.218664 + 0.0879869i
\(235\) 245215. 0.289653
\(236\) 401515.i 0.469269i
\(237\) −140583. −0.162578
\(238\) 699998. 0.801041
\(239\) 885874.i 1.00318i −0.865107 0.501588i \(-0.832749\pi\)
0.865107 0.501588i \(-0.167251\pi\)
\(240\) 22436.4i 0.0251435i
\(241\) 1.32690e6i 1.47161i 0.677191 + 0.735807i \(0.263197\pi\)
−0.677191 + 0.735807i \(0.736803\pi\)
\(242\) 354006.i 0.388572i
\(243\) −59049.0 −0.0641500
\(244\) −192973. −0.207501
\(245\) 55928.5i 0.0595275i
\(246\) −533148. −0.561708
\(247\) −1598.32 + 643.137i −0.00166694 + 0.000670751i
\(248\) 50438.8 0.0520757
\(249\) 25378.1i 0.0259394i
\(250\) −239757. −0.242617
\(251\) −547596. −0.548625 −0.274313 0.961641i \(-0.588450\pi\)
−0.274313 + 0.961641i \(0.588450\pi\)
\(252\) 136319.i 0.135224i
\(253\) 579409.i 0.569094i
\(254\) 572599.i 0.556886i
\(255\) 145814.i 0.140427i
\(256\) 65536.0 0.0625000
\(257\) −1.65509e6 −1.56311 −0.781554 0.623837i \(-0.785573\pi\)
−0.781554 + 0.623837i \(0.785573\pi\)
\(258\) 509119.i 0.476179i
\(259\) 103127. 0.0955265
\(260\) 88077.0 35440.8i 0.0808033 0.0325140i
\(261\) 17887.2 0.0162533
\(262\) 565317.i 0.508791i
\(263\) −668188. −0.595675 −0.297838 0.954617i \(-0.596265\pi\)
−0.297838 + 0.954617i \(0.596265\pi\)
\(264\) 155146. 0.137003
\(265\) 300914.i 0.263226i
\(266\) 1189.60i 0.00103085i
\(267\) 146045.i 0.125374i
\(268\) 231209.i 0.196638i
\(269\) −384942. −0.324350 −0.162175 0.986762i \(-0.551851\pi\)
−0.162175 + 0.986762i \(0.551851\pi\)
\(270\) 28396.1 0.0237055
\(271\) 1.05344e6i 0.871334i −0.900108 0.435667i \(-0.856513\pi\)
0.900108 0.435667i \(-0.143487\pi\)
\(272\) 425919. 0.349064
\(273\) −535136. + 215330.i −0.434568 + 0.174863i
\(274\) 15833.3 0.0127408
\(275\) 816177.i 0.650808i
\(276\) 309764. 0.244770
\(277\) −1.62051e6 −1.26897 −0.634485 0.772936i \(-0.718788\pi\)
−0.634485 + 0.772936i \(0.718788\pi\)
\(278\) 1.78231e6i 1.38316i
\(279\) 63836.6i 0.0490975i
\(280\) 65554.3i 0.0499696i
\(281\) 563009.i 0.425353i 0.977123 + 0.212677i \(0.0682181\pi\)
−0.977123 + 0.212677i \(0.931782\pi\)
\(282\) −906522. −0.678822
\(283\) 361892. 0.268604 0.134302 0.990940i \(-0.457121\pi\)
0.134302 + 0.990940i \(0.457121\pi\)
\(284\) 536760.i 0.394897i
\(285\) 247.802 0.000180714
\(286\) 245070. + 609045.i 0.177164 + 0.440285i
\(287\) −1.55774e6 −1.11633
\(288\) 82944.0i 0.0589256i
\(289\) 1.34819e6 0.949526
\(290\) −8601.77 −0.00600610
\(291\) 1.13660e6i 0.786820i
\(292\) 412891.i 0.283386i
\(293\) 757318.i 0.515358i 0.966231 + 0.257679i \(0.0829577\pi\)
−0.966231 + 0.257679i \(0.917042\pi\)
\(294\) 206759.i 0.139507i
\(295\) 244373. 0.163493
\(296\) 62748.5 0.0416269
\(297\) 196356.i 0.129168i
\(298\) −198477. −0.129470
\(299\) 489306. + 1.21602e6i 0.316521 + 0.786614i
\(300\) 436345. 0.279915
\(301\) 1.48753e6i 0.946348i
\(302\) −1.60929e6 −1.01535
\(303\) −831589. −0.520358
\(304\) 723.821i 0.000449207i
\(305\) 117448.i 0.0722932i
\(306\) 539053.i 0.329100i
\(307\) 1.96280e6i 1.18858i 0.804249 + 0.594292i \(0.202568\pi\)
−0.804249 + 0.594292i \(0.797432\pi\)
\(308\) 453302. 0.272277
\(309\) −1.33282e6 −0.794100
\(310\) 30698.4i 0.0181431i
\(311\) 834419. 0.489197 0.244598 0.969624i \(-0.421344\pi\)
0.244598 + 0.969624i \(0.421344\pi\)
\(312\) −325607. + 131019.i −0.189368 + 0.0761989i
\(313\) 1.61834e6 0.933703 0.466851 0.884336i \(-0.345388\pi\)
0.466851 + 0.884336i \(0.345388\pi\)
\(314\) 2.24972e6i 1.28767i
\(315\) 82967.2 0.0471118
\(316\) −249925. −0.140797
\(317\) 660304.i 0.369059i −0.982827 0.184529i \(-0.940924\pi\)
0.982827 0.184529i \(-0.0590761\pi\)
\(318\) 1.11243e6i 0.616888i
\(319\) 59480.4i 0.0327263i
\(320\) 39887.0i 0.0217749i
\(321\) −793621. −0.429883
\(322\) 905062. 0.486450
\(323\) 4704.11i 0.00250883i
\(324\) −104976. −0.0555556
\(325\) 689255. + 1.71293e6i 0.361969 + 0.899560i
\(326\) 1.25551e6 0.654299
\(327\) 553205.i 0.286099i
\(328\) −947819. −0.486453
\(329\) −2.64866e6 −1.34908
\(330\) 94425.9i 0.0477316i
\(331\) 2.73497e6i 1.37209i 0.727558 + 0.686046i \(0.240655\pi\)
−0.727558 + 0.686046i \(0.759345\pi\)
\(332\) 45116.5i 0.0224642i
\(333\) 79416.1i 0.0392462i
\(334\) 2.40891e6 1.18156
\(335\) 140720. 0.0685083
\(336\) 242344.i 0.117107i
\(337\) −880707. −0.422432 −0.211216 0.977439i \(-0.567742\pi\)
−0.211216 + 0.977439i \(0.567742\pi\)
\(338\) −1.02867e6 1.07125e6i −0.489759 0.510035i
\(339\) 740305. 0.349874
\(340\) 259226.i 0.121613i
\(341\) 212277. 0.0988590
\(342\) −916.085 −0.000423517
\(343\) 2.37193e6i 1.08860i
\(344\) 905101.i 0.412383i
\(345\) 188531.i 0.0852774i
\(346\) 1.21608e6i 0.546102i
\(347\) −33079.1 −0.0147479 −0.00737395 0.999973i \(-0.502347\pi\)
−0.00737395 + 0.999973i \(0.502347\pi\)
\(348\) 31799.4 0.0140757
\(349\) 4.06448e6i 1.78624i 0.449814 + 0.893122i \(0.351490\pi\)
−0.449814 + 0.893122i \(0.648510\pi\)
\(350\) 1.27490e6 0.556297
\(351\) −165821. 412097.i −0.0718410 0.178538i
\(352\) 275815. 0.118648
\(353\) 3.57770e6i 1.52815i −0.645125 0.764077i \(-0.723195\pi\)
0.645125 0.764077i \(-0.276805\pi\)
\(354\) −903409. −0.383157
\(355\) −326686. −0.137582
\(356\) 259635.i 0.108577i
\(357\) 1.57500e6i 0.654047i
\(358\) 1.62476e6i 0.670011i
\(359\) 3.31455e6i 1.35734i 0.734444 + 0.678669i \(0.237443\pi\)
−0.734444 + 0.678669i \(0.762557\pi\)
\(360\) 50482.0 0.0205296
\(361\) 2.47609e6 0.999997
\(362\) 963867.i 0.386585i
\(363\) −796513. −0.317268
\(364\) −951353. + 382809.i −0.376347 + 0.151436i
\(365\) −251297. −0.0987313
\(366\) 434188.i 0.169424i
\(367\) 192406. 0.0745681 0.0372840 0.999305i \(-0.488129\pi\)
0.0372840 + 0.999305i \(0.488129\pi\)
\(368\) 550691. 0.211977
\(369\) 1.19958e6i 0.458632i
\(370\) 38190.4i 0.0145027i
\(371\) 3.25029e6i 1.22599i
\(372\) 113487.i 0.0425197i
\(373\) 1.60161e6 0.596053 0.298027 0.954558i \(-0.403672\pi\)
0.298027 + 0.954558i \(0.403672\pi\)
\(374\) 1.79252e6 0.662652
\(375\) 539453.i 0.198096i
\(376\) −1.61160e6 −0.587877
\(377\) 50230.7 + 124833.i 0.0182019 + 0.0452350i
\(378\) −306717. −0.110410
\(379\) 3.76006e6i 1.34461i −0.740274 0.672305i \(-0.765304\pi\)
0.740274 0.672305i \(-0.234696\pi\)
\(380\) 440.537 0.000156503
\(381\) 1.28835e6 0.454695
\(382\) 904560.i 0.317160i
\(383\) 4.69693e6i 1.63613i 0.575128 + 0.818063i \(0.304952\pi\)
−0.575128 + 0.818063i \(0.695048\pi\)
\(384\) 147456.i 0.0510310i
\(385\) 275892.i 0.0948608i
\(386\) 1.62430e6 0.554879
\(387\) 1.14552e6 0.388799
\(388\) 2.02062e6i 0.681406i
\(389\) 4.85881e6 1.62801 0.814003 0.580860i \(-0.197284\pi\)
0.814003 + 0.580860i \(0.197284\pi\)
\(390\) 79741.8 + 198173.i 0.0265476 + 0.0659757i
\(391\) 3.57894e6 1.18389
\(392\) 367572.i 0.120817i
\(393\) 1.27196e6 0.415426
\(394\) 1.62956e6 0.528846
\(395\) 152111.i 0.0490533i
\(396\) 349078.i 0.111863i
\(397\) 3.91926e6i 1.24804i −0.781409 0.624019i \(-0.785499\pi\)
0.781409 0.624019i \(-0.214501\pi\)
\(398\) 811460.i 0.256779i
\(399\) −2676.60 −0.000841688
\(400\) 775724. 0.242414
\(401\) 5.01898e6i 1.55867i −0.626606 0.779336i \(-0.715557\pi\)
0.626606 0.779336i \(-0.284443\pi\)
\(402\) −520219. −0.160554
\(403\) −445509. + 179266.i −0.136645 + 0.0549838i
\(404\) −1.47838e6 −0.450643
\(405\) 63891.2i 0.0193555i
\(406\) 92910.9 0.0279738
\(407\) 264083. 0.0790232
\(408\) 958317.i 0.285009i
\(409\) 2.97886e6i 0.880526i −0.897869 0.440263i \(-0.854885\pi\)
0.897869 0.440263i \(-0.145115\pi\)
\(410\) 576868.i 0.169480i
\(411\) 35625.0i 0.0104028i
\(412\) −2.36946e6 −0.687711
\(413\) −2.63956e6 −0.761477
\(414\) 696968.i 0.199854i
\(415\) 27459.1 0.00782648
\(416\) −578857. + 232923.i −0.163998 + 0.0659902i
\(417\) 4.01021e6 1.12935
\(418\) 3046.27i 0.000852762i
\(419\) −4.76887e6 −1.32703 −0.663515 0.748163i \(-0.730936\pi\)
−0.663515 + 0.748163i \(0.730936\pi\)
\(420\) 147497. 0.0408000
\(421\) 651294.i 0.179090i 0.995983 + 0.0895451i \(0.0285413\pi\)
−0.995983 + 0.0895451i \(0.971459\pi\)
\(422\) 2.63188e6i 0.719424i
\(423\) 2.03968e6i 0.554256i
\(424\) 1.97766e6i 0.534241i
\(425\) 5.04143e6 1.35388
\(426\) 1.20771e6 0.322432
\(427\) 1.26860e6i 0.336710i
\(428\) −1.41088e6 −0.372290
\(429\) −1.37035e6 + 551407.i −0.359491 + 0.144654i
\(430\) −550869. −0.143674
\(431\) 5.22621e6i 1.35517i 0.735444 + 0.677585i \(0.236973\pi\)
−0.735444 + 0.677585i \(0.763027\pi\)
\(432\) −186624. −0.0481125
\(433\) −6.33506e6 −1.62379 −0.811897 0.583801i \(-0.801565\pi\)
−0.811897 + 0.583801i \(0.801565\pi\)
\(434\) 331585.i 0.0845026i
\(435\) 19354.0i 0.00490396i
\(436\) 983475.i 0.247769i
\(437\) 6082.18i 0.00152355i
\(438\) 929005. 0.231384
\(439\) −7.44321e6 −1.84331 −0.921657 0.388006i \(-0.873164\pi\)
−0.921657 + 0.388006i \(0.873164\pi\)
\(440\) 167868.i 0.0413368i
\(441\) 465208. 0.113907
\(442\) −3.76200e6 + 1.51377e6i −0.915931 + 0.368556i
\(443\) 327031. 0.0791734 0.0395867 0.999216i \(-0.487396\pi\)
0.0395867 + 0.999216i \(0.487396\pi\)
\(444\) 141184.i 0.0339882i
\(445\) −158021. −0.0378281
\(446\) 3.91224e6 0.931297
\(447\) 446574.i 0.105712i
\(448\) 430834.i 0.101418i
\(449\) 5.82118e6i 1.36268i −0.731965 0.681342i \(-0.761396\pi\)
0.731965 0.681342i \(-0.238604\pi\)
\(450\) 981775.i 0.228550i
\(451\) −3.98899e6 −0.923468
\(452\) 1.31610e6 0.303000
\(453\) 3.62091e6i 0.829033i
\(454\) −3.24855e6 −0.739690
\(455\) 232988. + 579019.i 0.0527601 + 0.131119i
\(456\) −1628.60 −0.000366776
\(457\) 8.15788e6i 1.82720i −0.406612 0.913601i \(-0.633290\pi\)
0.406612 0.913601i \(-0.366710\pi\)
\(458\) −5.45315e6 −1.21474
\(459\) −1.21287e6 −0.268709
\(460\) 335165.i 0.0738524i
\(461\) 3.15011e6i 0.690357i 0.938537 + 0.345179i \(0.112182\pi\)
−0.938537 + 0.345179i \(0.887818\pi\)
\(462\) 1.01993e6i 0.222313i
\(463\) 202622.i 0.0439273i 0.999759 + 0.0219637i \(0.00699182\pi\)
−0.999759 + 0.0219637i \(0.993008\pi\)
\(464\) 56532.3 0.0121899
\(465\) 69071.4 0.0148138
\(466\) 3.72771e6i 0.795201i
\(467\) 91749.8 0.0194676 0.00973382 0.999953i \(-0.496902\pi\)
0.00973382 + 0.999953i \(0.496902\pi\)
\(468\) −294793. 732616.i −0.0622161 0.154619i
\(469\) −1.51997e6 −0.319082
\(470\) 980860.i 0.204815i
\(471\) 5.06186e6 1.05138
\(472\) −1.60606e6 −0.331823
\(473\) 3.80921e6i 0.782856i
\(474\) 562331.i 0.114960i
\(475\) 8567.58i 0.00174230i
\(476\) 2.79999e6i 0.566421i
\(477\) −2.50298e6 −0.503687
\(478\) 3.54350e6 0.709353
\(479\) 2.82910e6i 0.563390i 0.959504 + 0.281695i \(0.0908967\pi\)
−0.959504 + 0.281695i \(0.909103\pi\)
\(480\) 89745.7 0.0177791
\(481\) −554236. + 223016.i −0.109228 + 0.0439514i
\(482\) −5.30758e6 −1.04059
\(483\) 2.03639e6i 0.397185i
\(484\) −1.41602e6 −0.274762
\(485\) −1.22981e6 −0.237401
\(486\) 236196.i 0.0453609i
\(487\) 1.30176e6i 0.248719i −0.992237 0.124359i \(-0.960312\pi\)
0.992237 0.124359i \(-0.0396876\pi\)
\(488\) 771890.i 0.146726i
\(489\) 2.82490e6i 0.534233i
\(490\) −223714. −0.0420923
\(491\) −6.07696e6 −1.13758 −0.568791 0.822482i \(-0.692588\pi\)
−0.568791 + 0.822482i \(0.692588\pi\)
\(492\) 2.13259e6i 0.397187i
\(493\) 367404. 0.0680810
\(494\) −2572.55 6393.26i −0.000474292 0.00117870i
\(495\) 212458. 0.0389727
\(496\) 201755.i 0.0368231i
\(497\) 3.52866e6 0.640795
\(498\) −101512. −0.0183419
\(499\) 3.78708e6i 0.680853i 0.940271 + 0.340426i \(0.110571\pi\)
−0.940271 + 0.340426i \(0.889429\pi\)
\(500\) 959028.i 0.171556i
\(501\) 5.42005e6i 0.964737i
\(502\) 2.19038e6i 0.387937i
\(503\) 2.28832e6 0.403271 0.201636 0.979461i \(-0.435374\pi\)
0.201636 + 0.979461i \(0.435374\pi\)
\(504\) −545274. −0.0956178
\(505\) 899783.i 0.157003i
\(506\) 2.31764e6 0.402410
\(507\) 2.41032e6 2.31450e6i 0.416442 0.399886i
\(508\) 2.29040e6 0.393778
\(509\) 3.70029e6i 0.633055i −0.948583 0.316528i \(-0.897483\pi\)
0.948583 0.316528i \(-0.102517\pi\)
\(510\) 583258. 0.0992968
\(511\) 2.71435e6 0.459847
\(512\) 262144.i 0.0441942i
\(513\) 2061.19i 0.000345800i
\(514\) 6.62037e6i 1.10528i
\(515\) 1.44212e6i 0.239597i
\(516\) 2.03648e6 0.336709
\(517\) −6.78256e6 −1.11601
\(518\) 412509.i 0.0675474i
\(519\) −2.73619e6 −0.445890
\(520\) 141763. + 352308.i 0.0229909 + 0.0571366i
\(521\) 6.13756e6 0.990608 0.495304 0.868720i \(-0.335057\pi\)
0.495304 + 0.868720i \(0.335057\pi\)
\(522\) 71548.7i 0.0114928i
\(523\) 4.10572e6 0.656349 0.328175 0.944617i \(-0.393567\pi\)
0.328175 + 0.944617i \(0.393567\pi\)
\(524\) 2.26127e6 0.359769
\(525\) 2.86853e6i 0.454215i
\(526\) 2.67275e6i 0.421206i
\(527\) 1.31121e6i 0.205658i
\(528\) 620583.i 0.0968758i
\(529\) −1.80895e6 −0.281053
\(530\) 1.20366e6 0.186129
\(531\) 2.03267e6i 0.312846i
\(532\) −4758.40 −0.000728923
\(533\) 8.37177e6 3.36867e6i 1.27644 0.513618i
\(534\) 584178. 0.0886528
\(535\) 858701.i 0.129705i
\(536\) −924834. −0.139044
\(537\) −3.65571e6 −0.547062
\(538\) 1.53977e6i 0.229350i
\(539\) 1.54696e6i 0.229355i
\(540\) 113584.i 0.0167623i
\(541\) 2.51266e6i 0.369098i 0.982823 + 0.184549i \(0.0590824\pi\)
−0.982823 + 0.184549i \(0.940918\pi\)
\(542\) 4.21374e6 0.616126
\(543\) 2.16870e6 0.315646
\(544\) 1.70368e6i 0.246825i
\(545\) −598569. −0.0863223
\(546\) −861321. 2.14054e6i −0.123647 0.307286i
\(547\) −2.29454e6 −0.327889 −0.163945 0.986470i \(-0.552422\pi\)
−0.163945 + 0.986470i \(0.552422\pi\)
\(548\) 63333.4i 0.00900909i
\(549\) 976924. 0.138334
\(550\) 3.26471e6 0.460191
\(551\) 624.378i 8.76130e-5i
\(552\) 1.23905e6i 0.173078i
\(553\) 1.64301e6i 0.228469i
\(554\) 6.48202e6i 0.897297i
\(555\) 85928.4 0.0118414
\(556\) 7.12926e6 0.978042
\(557\) 5.96324e6i 0.814412i −0.913336 0.407206i \(-0.866503\pi\)
0.913336 0.407206i \(-0.133497\pi\)
\(558\) −255346. −0.0347171
\(559\) 3.21684e6 + 7.99445e6i 0.435412 + 1.08208i
\(560\) 262217. 0.0353339
\(561\) 4.03317e6i 0.541053i
\(562\) −2.25204e6 −0.300770
\(563\) −7.37754e6 −0.980935 −0.490468 0.871459i \(-0.663174\pi\)
−0.490468 + 0.871459i \(0.663174\pi\)
\(564\) 3.62609e6i 0.479999i
\(565\) 801012.i 0.105565i
\(566\) 1.44757e6i 0.189932i
\(567\) 690113.i 0.0901493i
\(568\) 2.14704e6 0.279235
\(569\) 2.60845e6 0.337756 0.168878 0.985637i \(-0.445986\pi\)
0.168878 + 0.985637i \(0.445986\pi\)
\(570\) 991.208i 0.000127784i
\(571\) 1.09867e7 1.41019 0.705095 0.709113i \(-0.250905\pi\)
0.705095 + 0.709113i \(0.250905\pi\)
\(572\) −2.43618e6 + 980280.i −0.311329 + 0.125274i
\(573\) −2.03526e6 −0.258960
\(574\) 6.23097e6i 0.789362i
\(575\) 6.51831e6 0.822177
\(576\) −331776. −0.0416667
\(577\) 1.10048e7i 1.37607i 0.725677 + 0.688036i \(0.241527\pi\)
−0.725677 + 0.688036i \(0.758473\pi\)
\(578\) 5.39276e6i 0.671416i
\(579\) 3.65468e6i 0.453057i
\(580\) 34407.1i 0.00424696i
\(581\) −296596. −0.0364523
\(582\) 4.54640e6 0.556365
\(583\) 8.32318e6i 1.01419i
\(584\) 1.65157e6 0.200384
\(585\) −445890. + 179419.i −0.0538689 + 0.0216760i
\(586\) −3.02927e6 −0.364413
\(587\) 1.09851e7i 1.31586i 0.753080 + 0.657929i \(0.228567\pi\)
−0.753080 + 0.657929i \(0.771433\pi\)
\(588\) 827036. 0.0986464
\(589\) −2228.31 −0.000264659
\(590\) 977492.i 0.115607i
\(591\) 3.66651e6i 0.431801i
\(592\) 250994.i 0.0294347i
\(593\) 3.90620e6i 0.456161i −0.973642 0.228081i \(-0.926755\pi\)
0.973642 0.228081i \(-0.0732449\pi\)
\(594\) −785426. −0.0913354
\(595\) 1.70415e6 0.197340
\(596\) 793908.i 0.0915492i
\(597\) −1.82578e6 −0.209659
\(598\) −4.86407e6 + 1.95722e6i −0.556220 + 0.223814i
\(599\) −1.69973e7 −1.93559 −0.967797 0.251733i \(-0.918999\pi\)
−0.967797 + 0.251733i \(0.918999\pi\)
\(600\) 1.74538e6i 0.197930i
\(601\) 1.07099e7 1.20948 0.604739 0.796424i \(-0.293278\pi\)
0.604739 + 0.796424i \(0.293278\pi\)
\(602\) 5.95014e6 0.669169
\(603\) 1.17049e6i 0.131092i
\(604\) 6.43717e6i 0.717964i
\(605\) 861829.i 0.0957267i
\(606\) 3.32636e6i 0.367949i
\(607\) −1.43102e7 −1.57642 −0.788212 0.615404i \(-0.788993\pi\)
−0.788212 + 0.615404i \(0.788993\pi\)
\(608\) −2895.28 −0.000317638
\(609\) 209050.i 0.0228405i
\(610\) −469793. −0.0511190
\(611\) 1.42347e7 5.72781e6i 1.54257 0.620705i
\(612\) −2.15621e6 −0.232709
\(613\) 1.67594e7i 1.80139i 0.434450 + 0.900696i \(0.356943\pi\)
−0.434450 + 0.900696i \(0.643057\pi\)
\(614\) −7.85120e6 −0.840456
\(615\) −1.29795e6 −0.138379
\(616\) 1.81321e6i 0.192529i
\(617\) 1.26793e7i 1.34085i −0.741976 0.670427i \(-0.766111\pi\)
0.741976 0.670427i \(-0.233889\pi\)
\(618\) 5.33128e6i 0.561513i
\(619\) 5.43928e6i 0.570577i −0.958442 0.285289i \(-0.907911\pi\)
0.958442 0.285289i \(-0.0920895\pi\)
\(620\) 122794. 0.0128291
\(621\) −1.56818e6 −0.163180
\(622\) 3.33768e6i 0.345914i
\(623\) 1.70684e6 0.176187
\(624\) −524077. 1.30243e6i −0.0538807 0.133904i
\(625\) 8.88559e6 0.909885
\(626\) 6.47335e6i 0.660227i
\(627\) −6854.11 −0.000696277
\(628\) 8.99887e6 0.910519
\(629\) 1.63121e6i 0.164393i
\(630\) 331869.i 0.0333131i
\(631\) 5.28439e6i 0.528350i −0.964475 0.264175i \(-0.914900\pi\)
0.964475 0.264175i \(-0.0850996\pi\)
\(632\) 999700.i 0.0995582i
\(633\) −5.92173e6 −0.587407
\(634\) 2.64121e6 0.260964
\(635\) 1.39400e6i 0.137192i
\(636\) −4.44973e6 −0.436206
\(637\) 1.30639e6 + 3.24664e6i 0.127563 + 0.317019i
\(638\) 237922. 0.0231410
\(639\) 2.71735e6i 0.263265i
\(640\) 159548. 0.0153972
\(641\) 8.01855e6 0.770816 0.385408 0.922746i \(-0.374061\pi\)
0.385408 + 0.922746i \(0.374061\pi\)
\(642\) 3.17448e6i 0.303973i
\(643\) 1.39227e7i 1.32799i −0.747735 0.663997i \(-0.768859\pi\)
0.747735 0.663997i \(-0.231141\pi\)
\(644\) 3.62025e6i 0.343972i
\(645\) 1.23945e6i 0.117309i
\(646\) −18816.5 −0.00177401
\(647\) −9.55517e6 −0.897383 −0.448692 0.893687i \(-0.648110\pi\)
−0.448692 + 0.893687i \(0.648110\pi\)
\(648\) 419904.i 0.0392837i
\(649\) −6.75926e6 −0.629923
\(650\) −6.85170e6 + 2.75702e6i −0.636085 + 0.255951i
\(651\) −746066. −0.0689961
\(652\) 5.02204e6i 0.462659i
\(653\) −1.87340e7 −1.71928 −0.859640 0.510901i \(-0.829312\pi\)
−0.859640 + 0.510901i \(0.829312\pi\)
\(654\) 2.21282e6 0.202303
\(655\) 1.37627e6i 0.125343i
\(656\) 3.79128e6i 0.343974i
\(657\) 2.09026e6i 0.188924i
\(658\) 1.05946e7i 0.953941i
\(659\) −3.39787e6 −0.304785 −0.152392 0.988320i \(-0.548698\pi\)
−0.152392 + 0.988320i \(0.548698\pi\)
\(660\) 377704. 0.0337514
\(661\) 1.81823e7i 1.61862i 0.587382 + 0.809310i \(0.300159\pi\)
−0.587382 + 0.809310i \(0.699841\pi\)
\(662\) −1.09399e7 −0.970215
\(663\) −3.40598e6 8.46449e6i −0.300925 0.747854i
\(664\) −180466. −0.0158846
\(665\) 2896.09i 0.000253956i
\(666\) −317664. −0.0277513
\(667\) 475034. 0.0413438
\(668\) 9.63564e6i 0.835487i
\(669\) 8.80254e6i 0.760401i
\(670\) 562879.i 0.0484427i
\(671\) 3.24858e6i 0.278540i
\(672\) −969377. −0.0828074
\(673\) 686844. 0.0584548 0.0292274 0.999573i \(-0.490695\pi\)
0.0292274 + 0.999573i \(0.490695\pi\)
\(674\) 3.52283e6i 0.298704i
\(675\) −2.20899e6 −0.186610
\(676\) 4.28501e6 4.11466e6i 0.360650 0.346312i
\(677\) −6.64858e6 −0.557516 −0.278758 0.960361i \(-0.589923\pi\)
−0.278758 + 0.960361i \(0.589923\pi\)
\(678\) 2.96122e6i 0.247398i
\(679\) 1.32836e7 1.10571
\(680\) 1.03690e6 0.0859935
\(681\) 7.30923e6i 0.603954i
\(682\) 849106.i 0.0699038i
\(683\) 1.66853e7i 1.36862i 0.729193 + 0.684308i \(0.239896\pi\)
−0.729193 + 0.684308i \(0.760104\pi\)
\(684\) 3664.34i 0.000299472i
\(685\) 38546.4 0.00313875
\(686\) 9.48773e6 0.769754
\(687\) 1.22696e7i 0.991831i
\(688\) 3.62040e6 0.291599
\(689\) −7.02885e6 1.74680e7i −0.564074 1.40183i
\(690\) 754122. 0.0603002
\(691\) 1.75290e7i 1.39657i −0.715822 0.698283i \(-0.753948\pi\)
0.715822 0.698283i \(-0.246052\pi\)
\(692\) −4.86434e6 −0.386152
\(693\) −2.29484e6 −0.181518
\(694\) 132317.i 0.0104283i
\(695\) 4.33906e6i 0.340748i
\(696\) 127198.i 0.00995305i
\(697\) 2.46395e7i 1.92110i
\(698\) −1.62579e7 −1.26307
\(699\) −8.38734e6 −0.649279
\(700\) 5.09961e6i 0.393362i
\(701\) 7.06379e6 0.542929 0.271464 0.962449i \(-0.412492\pi\)
0.271464 + 0.962449i \(0.412492\pi\)
\(702\) 1.64839e6 663285.i 0.126246 0.0507993i
\(703\) −2772.13 −0.000211556
\(704\) 1.10326e6i 0.0838969i
\(705\) −2.20694e6 −0.167231
\(706\) 1.43108e7 1.08057
\(707\) 9.71889e6i 0.731253i
\(708\) 3.61364e6i 0.270933i
\(709\) 9.07731e6i 0.678175i 0.940755 + 0.339087i \(0.110118\pi\)
−0.940755 + 0.339087i \(0.889882\pi\)
\(710\) 1.30675e6i 0.0972849i
\(711\) 1.26525e6 0.0938644
\(712\) 1.03854e6 0.0767755
\(713\) 1.69532e6i 0.124890i
\(714\) −6.29998e6 −0.462481
\(715\) 596625. + 1.48272e6i 0.0436452 + 0.108466i
\(716\) −6.49904e6 −0.473769
\(717\) 7.97287e6i 0.579184i
\(718\) −1.32582e7 −0.959783
\(719\) −1.03755e7 −0.748492 −0.374246 0.927330i \(-0.622098\pi\)
−0.374246 + 0.927330i \(0.622098\pi\)
\(720\) 201928.i 0.0145166i
\(721\) 1.55768e7i 1.11594i
\(722\) 9.90436e6i 0.707104i
\(723\) 1.19421e7i 0.849637i
\(724\) 3.85547e6 0.273357
\(725\) 669150. 0.0472801
\(726\) 3.18605e6i 0.224342i
\(727\) −2.94915e6 −0.206948 −0.103474 0.994632i \(-0.532996\pi\)
−0.103474 + 0.994632i \(0.532996\pi\)
\(728\) −1.53124e6 3.80541e6i −0.107081 0.266117i
\(729\) 531441. 0.0370370
\(730\) 1.00519e6i 0.0698136i
\(731\) 2.35290e7 1.62858
\(732\) 1.73675e6 0.119801
\(733\) 1.71605e7i 1.17970i 0.807513 + 0.589849i \(0.200813\pi\)
−0.807513 + 0.589849i \(0.799187\pi\)
\(734\) 769623.i 0.0527276i
\(735\) 503356.i 0.0343682i
\(736\) 2.20276e6i 0.149890i
\(737\) −3.89226e6 −0.263957
\(738\) 4.79834e6 0.324302
\(739\) 2.20849e7i 1.48760i 0.668405 + 0.743798i \(0.266977\pi\)
−0.668405 + 0.743798i \(0.733023\pi\)
\(740\) 152762. 0.0102550
\(741\) 14384.8 5788.23i 0.000962409 0.000387258i
\(742\) −1.30011e7 −0.866906
\(743\) 2.21459e7i 1.47171i 0.677140 + 0.735854i \(0.263219\pi\)
−0.677140 + 0.735854i \(0.736781\pi\)
\(744\) −453949. −0.0300659
\(745\) −483194. −0.0318956
\(746\) 6.40644e6i 0.421473i
\(747\) 228402.i 0.0149761i
\(748\) 7.17008e6i 0.468565i
\(749\) 9.27514e6i 0.604110i
\(750\) 2.15781e6 0.140075
\(751\) 6.38710e6 0.413242 0.206621 0.978421i \(-0.433753\pi\)
0.206621 + 0.978421i \(0.433753\pi\)
\(752\) 6.44638e6i 0.415692i
\(753\) 4.92836e6 0.316749
\(754\) −499331. + 200923.i −0.0319860 + 0.0128707i
\(755\) −3.91783e6 −0.250137
\(756\) 1.22687e6i 0.0780716i
\(757\) −2.47266e6 −0.156828 −0.0784141 0.996921i \(-0.524986\pi\)
−0.0784141 + 0.996921i \(0.524986\pi\)
\(758\) 1.50402e7 0.950783
\(759\) 5.21469e6i 0.328567i
\(760\) 1762.15i 0.000110664i
\(761\) 1.59009e7i 0.995315i −0.867374 0.497657i \(-0.834194\pi\)
0.867374 0.497657i \(-0.165806\pi\)
\(762\) 5.15339e6i 0.321518i
\(763\) 6.46537e6 0.402052
\(764\) −3.61824e6 −0.224266
\(765\) 1.31233e6i 0.0810755i
\(766\) −1.87877e7 −1.15692
\(767\) 1.41858e7 5.70814e6i 0.870693 0.350353i
\(768\) −589824. −0.0360844
\(769\) 4.80537e6i 0.293029i 0.989209 + 0.146515i \(0.0468055\pi\)
−0.989209 + 0.146515i \(0.953194\pi\)
\(770\) 1.10357e6 0.0670767
\(771\) 1.48958e7 0.902461
\(772\) 6.49720e6i 0.392359i
\(773\) 2.22008e7i 1.33635i 0.744004 + 0.668175i \(0.232924\pi\)
−0.744004 + 0.668175i \(0.767076\pi\)
\(774\) 4.58207e6i 0.274922i
\(775\) 2.38810e6i 0.142823i
\(776\) 8.08249e6 0.481827
\(777\) −928145. −0.0551523
\(778\) 1.94353e7i 1.15117i
\(779\) 41873.2 0.00247225
\(780\) −792693. + 318967.i −0.0466518 + 0.0187720i
\(781\) 9.03603e6 0.530090
\(782\) 1.43158e7i 0.837140i
\(783\) −160985. −0.00938382
\(784\) 1.47029e6 0.0854303
\(785\) 5.47695e6i 0.317223i
\(786\) 5.08786e6i 0.293750i
\(787\) 2.85397e7i 1.64253i −0.570548 0.821264i \(-0.693269\pi\)
0.570548 0.821264i \(-0.306731\pi\)
\(788\) 6.51824e6i 0.373951i
\(789\) 6.01370e6 0.343913
\(790\) −608444. −0.0346859
\(791\) 8.65203e6i 0.491674i
\(792\) −1.39631e6 −0.0790987
\(793\) 2.74339e6 + 6.81785e6i 0.154919 + 0.385003i
\(794\) 1.56770e7 0.882496
\(795\) 2.70823e6i 0.151973i
\(796\) −3.24584e6 −0.181570
\(797\) −2.10013e7 −1.17112 −0.585558 0.810630i \(-0.699125\pi\)
−0.585558 + 0.810630i \(0.699125\pi\)
\(798\) 10706.4i 0.000595163i
\(799\) 4.18951e7i 2.32165i
\(800\) 3.10289e6i 0.171412i
\(801\) 1.31440e6i 0.0723847i
\(802\) 2.00759e7 1.10215
\(803\) 6.95078e6 0.380403
\(804\) 2.08088e6i 0.113529i
\(805\) 2.20338e6 0.119839
\(806\) −717063. 1.78203e6i −0.0388794 0.0966225i
\(807\) 3.46448e6 0.187264
\(808\) 5.91352e6i 0.318653i
\(809\) 3.59907e7 1.93339 0.966694 0.255935i \(-0.0823834\pi\)
0.966694 + 0.255935i \(0.0823834\pi\)
\(810\) −255565. −0.0136864
\(811\) 3.20415e7i 1.71065i 0.518093 + 0.855324i \(0.326642\pi\)
−0.518093 + 0.855324i \(0.673358\pi\)
\(812\) 371644.i 0.0197805i
\(813\) 9.48092e6i 0.503065i
\(814\) 1.05633e6i 0.0558779i
\(815\) 3.05655e6 0.161190
\(816\) −3.83327e6 −0.201532
\(817\) 39986.0i 0.00209581i
\(818\) 1.19154e7 0.622626
\(819\) 4.81622e6 1.93797e6i 0.250898 0.100957i
\(820\) −2.30747e6 −0.119840
\(821\) 2.92849e7i 1.51630i 0.652079 + 0.758151i \(0.273897\pi\)
−0.652079 + 0.758151i \(0.726103\pi\)
\(822\) −142500. −0.00735589
\(823\) −1.27788e6 −0.0657646 −0.0328823 0.999459i \(-0.510469\pi\)
−0.0328823 + 0.999459i \(0.510469\pi\)
\(824\) 9.47783e6i 0.486285i
\(825\) 7.34560e6i 0.375744i
\(826\) 1.05583e7i 0.538446i
\(827\) 3.34508e7i 1.70076i −0.526169 0.850380i \(-0.676372\pi\)
0.526169 0.850380i \(-0.323628\pi\)
\(828\) −2.78787e6 −0.141318
\(829\) −1.65727e7 −0.837541 −0.418770 0.908092i \(-0.637539\pi\)
−0.418770 + 0.908092i \(0.637539\pi\)
\(830\) 109837.i 0.00553416i
\(831\) 1.45845e7 0.732640
\(832\) −931692. 2.31543e6i −0.0466621 0.115964i
\(833\) 9.55540e6 0.477129
\(834\) 1.60408e7i 0.798568i
\(835\) 5.86451e6 0.291082
\(836\) −12185.1 −0.000602994
\(837\) 574529.i 0.0283464i
\(838\) 1.90755e7i 0.938352i
\(839\) 7.23411e6i 0.354797i −0.984139 0.177399i \(-0.943232\pi\)
0.984139 0.177399i \(-0.0567682\pi\)
\(840\) 589989.i 0.0288500i
\(841\) −2.04624e7 −0.997622
\(842\) −2.60518e6 −0.126636
\(843\) 5.06708e6i 0.245578i
\(844\) −1.05275e7 −0.508710
\(845\) −2.50429e6 2.60797e6i −0.120654 0.125650i
\(846\) 8.15870e6 0.391918
\(847\) 9.30894e6i 0.445853i
\(848\) −7.91064e6 −0.377765
\(849\) −3.25703e6 −0.155079
\(850\) 2.01657e7i 0.957341i
\(851\) 2.10907e6i 0.0998315i
\(852\) 4.83084e6i 0.227994i
\(853\) 3.08382e6i 0.145116i 0.997364 + 0.0725582i \(0.0231163\pi\)
−0.997364 + 0.0725582i \(0.976884\pi\)
\(854\) 5.07441e6 0.238090
\(855\) −2230.22 −0.000104335
\(856\) 5.64353e6i 0.263249i
\(857\) 9.15615e6 0.425854 0.212927 0.977068i \(-0.431700\pi\)
0.212927 + 0.977068i \(0.431700\pi\)
\(858\) −2.20563e6 5.48140e6i −0.102286 0.254199i
\(859\) −3.40397e7 −1.57399 −0.786996 0.616958i \(-0.788365\pi\)
−0.786996 + 0.616958i \(0.788365\pi\)
\(860\) 2.20348e6i 0.101593i
\(861\) 1.40197e7 0.644511
\(862\) −2.09048e7 −0.958250
\(863\) 1.92683e7i 0.880676i 0.897832 + 0.440338i \(0.145141\pi\)
−0.897832 + 0.440338i \(0.854859\pi\)
\(864\) 746496.i 0.0340207i
\(865\) 2.96057e6i 0.134535i
\(866\) 2.53402e7i 1.14820i
\(867\) −1.21337e7 −0.548209
\(868\) −1.32634e6 −0.0597524
\(869\) 4.20734e6i 0.188998i
\(870\) 77415.9 0.00346763
\(871\) 8.16875e6 3.28698e6i 0.364846 0.146808i
\(872\) 3.93390e6 0.175199
\(873\) 1.02294e7i 0.454270i
\(874\) −24328.7 −0.00107731
\(875\) 6.30466e6 0.278382
\(876\) 3.71602e6i 0.163613i
\(877\) 2.63479e7i 1.15677i −0.815765 0.578384i \(-0.803684\pi\)
0.815765 0.578384i \(-0.196316\pi\)
\(878\) 2.97729e7i 1.30342i
\(879\) 6.81586e6i 0.297542i
\(880\) 671473. 0.0292295
\(881\) 4.12657e6 0.179122 0.0895610 0.995981i \(-0.471454\pi\)
0.0895610 + 0.995981i \(0.471454\pi\)
\(882\) 1.86083e6i 0.0805444i
\(883\) 1.36506e6 0.0589182 0.0294591 0.999566i \(-0.490622\pi\)
0.0294591 + 0.999566i \(0.490622\pi\)
\(884\) −6.05507e6 1.50480e7i −0.260609 0.647661i
\(885\) −2.19936e6 −0.0943925
\(886\) 1.30812e6i 0.0559841i
\(887\) −2.77026e7 −1.18225 −0.591127 0.806578i \(-0.701317\pi\)
−0.591127 + 0.806578i \(0.701317\pi\)
\(888\) −564736. −0.0240333
\(889\) 1.50571e7i 0.638978i
\(890\) 632083.i 0.0267485i
\(891\) 1.76721e6i 0.0745750i
\(892\) 1.56490e7i 0.658527i
\(893\) 71197.9 0.00298771
\(894\) 1.78629e6 0.0747496
\(895\) 3.95549e6i 0.165060i
\(896\) −1.72334e6 −0.0717133
\(897\) −4.40376e6 1.09442e7i −0.182744 0.454152i
\(898\) 2.32847e7 0.963564
\(899\) 174037.i 0.00718194i
\(900\) −3.92710e6 −0.161609
\(901\) −5.14113e7 −2.10983
\(902\) 1.59560e7i 0.652990i
\(903\) 1.33878e7i 0.546374i
\(904\) 5.26439e6i 0.214253i
\(905\) 2.34654e6i 0.0952372i
\(906\) 1.44836e7 0.586215
\(907\) −2.08574e7 −0.841863 −0.420931 0.907093i \(-0.638297\pi\)
−0.420931 + 0.907093i \(0.638297\pi\)
\(908\) 1.29942e7i 0.523040i
\(909\) 7.48430e6 0.300429
\(910\) −2.31608e6 + 931953.i −0.0927149 + 0.0373070i
\(911\) 3.95317e6 0.157815 0.0789077 0.996882i \(-0.474857\pi\)
0.0789077 + 0.996882i \(0.474857\pi\)
\(912\) 6514.38i 0.000259350i
\(913\) −759510. −0.0301548
\(914\) 3.26315e7 1.29203
\(915\) 1.05703e6i 0.0417385i
\(916\) 2.18126e7i 0.858951i
\(917\) 1.48656e7i 0.583793i
\(918\) 4.85148e6i 0.190006i
\(919\) 1.66130e7 0.648873 0.324436 0.945907i \(-0.394825\pi\)
0.324436 + 0.945907i \(0.394825\pi\)
\(920\) 1.34066e6 0.0522215
\(921\) 1.76652e7i 0.686230i
\(922\) −1.26005e7 −0.488156
\(923\) −1.89641e7 + 7.63084e6i −0.732702 + 0.294828i
\(924\) −4.07972e6 −0.157199
\(925\) 2.97092e6i 0.114166i
\(926\) −810490. −0.0310613
\(927\) 1.19954e7 0.458474
\(928\) 226129.i 0.00861959i
\(929\) 4.33406e7i 1.64762i 0.566869 + 0.823808i \(0.308155\pi\)
−0.566869 + 0.823808i \(0.691845\pi\)
\(930\) 276286.i 0.0104749i
\(931\) 16238.8i 0.000614014i
\(932\) −1.49108e7 −0.562292
\(933\) −7.50978e6 −0.282438
\(934\) 366999.i 0.0137657i
\(935\) 4.36391e6 0.163247
\(936\) 2.93047e6 1.17917e6i 0.109332 0.0439934i
\(937\) −5.84680e6 −0.217555 −0.108778 0.994066i \(-0.534694\pi\)
−0.108778 + 0.994066i \(0.534694\pi\)
\(938\) 6.07987e6i 0.225625i
\(939\) −1.45650e7 −0.539073
\(940\) −3.92344e6 −0.144826
\(941\) 3.23340e7i 1.19038i 0.803585 + 0.595190i \(0.202923\pi\)
−0.803585 + 0.595190i \(0.797077\pi\)
\(942\) 2.02475e7i 0.743435i
\(943\) 3.18577e7i 1.16663i
\(944\) 6.42424e6i 0.234634i
\(945\) −746705. −0.0272000
\(946\) 1.52368e7 0.553563
\(947\) 3.74163e6i 0.135577i −0.997700 0.0677884i \(-0.978406\pi\)
0.997700 0.0677884i \(-0.0215943\pi\)
\(948\) 2.24933e6 0.0812889
\(949\) −1.45877e7 + 5.86987e6i −0.525801 + 0.211574i
\(950\) −34270.3 −0.00123200
\(951\) 5.94273e6i 0.213076i
\(952\) −1.12000e7 −0.400520
\(953\) −5.30640e7 −1.89264 −0.946319 0.323234i \(-0.895230\pi\)
−0.946319 + 0.323234i \(0.895230\pi\)
\(954\) 1.00119e7i 0.356160i
\(955\) 2.20216e6i 0.0781340i
\(956\) 1.41740e7i 0.501588i
\(957\) 535324.i 0.0188946i
\(958\) −1.13164e7 −0.398377
\(959\) −416354. −0.0146189
\(960\) 358983.i 0.0125717i
\(961\) 2.80080e7 0.978305
\(962\) −892064. 2.21694e6i −0.0310784 0.0772355i
\(963\) 7.14259e6 0.248193
\(964\) 2.12303e7i 0.735807i
\(965\) 3.95437e6 0.136697
\(966\) −8.14555e6 −0.280852
\(967\) 888502.i 0.0305557i 0.999883 + 0.0152779i \(0.00486328\pi\)
−0.999883 + 0.0152779i \(0.995137\pi\)
\(968\) 5.66409e6i 0.194286i
\(969\) 42337.0i 0.00144847i
\(970\) 4.91922e6i 0.167868i
\(971\) −1.92989e7 −0.656878 −0.328439 0.944525i \(-0.606523\pi\)
−0.328439 + 0.944525i \(0.606523\pi\)
\(972\) 944784. 0.0320750
\(973\) 4.68678e7i 1.58706i
\(974\) 5.20704e6 0.175871
\(975\) −6.20329e6 1.54163e7i −0.208983 0.519361i
\(976\) 3.08756e6 0.103751
\(977\) 2.73358e7i 0.916212i 0.888898 + 0.458106i \(0.151472\pi\)
−0.888898 + 0.458106i \(0.848528\pi\)
\(978\) −1.12996e7 −0.377760
\(979\) 4.37079e6 0.145748
\(980\) 894856.i 0.0297638i
\(981\) 4.97884e6i 0.165179i
\(982\) 2.43078e7i 0.804391i
\(983\) 2.36204e7i 0.779656i 0.920888 + 0.389828i \(0.127466\pi\)
−0.920888 + 0.389828i \(0.872534\pi\)
\(984\) 8.53038e6 0.280854
\(985\) 3.96717e6 0.130284
\(986\) 1.46961e6i 0.0481406i
\(987\) 2.38379e7 0.778889
\(988\) 25573.0 10290.2i 0.000833470 0.000335375i
\(989\) 3.04218e7 0.988996
\(990\) 849833.i 0.0275579i
\(991\) −3.49750e7 −1.13129 −0.565644 0.824649i \(-0.691372\pi\)
−0.565644 + 0.824649i \(0.691372\pi\)
\(992\) −807020. −0.0260379
\(993\) 2.46148e7i 0.792177i
\(994\) 1.41146e7i 0.453110i
\(995\) 1.97550e6i 0.0632587i
\(996\) 406049.i 0.0129697i
\(997\) 1.96013e7 0.624521 0.312261 0.949996i \(-0.398914\pi\)
0.312261 + 0.949996i \(0.398914\pi\)
\(998\) −1.51483e7 −0.481436
\(999\) 714744.i 0.0226588i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 78.6.b.a.25.5 yes 6
3.2 odd 2 234.6.b.c.181.2 6
4.3 odd 2 624.6.c.d.337.4 6
13.5 odd 4 1014.6.a.q.1.2 3
13.8 odd 4 1014.6.a.o.1.2 3
13.12 even 2 inner 78.6.b.a.25.2 6
39.38 odd 2 234.6.b.c.181.5 6
52.51 odd 2 624.6.c.d.337.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.b.a.25.2 6 13.12 even 2 inner
78.6.b.a.25.5 yes 6 1.1 even 1 trivial
234.6.b.c.181.2 6 3.2 odd 2
234.6.b.c.181.5 6 39.38 odd 2
624.6.c.d.337.3 6 52.51 odd 2
624.6.c.d.337.4 6 4.3 odd 2
1014.6.a.o.1.2 3 13.8 odd 4
1014.6.a.q.1.2 3 13.5 odd 4