Properties

Label 78.6.b.a.25.6
Level $78$
Weight $6$
Character 78.25
Analytic conductor $12.510$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,6,Mod(25,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 78.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5099379454\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.6
Root \(6.10758 - 6.10758i\) of defining polynomial
Character \(\chi\) \(=\) 78.25
Dual form 78.6.b.a.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -9.00000 q^{3} -16.0000 q^{4} +37.1158i q^{5} -36.0000i q^{6} +176.407i q^{7} -64.0000i q^{8} +81.0000 q^{9} -148.463 q^{10} -179.404i q^{11} +144.000 q^{12} +(-554.740 - 252.104i) q^{13} -705.627 q^{14} -334.042i q^{15} +256.000 q^{16} -933.141 q^{17} +324.000i q^{18} -2335.97i q^{19} -593.853i q^{20} -1587.66i q^{21} +717.615 q^{22} -2792.36 q^{23} +576.000i q^{24} +1747.42 q^{25} +(1008.42 - 2218.96i) q^{26} -729.000 q^{27} -2822.51i q^{28} +1503.58 q^{29} +1336.17 q^{30} -737.236i q^{31} +1024.00i q^{32} +1614.63i q^{33} -3732.56i q^{34} -6547.48 q^{35} -1296.00 q^{36} -3775.41i q^{37} +9343.88 q^{38} +(4992.66 + 2268.94i) q^{39} +2375.41 q^{40} +368.848i q^{41} +6350.64 q^{42} -20180.6 q^{43} +2870.46i q^{44} +3006.38i q^{45} -11169.4i q^{46} +20526.5i q^{47} -2304.00 q^{48} -14312.3 q^{49} +6989.67i q^{50} +8398.27 q^{51} +(8875.84 + 4033.67i) q^{52} -25081.9 q^{53} -2916.00i q^{54} +6658.72 q^{55} +11290.0 q^{56} +21023.7i q^{57} +6014.33i q^{58} +35326.3i q^{59} +5344.68i q^{60} +31741.4 q^{61} +2948.94 q^{62} +14288.9i q^{63} -4096.00 q^{64} +(9357.06 - 20589.6i) q^{65} -6458.54 q^{66} -46661.3i q^{67} +14930.3 q^{68} +25131.2 q^{69} -26189.9i q^{70} +58973.4i q^{71} -5184.00i q^{72} +3411.20i q^{73} +15101.6 q^{74} -15726.8 q^{75} +37375.5i q^{76} +31648.1 q^{77} +(-9075.76 + 19970.6i) q^{78} -64977.3 q^{79} +9501.64i q^{80} +6561.00 q^{81} -1475.39 q^{82} +12233.4i q^{83} +25402.6i q^{84} -34634.3i q^{85} -80722.5i q^{86} -13532.2 q^{87} -11481.8 q^{88} -61754.7i q^{89} -12025.5 q^{90} +(44472.9 - 97859.9i) q^{91} +44677.8 q^{92} +6635.12i q^{93} -82106.0 q^{94} +86701.4 q^{95} -9216.00i q^{96} -28030.7i q^{97} -57249.4i q^{98} -14531.7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{3} - 96 q^{4} + 486 q^{9} + 320 q^{10} + 864 q^{12} + 530 q^{13} - 1360 q^{14} + 1536 q^{16} - 836 q^{17} - 1296 q^{22} - 416 q^{23} + 718 q^{25} - 1360 q^{26} - 4374 q^{27} + 18788 q^{29} - 2880 q^{30}+ \cdots + 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) −9.00000 −0.577350
\(4\) −16.0000 −0.500000
\(5\) 37.1158i 0.663948i 0.943289 + 0.331974i \(0.107715\pi\)
−0.943289 + 0.331974i \(0.892285\pi\)
\(6\) 36.0000i 0.408248i
\(7\) 176.407i 1.36072i 0.732876 + 0.680362i \(0.238177\pi\)
−0.732876 + 0.680362i \(0.761823\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 81.0000 0.333333
\(10\) −148.463 −0.469482
\(11\) 179.404i 0.447044i −0.974699 0.223522i \(-0.928245\pi\)
0.974699 0.223522i \(-0.0717554\pi\)
\(12\) 144.000 0.288675
\(13\) −554.740 252.104i −0.910397 0.413735i
\(14\) −705.627 −0.962177
\(15\) 334.042i 0.383330i
\(16\) 256.000 0.250000
\(17\) −933.141 −0.783114 −0.391557 0.920154i \(-0.628063\pi\)
−0.391557 + 0.920154i \(0.628063\pi\)
\(18\) 324.000i 0.235702i
\(19\) 2335.97i 1.48451i −0.670117 0.742256i \(-0.733756\pi\)
0.670117 0.742256i \(-0.266244\pi\)
\(20\) 593.853i 0.331974i
\(21\) 1587.66i 0.785614i
\(22\) 717.615 0.316108
\(23\) −2792.36 −1.10066 −0.550328 0.834948i \(-0.685497\pi\)
−0.550328 + 0.834948i \(0.685497\pi\)
\(24\) 576.000i 0.204124i
\(25\) 1747.42 0.559174
\(26\) 1008.42 2218.96i 0.292555 0.643748i
\(27\) −729.000 −0.192450
\(28\) 2822.51i 0.680362i
\(29\) 1503.58 0.331996 0.165998 0.986126i \(-0.446916\pi\)
0.165998 + 0.986126i \(0.446916\pi\)
\(30\) 1336.17 0.271055
\(31\) 737.236i 0.137785i −0.997624 0.0688926i \(-0.978053\pi\)
0.997624 0.0688926i \(-0.0219466\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 1614.63i 0.258101i
\(34\) 3732.56i 0.553745i
\(35\) −6547.48 −0.903450
\(36\) −1296.00 −0.166667
\(37\) 3775.41i 0.453377i −0.973967 0.226689i \(-0.927210\pi\)
0.973967 0.226689i \(-0.0727900\pi\)
\(38\) 9343.88 1.04971
\(39\) 4992.66 + 2268.94i 0.525618 + 0.238870i
\(40\) 2375.41 0.234741
\(41\) 368.848i 0.0342680i 0.999853 + 0.0171340i \(0.00545418\pi\)
−0.999853 + 0.0171340i \(0.994546\pi\)
\(42\) 6350.64 0.555513
\(43\) −20180.6 −1.66442 −0.832211 0.554459i \(-0.812925\pi\)
−0.832211 + 0.554459i \(0.812925\pi\)
\(44\) 2870.46i 0.223522i
\(45\) 3006.38i 0.221316i
\(46\) 11169.4i 0.778282i
\(47\) 20526.5i 1.35541i 0.735335 + 0.677704i \(0.237025\pi\)
−0.735335 + 0.677704i \(0.762975\pi\)
\(48\) −2304.00 −0.144338
\(49\) −14312.3 −0.851570
\(50\) 6989.67i 0.395395i
\(51\) 8398.27 0.452131
\(52\) 8875.84 + 4033.67i 0.455199 + 0.206867i
\(53\) −25081.9 −1.22651 −0.613253 0.789886i \(-0.710140\pi\)
−0.613253 + 0.789886i \(0.710140\pi\)
\(54\) 2916.00i 0.136083i
\(55\) 6658.72 0.296814
\(56\) 11290.0 0.481089
\(57\) 21023.7i 0.857083i
\(58\) 6014.33i 0.234756i
\(59\) 35326.3i 1.32120i 0.750738 + 0.660600i \(0.229698\pi\)
−0.750738 + 0.660600i \(0.770302\pi\)
\(60\) 5344.68i 0.191665i
\(61\) 31741.4 1.09220 0.546099 0.837721i \(-0.316112\pi\)
0.546099 + 0.837721i \(0.316112\pi\)
\(62\) 2948.94 0.0974288
\(63\) 14288.9i 0.453575i
\(64\) −4096.00 −0.125000
\(65\) 9357.06 20589.6i 0.274698 0.604456i
\(66\) −6458.54 −0.182505
\(67\) 46661.3i 1.26990i −0.772552 0.634951i \(-0.781020\pi\)
0.772552 0.634951i \(-0.218980\pi\)
\(68\) 14930.3 0.391557
\(69\) 25131.2 0.635465
\(70\) 26189.9i 0.638835i
\(71\) 58973.4i 1.38839i 0.719789 + 0.694193i \(0.244238\pi\)
−0.719789 + 0.694193i \(0.755762\pi\)
\(72\) 5184.00i 0.117851i
\(73\) 3411.20i 0.0749204i 0.999298 + 0.0374602i \(0.0119267\pi\)
−0.999298 + 0.0374602i \(0.988073\pi\)
\(74\) 15101.6 0.320586
\(75\) −15726.8 −0.322839
\(76\) 37375.5i 0.742256i
\(77\) 31648.1 0.608303
\(78\) −9075.76 + 19970.6i −0.168907 + 0.371668i
\(79\) −64977.3 −1.17137 −0.585685 0.810539i \(-0.699174\pi\)
−0.585685 + 0.810539i \(0.699174\pi\)
\(80\) 9501.64i 0.165987i
\(81\) 6561.00 0.111111
\(82\) −1475.39 −0.0242311
\(83\) 12233.4i 0.194918i 0.995240 + 0.0974591i \(0.0310715\pi\)
−0.995240 + 0.0974591i \(0.968928\pi\)
\(84\) 25402.6i 0.392807i
\(85\) 34634.3i 0.519947i
\(86\) 80722.5i 1.17692i
\(87\) −13532.2 −0.191678
\(88\) −11481.8 −0.158054
\(89\) 61754.7i 0.826409i −0.910638 0.413204i \(-0.864410\pi\)
0.910638 0.413204i \(-0.135590\pi\)
\(90\) −12025.5 −0.156494
\(91\) 44472.9 97859.9i 0.562979 1.23880i
\(92\) 44677.8 0.550328
\(93\) 6635.12i 0.0795503i
\(94\) −82106.0 −0.958418
\(95\) 86701.4 0.985638
\(96\) 9216.00i 0.102062i
\(97\) 28030.7i 0.302485i −0.988497 0.151243i \(-0.951673\pi\)
0.988497 0.151243i \(-0.0483274\pi\)
\(98\) 57249.4i 0.602151i
\(99\) 14531.7i 0.149015i
\(100\) −27958.7 −0.279587
\(101\) 102600. 1.00080 0.500398 0.865796i \(-0.333187\pi\)
0.500398 + 0.865796i \(0.333187\pi\)
\(102\) 33593.1i 0.319705i
\(103\) −203803. −1.89286 −0.946430 0.322909i \(-0.895339\pi\)
−0.946430 + 0.322909i \(0.895339\pi\)
\(104\) −16134.7 + 35503.4i −0.146277 + 0.321874i
\(105\) 58927.3 0.521607
\(106\) 100327.i 0.867271i
\(107\) −147356. −1.24425 −0.622125 0.782918i \(-0.713731\pi\)
−0.622125 + 0.782918i \(0.713731\pi\)
\(108\) 11664.0 0.0962250
\(109\) 7846.65i 0.0632584i 0.999500 + 0.0316292i \(0.0100696\pi\)
−0.999500 + 0.0316292i \(0.989930\pi\)
\(110\) 26634.9i 0.209879i
\(111\) 33978.7i 0.261758i
\(112\) 45160.1i 0.340181i
\(113\) −192673. −1.41947 −0.709733 0.704471i \(-0.751184\pi\)
−0.709733 + 0.704471i \(0.751184\pi\)
\(114\) −84095.0 −0.606049
\(115\) 103641.i 0.730778i
\(116\) −24057.3 −0.165998
\(117\) −44933.9 20420.5i −0.303466 0.137912i
\(118\) −141305. −0.934229
\(119\) 164612.i 1.06560i
\(120\) −21378.7 −0.135528
\(121\) 128865. 0.800152
\(122\) 126966.i 0.772301i
\(123\) 3319.64i 0.0197846i
\(124\) 11795.8i 0.0688926i
\(125\) 180844.i 1.03521i
\(126\) −57155.8 −0.320726
\(127\) 255644. 1.40646 0.703229 0.710964i \(-0.251741\pi\)
0.703229 + 0.710964i \(0.251741\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 181626. 0.960955
\(130\) 82358.5 + 37428.2i 0.427415 + 0.194241i
\(131\) −134257. −0.683530 −0.341765 0.939786i \(-0.611025\pi\)
−0.341765 + 0.939786i \(0.611025\pi\)
\(132\) 25834.2i 0.129050i
\(133\) 412081. 2.02001
\(134\) 186645. 0.897956
\(135\) 27057.4i 0.127777i
\(136\) 59721.0i 0.276873i
\(137\) 74373.4i 0.338545i −0.985569 0.169272i \(-0.945858\pi\)
0.985569 0.169272i \(-0.0541418\pi\)
\(138\) 100525.i 0.449341i
\(139\) 36348.4 0.159569 0.0797844 0.996812i \(-0.474577\pi\)
0.0797844 + 0.996812i \(0.474577\pi\)
\(140\) 104760. 0.451725
\(141\) 184738.i 0.782545i
\(142\) −235893. −0.981737
\(143\) −45228.5 + 99522.5i −0.184958 + 0.406988i
\(144\) 20736.0 0.0833333
\(145\) 55806.7i 0.220428i
\(146\) −13644.8 −0.0529767
\(147\) 128811. 0.491654
\(148\) 60406.6i 0.226689i
\(149\) 221253.i 0.816440i 0.912884 + 0.408220i \(0.133850\pi\)
−0.912884 + 0.408220i \(0.866150\pi\)
\(150\) 62907.0i 0.228282i
\(151\) 482448.i 1.72190i 0.508690 + 0.860950i \(0.330130\pi\)
−0.508690 + 0.860950i \(0.669870\pi\)
\(152\) −149502. −0.524854
\(153\) −75584.4 −0.261038
\(154\) 126592.i 0.430135i
\(155\) 27363.1 0.0914821
\(156\) −79882.5 36303.0i −0.262809 0.119435i
\(157\) −110726. −0.358508 −0.179254 0.983803i \(-0.557368\pi\)
−0.179254 + 0.983803i \(0.557368\pi\)
\(158\) 259909.i 0.828283i
\(159\) 225737. 0.708124
\(160\) −38006.6 −0.117370
\(161\) 492591.i 1.49769i
\(162\) 26244.0i 0.0785674i
\(163\) 161064.i 0.474819i 0.971410 + 0.237410i \(0.0762984\pi\)
−0.971410 + 0.237410i \(0.923702\pi\)
\(164\) 5901.58i 0.0171340i
\(165\) −59928.5 −0.171365
\(166\) −48933.7 −0.137828
\(167\) 466578.i 1.29459i 0.762238 + 0.647296i \(0.224100\pi\)
−0.762238 + 0.647296i \(0.775900\pi\)
\(168\) −101610. −0.277757
\(169\) 244180. + 279705.i 0.657647 + 0.753326i
\(170\) 138537. 0.367658
\(171\) 189214.i 0.494837i
\(172\) 322890. 0.832211
\(173\) −240767. −0.611620 −0.305810 0.952093i \(-0.598927\pi\)
−0.305810 + 0.952093i \(0.598927\pi\)
\(174\) 54129.0i 0.135537i
\(175\) 308256.i 0.760881i
\(176\) 45927.4i 0.111761i
\(177\) 317937.i 0.762795i
\(178\) 247019. 0.584359
\(179\) −266435. −0.621526 −0.310763 0.950487i \(-0.600585\pi\)
−0.310763 + 0.950487i \(0.600585\pi\)
\(180\) 48102.1i 0.110658i
\(181\) 64307.2 0.145903 0.0729513 0.997336i \(-0.476758\pi\)
0.0729513 + 0.997336i \(0.476758\pi\)
\(182\) 391439. + 177892.i 0.875964 + 0.398086i
\(183\) −285673. −0.630581
\(184\) 178711.i 0.389141i
\(185\) 140127. 0.301019
\(186\) −26540.5 −0.0562505
\(187\) 167409.i 0.350086i
\(188\) 328424.i 0.677704i
\(189\) 128601.i 0.261871i
\(190\) 346806.i 0.696951i
\(191\) −925387. −1.83544 −0.917720 0.397228i \(-0.869972\pi\)
−0.917720 + 0.397228i \(0.869972\pi\)
\(192\) 36864.0 0.0721688
\(193\) 632306.i 1.22190i −0.791671 0.610948i \(-0.790789\pi\)
0.791671 0.610948i \(-0.209211\pi\)
\(194\) 112123. 0.213889
\(195\) −84213.5 + 185307.i −0.158597 + 0.348983i
\(196\) 228997. 0.425785
\(197\) 100048.i 0.183671i 0.995774 + 0.0918357i \(0.0292735\pi\)
−0.995774 + 0.0918357i \(0.970727\pi\)
\(198\) 58126.8 0.105369
\(199\) −723076. −1.29435 −0.647174 0.762342i \(-0.724049\pi\)
−0.647174 + 0.762342i \(0.724049\pi\)
\(200\) 111835.i 0.197698i
\(201\) 419952.i 0.733178i
\(202\) 410401.i 0.707669i
\(203\) 265242.i 0.451754i
\(204\) −134372. −0.226066
\(205\) −13690.1 −0.0227521
\(206\) 815214.i 1.33845i
\(207\) −226181. −0.366886
\(208\) −142013. 64538.7i −0.227599 0.103434i
\(209\) −419082. −0.663641
\(210\) 235709.i 0.368832i
\(211\) 259548. 0.401340 0.200670 0.979659i \(-0.435688\pi\)
0.200670 + 0.979659i \(0.435688\pi\)
\(212\) 401310. 0.613253
\(213\) 530760.i 0.801585i
\(214\) 589423.i 0.879818i
\(215\) 749020.i 1.10509i
\(216\) 46656.0i 0.0680414i
\(217\) 130053. 0.187488
\(218\) −31386.6 −0.0447304
\(219\) 30700.8i 0.0432553i
\(220\) −106539. −0.148407
\(221\) 517651. + 235249.i 0.712945 + 0.324002i
\(222\) −135915. −0.185091
\(223\) 1.07196e6i 1.44349i −0.692156 0.721747i \(-0.743339\pi\)
0.692156 0.721747i \(-0.256661\pi\)
\(224\) −180641. −0.240544
\(225\) 141541. 0.186391
\(226\) 770692.i 1.00371i
\(227\) 65210.0i 0.0839942i 0.999118 + 0.0419971i \(0.0133720\pi\)
−0.999118 + 0.0419971i \(0.986628\pi\)
\(228\) 336380.i 0.428541i
\(229\) 191854.i 0.241759i 0.992667 + 0.120879i \(0.0385715\pi\)
−0.992667 + 0.120879i \(0.961429\pi\)
\(230\) 414563. 0.516738
\(231\) −284832. −0.351204
\(232\) 96229.3i 0.117378i
\(233\) 353920. 0.427087 0.213543 0.976934i \(-0.431500\pi\)
0.213543 + 0.976934i \(0.431500\pi\)
\(234\) 81681.8 179736.i 0.0975182 0.214583i
\(235\) −761857. −0.899920
\(236\) 565221.i 0.660600i
\(237\) 584796. 0.676291
\(238\) 658450. 0.753495
\(239\) 1.15374e6i 1.30651i −0.757138 0.653255i \(-0.773403\pi\)
0.757138 0.653255i \(-0.226597\pi\)
\(240\) 85514.8i 0.0958326i
\(241\) 209753.i 0.232630i 0.993212 + 0.116315i \(0.0371083\pi\)
−0.993212 + 0.116315i \(0.962892\pi\)
\(242\) 515461.i 0.565793i
\(243\) −59049.0 −0.0641500
\(244\) −507862. −0.546099
\(245\) 531214.i 0.565398i
\(246\) 13278.5 0.0139898
\(247\) −588909. + 1.29586e6i −0.614194 + 1.35150i
\(248\) −47183.1 −0.0487144
\(249\) 110101.i 0.112536i
\(250\) −723375. −0.732004
\(251\) 427156. 0.427959 0.213979 0.976838i \(-0.431357\pi\)
0.213979 + 0.976838i \(0.431357\pi\)
\(252\) 228623.i 0.226787i
\(253\) 500960.i 0.492042i
\(254\) 1.02258e6i 0.994515i
\(255\) 311708.i 0.300191i
\(256\) 65536.0 0.0625000
\(257\) 207722. 0.196177 0.0980887 0.995178i \(-0.468727\pi\)
0.0980887 + 0.995178i \(0.468727\pi\)
\(258\) 726503.i 0.679498i
\(259\) 666008. 0.616922
\(260\) −149713. + 329434.i −0.137349 + 0.302228i
\(261\) 121790. 0.110665
\(262\) 537026.i 0.483328i
\(263\) −831712. −0.741453 −0.370726 0.928742i \(-0.620891\pi\)
−0.370726 + 0.928742i \(0.620891\pi\)
\(264\) 103337. 0.0912524
\(265\) 930933.i 0.814336i
\(266\) 1.64832e6i 1.42836i
\(267\) 555792.i 0.477127i
\(268\) 746581.i 0.634951i
\(269\) 1.67365e6 1.41021 0.705104 0.709104i \(-0.250901\pi\)
0.705104 + 0.709104i \(0.250901\pi\)
\(270\) 108230. 0.0903518
\(271\) 69792.6i 0.0577279i 0.999583 + 0.0288640i \(0.00918896\pi\)
−0.999583 + 0.0288640i \(0.990811\pi\)
\(272\) −238884. −0.195779
\(273\) −400256. + 880739.i −0.325036 + 0.715221i
\(274\) 297494. 0.239387
\(275\) 313493.i 0.249975i
\(276\) −402100. −0.317732
\(277\) 1.61380e6 1.26372 0.631859 0.775083i \(-0.282292\pi\)
0.631859 + 0.775083i \(0.282292\pi\)
\(278\) 145394.i 0.112832i
\(279\) 59716.1i 0.0459284i
\(280\) 419039.i 0.319418i
\(281\) 1.05655e6i 0.798224i 0.916902 + 0.399112i \(0.130682\pi\)
−0.916902 + 0.399112i \(0.869318\pi\)
\(282\) 738954. 0.553343
\(283\) −512741. −0.380567 −0.190284 0.981729i \(-0.560941\pi\)
−0.190284 + 0.981729i \(0.560941\pi\)
\(284\) 943574.i 0.694193i
\(285\) −780313. −0.569058
\(286\) −398090. 180914.i −0.287784 0.130785i
\(287\) −65067.4 −0.0466293
\(288\) 82944.0i 0.0589256i
\(289\) −549105. −0.386732
\(290\) −223227. −0.155866
\(291\) 252276.i 0.174640i
\(292\) 54579.2i 0.0374602i
\(293\) 2.71268e6i 1.84599i 0.384809 + 0.922996i \(0.374267\pi\)
−0.384809 + 0.922996i \(0.625733\pi\)
\(294\) 515244.i 0.347652i
\(295\) −1.31117e6 −0.877207
\(296\) −241626. −0.160293
\(297\) 130785.i 0.0860336i
\(298\) −885014. −0.577310
\(299\) 1.54903e6 + 703967.i 1.00204 + 0.455380i
\(300\) 251628. 0.161420
\(301\) 3.56000e6i 2.26482i
\(302\) −1.92979e6 −1.21757
\(303\) −923403. −0.577810
\(304\) 598009.i 0.371128i
\(305\) 1.17811e6i 0.725162i
\(306\) 302338.i 0.184582i
\(307\) 2.44475e6i 1.48043i 0.672371 + 0.740215i \(0.265276\pi\)
−0.672371 + 0.740215i \(0.734724\pi\)
\(308\) −506369. −0.304152
\(309\) 1.83423e6 1.09284
\(310\) 109452.i 0.0646876i
\(311\) 1.99183e6 1.16775 0.583877 0.811842i \(-0.301535\pi\)
0.583877 + 0.811842i \(0.301535\pi\)
\(312\) 145212. 319530.i 0.0844533 0.185834i
\(313\) 1.66396e6 0.960025 0.480013 0.877262i \(-0.340632\pi\)
0.480013 + 0.877262i \(0.340632\pi\)
\(314\) 442903.i 0.253504i
\(315\) −530346. −0.301150
\(316\) 1.03964e6 0.585685
\(317\) 3.20482e6i 1.79125i −0.444813 0.895624i \(-0.646730\pi\)
0.444813 0.895624i \(-0.353270\pi\)
\(318\) 902947.i 0.500719i
\(319\) 269749.i 0.148417i
\(320\) 152026.i 0.0829935i
\(321\) 1.32620e6 0.718369
\(322\) 1.97037e6 1.05903
\(323\) 2.17979e6i 1.16254i
\(324\) −104976. −0.0555556
\(325\) −969362. 440532.i −0.509070 0.231350i
\(326\) −644254. −0.335748
\(327\) 70619.9i 0.0365222i
\(328\) 23606.3 0.0121156
\(329\) −3.62101e6 −1.84434
\(330\) 239714.i 0.121174i
\(331\) 3.53386e6i 1.77288i −0.462844 0.886440i \(-0.653171\pi\)
0.462844 0.886440i \(-0.346829\pi\)
\(332\) 195735.i 0.0974591i
\(333\) 305808.i 0.151126i
\(334\) −1.86631e6 −0.915415
\(335\) 1.73187e6 0.843148
\(336\) 406441.i 0.196404i
\(337\) 1.10242e6 0.528777 0.264389 0.964416i \(-0.414830\pi\)
0.264389 + 0.964416i \(0.414830\pi\)
\(338\) −1.11882e6 + 976719.i −0.532682 + 0.465027i
\(339\) 1.73406e6 0.819529
\(340\) 554148.i 0.259973i
\(341\) −132263. −0.0615960
\(342\) 756855. 0.349903
\(343\) 440075.i 0.201972i
\(344\) 1.29156e6i 0.588462i
\(345\) 932766.i 0.421915i
\(346\) 963068.i 0.432481i
\(347\) 3.16432e6 1.41077 0.705386 0.708823i \(-0.250774\pi\)
0.705386 + 0.708823i \(0.250774\pi\)
\(348\) 216516. 0.0958389
\(349\) 1.97526e6i 0.868080i −0.900894 0.434040i \(-0.857088\pi\)
0.900894 0.434040i \(-0.142912\pi\)
\(350\) −1.23302e6 −0.538024
\(351\) 404405. + 183784.i 0.175206 + 0.0796233i
\(352\) 183710. 0.0790269
\(353\) 2.24015e6i 0.956843i −0.878130 0.478422i \(-0.841209\pi\)
0.878130 0.478422i \(-0.158791\pi\)
\(354\) 1.27175e6 0.539378
\(355\) −2.18884e6 −0.921815
\(356\) 988075.i 0.413204i
\(357\) 1.48151e6i 0.615226i
\(358\) 1.06574e6i 0.439485i
\(359\) 2.13770e6i 0.875407i 0.899119 + 0.437704i \(0.144208\pi\)
−0.899119 + 0.437704i \(0.855792\pi\)
\(360\) 192408. 0.0782470
\(361\) −2.98066e6 −1.20377
\(362\) 257229.i 0.103169i
\(363\) −1.15979e6 −0.461968
\(364\) −711567. + 1.56576e6i −0.281490 + 0.619400i
\(365\) −126609. −0.0497432
\(366\) 1.14269e6i 0.445888i
\(367\) 1.70502e6 0.660791 0.330395 0.943843i \(-0.392818\pi\)
0.330395 + 0.943843i \(0.392818\pi\)
\(368\) −714844. −0.275164
\(369\) 29876.7i 0.0114227i
\(370\) 560509.i 0.212852i
\(371\) 4.42461e6i 1.66894i
\(372\) 106162.i 0.0397751i
\(373\) −2.31503e6 −0.861558 −0.430779 0.902458i \(-0.641761\pi\)
−0.430779 + 0.902458i \(0.641761\pi\)
\(374\) −669636. −0.247548
\(375\) 1.62759e6i 0.597679i
\(376\) 1.31370e6 0.479209
\(377\) −834097. 379060.i −0.302248 0.137358i
\(378\) 514402. 0.185171
\(379\) 4.32354e6i 1.54612i −0.634336 0.773058i \(-0.718726\pi\)
0.634336 0.773058i \(-0.281274\pi\)
\(380\) −1.38722e6 −0.492819
\(381\) −2.30080e6 −0.812018
\(382\) 3.70155e6i 1.29785i
\(383\) 2.00351e6i 0.697901i 0.937141 + 0.348951i \(0.113462\pi\)
−0.937141 + 0.348951i \(0.886538\pi\)
\(384\) 147456.i 0.0510310i
\(385\) 1.17464e6i 0.403882i
\(386\) 2.52922e6 0.864011
\(387\) −1.63463e6 −0.554807
\(388\) 448490.i 0.151243i
\(389\) 1.70696e6 0.571940 0.285970 0.958239i \(-0.407684\pi\)
0.285970 + 0.958239i \(0.407684\pi\)
\(390\) −741226. 336854.i −0.246768 0.112145i
\(391\) 2.60567e6 0.861940
\(392\) 915990.i 0.301076i
\(393\) 1.20831e6 0.394636
\(394\) −400191. −0.129875
\(395\) 2.41168e6i 0.777728i
\(396\) 232507.i 0.0745073i
\(397\) 1.22427e6i 0.389853i 0.980818 + 0.194927i \(0.0624469\pi\)
−0.980818 + 0.194927i \(0.937553\pi\)
\(398\) 2.89230e6i 0.915243i
\(399\) −3.70873e6 −1.16625
\(400\) 447339. 0.139793
\(401\) 4.15598e6i 1.29066i −0.763903 0.645332i \(-0.776719\pi\)
0.763903 0.645332i \(-0.223281\pi\)
\(402\) −1.67981e6 −0.518435
\(403\) −185860. + 408974.i −0.0570065 + 0.125439i
\(404\) −1.64161e6 −0.500398
\(405\) 243517.i 0.0737720i
\(406\) −1.06097e6 −0.319439
\(407\) −677323. −0.202680
\(408\) 537489.i 0.159852i
\(409\) 6.52428e6i 1.92852i 0.264958 + 0.964260i \(0.414642\pi\)
−0.264958 + 0.964260i \(0.585358\pi\)
\(410\) 54760.4i 0.0160882i
\(411\) 669361.i 0.195459i
\(412\) 3.26086e6 0.946430
\(413\) −6.23180e6 −1.79779
\(414\) 904725.i 0.259427i
\(415\) −454053. −0.129416
\(416\) 258155. 568054.i 0.0731387 0.160937i
\(417\) −327136. −0.0921271
\(418\) 1.67633e6i 0.469265i
\(419\) 4.77950e6 1.32999 0.664994 0.746849i \(-0.268434\pi\)
0.664994 + 0.746849i \(0.268434\pi\)
\(420\) −942837. −0.260803
\(421\) 3.41558e6i 0.939203i 0.882878 + 0.469602i \(0.155602\pi\)
−0.882878 + 0.469602i \(0.844398\pi\)
\(422\) 1.03819e6i 0.283790i
\(423\) 1.66265e6i 0.451803i
\(424\) 1.60524e6i 0.433636i
\(425\) −1.63059e6 −0.437897
\(426\) 2.12304e6 0.566806
\(427\) 5.59940e6i 1.48618i
\(428\) 2.35769e6 0.622125
\(429\) 407057. 895702.i 0.106785 0.234974i
\(430\) 2.99608e6 0.781416
\(431\) 6.21413e6i 1.61134i −0.592365 0.805670i \(-0.701806\pi\)
0.592365 0.805670i \(-0.298194\pi\)
\(432\) −186624. −0.0481125
\(433\) −5.83362e6 −1.49526 −0.747632 0.664113i \(-0.768809\pi\)
−0.747632 + 0.664113i \(0.768809\pi\)
\(434\) 520214.i 0.132574i
\(435\) 502260.i 0.127264i
\(436\) 125546.i 0.0316292i
\(437\) 6.52287e6i 1.63394i
\(438\) 122803. 0.0305861
\(439\) −766922. −0.189928 −0.0949642 0.995481i \(-0.530274\pi\)
−0.0949642 + 0.995481i \(0.530274\pi\)
\(440\) 426158.i 0.104939i
\(441\) −1.15930e6 −0.283857
\(442\) −940996. + 2.07060e6i −0.229104 + 0.504128i
\(443\) 1.02042e6 0.247042 0.123521 0.992342i \(-0.460581\pi\)
0.123521 + 0.992342i \(0.460581\pi\)
\(444\) 543659.i 0.130879i
\(445\) 2.29207e6 0.548692
\(446\) 4.28783e6 1.02071
\(447\) 1.99128e6i 0.471372i
\(448\) 722562.i 0.170091i
\(449\) 4.18123e6i 0.978787i 0.872063 + 0.489394i \(0.162782\pi\)
−0.872063 + 0.489394i \(0.837218\pi\)
\(450\) 566163.i 0.131798i
\(451\) 66172.8 0.0153193
\(452\) 3.08277e6 0.709733
\(453\) 4.34203e6i 0.994139i
\(454\) −260840. −0.0593929
\(455\) 3.63215e6 + 1.65065e6i 0.822498 + 0.373789i
\(456\) 1.34552e6 0.303025
\(457\) 3.58333e6i 0.802594i 0.915948 + 0.401297i \(0.131441\pi\)
−0.915948 + 0.401297i \(0.868559\pi\)
\(458\) −767417. −0.170949
\(459\) 680260. 0.150710
\(460\) 1.65825e6i 0.365389i
\(461\) 1.67459e6i 0.366992i −0.983020 0.183496i \(-0.941259\pi\)
0.983020 0.183496i \(-0.0587414\pi\)
\(462\) 1.13933e6i 0.248339i
\(463\) 6.62362e6i 1.43596i 0.696063 + 0.717981i \(0.254934\pi\)
−0.696063 + 0.717981i \(0.745066\pi\)
\(464\) 384917. 0.0829989
\(465\) −246268. −0.0528172
\(466\) 1.41568e6i 0.301996i
\(467\) 3.80744e6 0.807868 0.403934 0.914788i \(-0.367642\pi\)
0.403934 + 0.914788i \(0.367642\pi\)
\(468\) 718943. + 326727.i 0.151733 + 0.0689558i
\(469\) 8.23138e6 1.72799
\(470\) 3.04743e6i 0.636339i
\(471\) 996531. 0.206985
\(472\) 2.26089e6 0.467115
\(473\) 3.62048e6i 0.744070i
\(474\) 2.33918e6i 0.478210i
\(475\) 4.08192e6i 0.830099i
\(476\) 2.63380e6i 0.532801i
\(477\) −2.03163e6 −0.408836
\(478\) 4.61495e6 0.923841
\(479\) 4.85878e6i 0.967583i −0.875183 0.483792i \(-0.839259\pi\)
0.875183 0.483792i \(-0.160741\pi\)
\(480\) 342059. 0.0677639
\(481\) −951798. + 2.09437e6i −0.187578 + 0.412754i
\(482\) −839013. −0.164494
\(483\) 4.43332e6i 0.864692i
\(484\) −2.06184e6 −0.400076
\(485\) 1.04038e6 0.200834
\(486\) 236196.i 0.0453609i
\(487\) 71255.1i 0.0136142i −0.999977 0.00680712i \(-0.997833\pi\)
0.999977 0.00680712i \(-0.00216679\pi\)
\(488\) 2.03145e6i 0.386150i
\(489\) 1.44957e6i 0.274137i
\(490\) 2.12486e6 0.399797
\(491\) −6.78617e6 −1.27034 −0.635172 0.772371i \(-0.719071\pi\)
−0.635172 + 0.772371i \(0.719071\pi\)
\(492\) 53114.2i 0.00989231i
\(493\) −1.40305e6 −0.259990
\(494\) −5.18343e6 2.35563e6i −0.955651 0.434301i
\(495\) 539356. 0.0989379
\(496\) 188732.i 0.0344463i
\(497\) −1.04033e7 −1.88921
\(498\) 440403. 0.0795750
\(499\) 167487.i 0.0301114i 0.999887 + 0.0150557i \(0.00479256\pi\)
−0.999887 + 0.0150557i \(0.995207\pi\)
\(500\) 2.89350e6i 0.517605i
\(501\) 4.19920e6i 0.747433i
\(502\) 1.70862e6i 0.302613i
\(503\) 1.00972e7 1.77942 0.889712 0.456522i \(-0.150905\pi\)
0.889712 + 0.456522i \(0.150905\pi\)
\(504\) 914493. 0.160363
\(505\) 3.80809e6i 0.664476i
\(506\) −2.00384e6 −0.347926
\(507\) −2.19762e6 2.51734e6i −0.379693 0.434933i
\(508\) −4.09031e6 −0.703229
\(509\) 9.79146e6i 1.67515i 0.546324 + 0.837574i \(0.316027\pi\)
−0.546324 + 0.837574i \(0.683973\pi\)
\(510\) −1.24683e6 −0.212267
\(511\) −601758. −0.101946
\(512\) 262144.i 0.0441942i
\(513\) 1.70292e6i 0.285694i
\(514\) 830887.i 0.138718i
\(515\) 7.56433e6i 1.25676i
\(516\) −2.90601e6 −0.480477
\(517\) 3.68253e6 0.605927
\(518\) 2.66403e6i 0.436229i
\(519\) 2.16690e6 0.353119
\(520\) −1.31774e6 598852.i −0.213708 0.0971205i
\(521\) −9.42352e6 −1.52096 −0.760481 0.649360i \(-0.775037\pi\)
−0.760481 + 0.649360i \(0.775037\pi\)
\(522\) 487161.i 0.0782521i
\(523\) 5.16320e6 0.825400 0.412700 0.910867i \(-0.364586\pi\)
0.412700 + 0.910867i \(0.364586\pi\)
\(524\) 2.14811e6 0.341765
\(525\) 2.77431e6i 0.439295i
\(526\) 3.32685e6i 0.524286i
\(527\) 687945.i 0.107901i
\(528\) 413346.i 0.0645252i
\(529\) 1.36094e6 0.211445
\(530\) 3.72373e6 0.575823
\(531\) 2.86143e6i 0.440400i
\(532\) −6.59330e6 −1.01001
\(533\) 92988.3 204615.i 0.0141779 0.0311975i
\(534\) −2.22317e6 −0.337380
\(535\) 5.46923e6i 0.826117i
\(536\) −2.98633e6 −0.448978
\(537\) 2.39792e6 0.358838
\(538\) 6.69458e6i 0.997167i
\(539\) 2.56769e6i 0.380689i
\(540\) 432919.i 0.0638884i
\(541\) 1.03918e7i 1.52650i −0.646104 0.763250i \(-0.723603\pi\)
0.646104 0.763250i \(-0.276397\pi\)
\(542\) −279170. −0.0408198
\(543\) −578765. −0.0842369
\(544\) 955536.i 0.138436i
\(545\) −291235. −0.0420002
\(546\) −3.52295e6 1.60103e6i −0.505738 0.229835i
\(547\) −7.33920e6 −1.04877 −0.524385 0.851481i \(-0.675705\pi\)
−0.524385 + 0.851481i \(0.675705\pi\)
\(548\) 1.18997e6i 0.169272i
\(549\) 2.57105e6 0.364066
\(550\) 1.25397e6 0.176759
\(551\) 3.51233e6i 0.492851i
\(552\) 1.60840e6i 0.224671i
\(553\) 1.14624e7i 1.59391i
\(554\) 6.45520e6i 0.893584i
\(555\) −1.26115e6 −0.173793
\(556\) −581574. −0.0797844
\(557\) 7.97266e6i 1.08884i −0.838812 0.544421i \(-0.816749\pi\)
0.838812 0.544421i \(-0.183251\pi\)
\(558\) 238864. 0.0324763
\(559\) 1.11950e7 + 5.08763e6i 1.51529 + 0.688630i
\(560\) −1.67615e6 −0.225862
\(561\) 1.50668e6i 0.202122i
\(562\) −4.22621e6 −0.564430
\(563\) 5.23721e6 0.696352 0.348176 0.937429i \(-0.386801\pi\)
0.348176 + 0.937429i \(0.386801\pi\)
\(564\) 2.95581e6i 0.391273i
\(565\) 7.15122e6i 0.942451i
\(566\) 2.05096e6i 0.269102i
\(567\) 1.15740e6i 0.151192i
\(568\) 3.77430e6 0.490868
\(569\) −8.15975e6 −1.05657 −0.528283 0.849069i \(-0.677164\pi\)
−0.528283 + 0.849069i \(0.677164\pi\)
\(570\) 3.12125e6i 0.402385i
\(571\) −6.61371e6 −0.848897 −0.424448 0.905452i \(-0.639532\pi\)
−0.424448 + 0.905452i \(0.639532\pi\)
\(572\) 723656. 1.59236e6i 0.0924788 0.203494i
\(573\) 8.32849e6 1.05969
\(574\) 260269.i 0.0329719i
\(575\) −4.87942e6 −0.615458
\(576\) −331776. −0.0416667
\(577\) 4.82867e6i 0.603793i 0.953341 + 0.301896i \(0.0976196\pi\)
−0.953341 + 0.301896i \(0.902380\pi\)
\(578\) 2.19642e6i 0.273461i
\(579\) 5.69075e6i 0.705462i
\(580\) 892907.i 0.110214i
\(581\) −2.15806e6 −0.265230
\(582\) −1.00910e6 −0.123489
\(583\) 4.49978e6i 0.548302i
\(584\) 218317. 0.0264883
\(585\) 757922. 1.66776e6i 0.0915661 0.201485i
\(586\) −1.08507e7 −1.30531
\(587\) 7.52814e6i 0.901763i 0.892584 + 0.450881i \(0.148890\pi\)
−0.892584 + 0.450881i \(0.851110\pi\)
\(588\) −2.06098e6 −0.245827
\(589\) −1.72216e6 −0.204544
\(590\) 5.24466e6i 0.620279i
\(591\) 900430.i 0.106043i
\(592\) 966505.i 0.113344i
\(593\) 8.22445e6i 0.960439i −0.877148 0.480220i \(-0.840557\pi\)
0.877148 0.480220i \(-0.159443\pi\)
\(594\) −523142. −0.0608350
\(595\) 6.10972e6 0.707504
\(596\) 3.54006e6i 0.408220i
\(597\) 6.50769e6 0.747293
\(598\) −2.81587e6 + 6.19614e6i −0.322002 + 0.708546i
\(599\) −1.25959e6 −0.143437 −0.0717185 0.997425i \(-0.522848\pi\)
−0.0717185 + 0.997425i \(0.522848\pi\)
\(600\) 1.00651e6i 0.114141i
\(601\) 6.56541e6 0.741439 0.370720 0.928745i \(-0.379111\pi\)
0.370720 + 0.928745i \(0.379111\pi\)
\(602\) 1.42400e7 1.60147
\(603\) 3.77957e6i 0.423301i
\(604\) 7.71916e6i 0.860950i
\(605\) 4.78294e6i 0.531259i
\(606\) 3.69361e6i 0.408573i
\(607\) −7.92228e6 −0.872727 −0.436364 0.899770i \(-0.643734\pi\)
−0.436364 + 0.899770i \(0.643734\pi\)
\(608\) 2.39203e6 0.262427
\(609\) 2.38718e6i 0.260821i
\(610\) −4.71243e6 −0.512767
\(611\) 5.17482e6 1.13869e7i 0.560780 1.23396i
\(612\) 1.20935e6 0.130519
\(613\) 9.74465e6i 1.04741i −0.851901 0.523703i \(-0.824550\pi\)
0.851901 0.523703i \(-0.175450\pi\)
\(614\) −9.77898e6 −1.04682
\(615\) 123211. 0.0131360
\(616\) 2.02548e6i 0.215068i
\(617\) 1.14334e7i 1.20910i 0.796569 + 0.604548i \(0.206646\pi\)
−0.796569 + 0.604548i \(0.793354\pi\)
\(618\) 7.33693e6i 0.772757i
\(619\) 1.07067e7i 1.12313i −0.827432 0.561566i \(-0.810199\pi\)
0.827432 0.561566i \(-0.189801\pi\)
\(620\) −437810. −0.0457411
\(621\) 2.03563e6 0.211822
\(622\) 7.96732e6i 0.825726i
\(623\) 1.08939e7 1.12451
\(624\) 1.27812e6 + 580849.i 0.131405 + 0.0597175i
\(625\) −1.25148e6 −0.128151
\(626\) 6.65585e6i 0.678840i
\(627\) 3.77174e6 0.383154
\(628\) 1.77161e6 0.179254
\(629\) 3.52299e6i 0.355046i
\(630\) 2.12138e6i 0.212945i
\(631\) 475976.i 0.0475895i −0.999717 0.0237948i \(-0.992425\pi\)
0.999717 0.0237948i \(-0.00757483\pi\)
\(632\) 4.15855e6i 0.414142i
\(633\) −2.33593e6 −0.231714
\(634\) 1.28193e7 1.26660
\(635\) 9.48844e6i 0.933814i
\(636\) −3.61179e6 −0.354062
\(637\) 7.93963e6 + 3.60820e6i 0.775267 + 0.352324i
\(638\) 1.07899e6 0.104946
\(639\) 4.77684e6i 0.462795i
\(640\) 608105. 0.0586852
\(641\) −1.90742e7 −1.83358 −0.916791 0.399368i \(-0.869230\pi\)
−0.916791 + 0.399368i \(0.869230\pi\)
\(642\) 5.30481e6i 0.507963i
\(643\) 1.16474e7i 1.11097i −0.831528 0.555483i \(-0.812534\pi\)
0.831528 0.555483i \(-0.187466\pi\)
\(644\) 7.88146e6i 0.748845i
\(645\) 6.74118e6i 0.638024i
\(646\) −8.71916e6 −0.822041
\(647\) 1.83045e6 0.171908 0.0859540 0.996299i \(-0.472606\pi\)
0.0859540 + 0.996299i \(0.472606\pi\)
\(648\) 419904.i 0.0392837i
\(649\) 6.33768e6 0.590634
\(650\) 1.76213e6 3.87745e6i 0.163589 0.359967i
\(651\) −1.17048e6 −0.108246
\(652\) 2.57702e6i 0.237410i
\(653\) 1.75829e7 1.61365 0.806824 0.590792i \(-0.201185\pi\)
0.806824 + 0.590792i \(0.201185\pi\)
\(654\) 282479. 0.0258251
\(655\) 4.98304e6i 0.453828i
\(656\) 94425.2i 0.00856699i
\(657\) 276307.i 0.0249735i
\(658\) 1.44840e7i 1.30414i
\(659\) −1.84370e7 −1.65378 −0.826888 0.562367i \(-0.809891\pi\)
−0.826888 + 0.562367i \(0.809891\pi\)
\(660\) 958855. 0.0856827
\(661\) 1.08046e7i 0.961845i 0.876763 + 0.480922i \(0.159698\pi\)
−0.876763 + 0.480922i \(0.840302\pi\)
\(662\) 1.41354e7 1.25362
\(663\) −4.65886e6 2.11724e6i −0.411619 0.187062i
\(664\) 782939. 0.0689140
\(665\) 1.52947e7i 1.34118i
\(666\) 1.22323e6 0.106862
\(667\) −4.19855e6 −0.365413
\(668\) 7.46525e6i 0.647296i
\(669\) 9.64761e6i 0.833402i
\(670\) 6.92749e6i 0.596196i
\(671\) 5.69453e6i 0.488260i
\(672\) 1.62576e6 0.138878
\(673\) −1.57676e7 −1.34193 −0.670964 0.741490i \(-0.734119\pi\)
−0.670964 + 0.741490i \(0.734119\pi\)
\(674\) 4.40968e6i 0.373902i
\(675\) −1.27387e6 −0.107613
\(676\) −3.90688e6 4.47528e6i −0.328823 0.376663i
\(677\) 2.86244e6 0.240029 0.120015 0.992772i \(-0.461706\pi\)
0.120015 + 0.992772i \(0.461706\pi\)
\(678\) 6.93623e6i 0.579495i
\(679\) 4.94480e6 0.411599
\(680\) −2.21659e6 −0.183829
\(681\) 586890.i 0.0484941i
\(682\) 529052.i 0.0435549i
\(683\) 4.91047e6i 0.402783i 0.979511 + 0.201391i \(0.0645463\pi\)
−0.979511 + 0.201391i \(0.935454\pi\)
\(684\) 3.02742e6i 0.247419i
\(685\) 2.76043e6 0.224776
\(686\) −1.76030e6 −0.142816
\(687\) 1.72669e6i 0.139580i
\(688\) −5.16624e6 −0.416106
\(689\) 1.39139e7 + 6.32325e6i 1.11661 + 0.507449i
\(690\) −3.73107e6 −0.298339
\(691\) 1.79749e7i 1.43209i 0.698052 + 0.716047i \(0.254051\pi\)
−0.698052 + 0.716047i \(0.745949\pi\)
\(692\) 3.85227e6 0.305810
\(693\) 2.56349e6 0.202768
\(694\) 1.26573e7i 0.997566i
\(695\) 1.34910e6i 0.105945i
\(696\) 866064.i 0.0677683i
\(697\) 344188.i 0.0268357i
\(698\) 7.90102e6 0.613825
\(699\) −3.18528e6 −0.246579
\(700\) 4.93210e6i 0.380440i
\(701\) −8.74640e6 −0.672255 −0.336128 0.941816i \(-0.609117\pi\)
−0.336128 + 0.941816i \(0.609117\pi\)
\(702\) −735137. + 1.61762e6i −0.0563022 + 0.123889i
\(703\) −8.81925e6 −0.673044
\(704\) 734838.i 0.0558805i
\(705\) 6.85671e6 0.519569
\(706\) 8.96061e6 0.676590
\(707\) 1.80994e7i 1.36181i
\(708\) 5.08699e6i 0.381398i
\(709\) 2.43397e6i 0.181844i −0.995858 0.0909221i \(-0.971019\pi\)
0.995858 0.0909221i \(-0.0289814\pi\)
\(710\) 8.75538e6i 0.651822i
\(711\) −5.26316e6 −0.390457
\(712\) −3.95230e6 −0.292180
\(713\) 2.05863e6i 0.151654i
\(714\) −5.92605e6 −0.435030
\(715\) −3.69386e6 1.67869e6i −0.270218 0.122802i
\(716\) 4.26297e6 0.310763
\(717\) 1.03836e7i 0.754313i
\(718\) −8.55079e6 −0.619006
\(719\) 6.81620e6 0.491723 0.245861 0.969305i \(-0.420929\pi\)
0.245861 + 0.969305i \(0.420929\pi\)
\(720\) 769633.i 0.0553290i
\(721\) 3.59523e7i 2.57566i
\(722\) 1.19226e7i 0.851196i
\(723\) 1.88778e6i 0.134309i
\(724\) −1.02892e6 −0.0729513
\(725\) 2.62739e6 0.185643
\(726\) 4.63915e6i 0.326661i
\(727\) −4.33605e6 −0.304269 −0.152135 0.988360i \(-0.548615\pi\)
−0.152135 + 0.988360i \(0.548615\pi\)
\(728\) −6.26303e6 2.84627e6i −0.437982 0.199043i
\(729\) 531441. 0.0370370
\(730\) 506437.i 0.0351737i
\(731\) 1.88314e7 1.30343
\(732\) 4.57076e6 0.315290
\(733\) 2.01689e7i 1.38651i 0.720693 + 0.693254i \(0.243824\pi\)
−0.720693 + 0.693254i \(0.756176\pi\)
\(734\) 6.82008e6i 0.467250i
\(735\) 4.78093e6i 0.326433i
\(736\) 2.85938e6i 0.194570i
\(737\) −8.37122e6 −0.567702
\(738\) −119507. −0.00807704
\(739\) 2.05423e7i 1.38369i 0.722048 + 0.691843i \(0.243201\pi\)
−0.722048 + 0.691843i \(0.756799\pi\)
\(740\) −2.24204e6 −0.150509
\(741\) 5.30018e6 1.16627e7i 0.354605 0.780286i
\(742\) 1.76984e7 1.18012
\(743\) 1.48776e7i 0.988689i 0.869266 + 0.494345i \(0.164592\pi\)
−0.869266 + 0.494345i \(0.835408\pi\)
\(744\) 424648. 0.0281253
\(745\) −8.21200e6 −0.542074
\(746\) 9.26012e6i 0.609213i
\(747\) 990907.i 0.0649728i
\(748\) 2.67855e6i 0.175043i
\(749\) 2.59946e7i 1.69308i
\(750\) 6.51037e6 0.422623
\(751\) −2.94950e7 −1.90831 −0.954154 0.299315i \(-0.903242\pi\)
−0.954154 + 0.299315i \(0.903242\pi\)
\(752\) 5.25478e6i 0.338852i
\(753\) −3.84440e6 −0.247082
\(754\) 1.51624e6 3.33639e6i 0.0971269 0.213722i
\(755\) −1.79064e7 −1.14325
\(756\) 2.05761e6i 0.130936i
\(757\) 2.01715e7 1.27938 0.639690 0.768633i \(-0.279063\pi\)
0.639690 + 0.768633i \(0.279063\pi\)
\(758\) 1.72942e7 1.09327
\(759\) 4.50864e6i 0.284080i
\(760\) 5.54889e6i 0.348476i
\(761\) 2.06956e7i 1.29544i 0.761880 + 0.647719i \(0.224277\pi\)
−0.761880 + 0.647719i \(0.775723\pi\)
\(762\) 9.20319e6i 0.574184i
\(763\) −1.38420e6 −0.0860772
\(764\) 1.48062e7 0.917720
\(765\) 2.80538e6i 0.173316i
\(766\) −8.01403e6 −0.493491
\(767\) 8.90592e6 1.95969e7i 0.546626 1.20282i
\(768\) −589824. −0.0360844
\(769\) 1.69130e7i 1.03135i −0.856785 0.515674i \(-0.827542\pi\)
0.856785 0.515674i \(-0.172458\pi\)
\(770\) −4.69857e6 −0.285587
\(771\) −1.86950e6 −0.113263
\(772\) 1.01169e7i 0.610948i
\(773\) 3.10969e7i 1.87184i −0.352212 0.935920i \(-0.614570\pi\)
0.352212 0.935920i \(-0.385430\pi\)
\(774\) 6.53852e6i 0.392308i
\(775\) 1.28826e6i 0.0770458i
\(776\) −1.79396e6 −0.106945
\(777\) −5.99407e6 −0.356180
\(778\) 6.82786e6i 0.404423i
\(779\) 861619. 0.0508712
\(780\) 1.34742e6 2.96490e6i 0.0792986 0.174491i
\(781\) 1.05800e7 0.620669
\(782\) 1.04227e7i 0.609483i
\(783\) −1.09611e6 −0.0638926
\(784\) −3.66396e6 −0.212893
\(785\) 4.10967e6i 0.238031i
\(786\) 4.83324e6i 0.279050i
\(787\) 628913.i 0.0361954i −0.999836 0.0180977i \(-0.994239\pi\)
0.999836 0.0180977i \(-0.00576099\pi\)
\(788\) 1.60076e6i 0.0918357i
\(789\) 7.48541e6 0.428078
\(790\) 9.64674e6 0.549937
\(791\) 3.39888e7i 1.93150i
\(792\) −930030. −0.0526846
\(793\) −1.76082e7 8.00215e6i −0.994335 0.451881i
\(794\) −4.89708e6 −0.275668
\(795\) 8.37840e6i 0.470157i
\(796\) 1.15692e7 0.647174
\(797\) −2.43866e7 −1.35990 −0.679948 0.733260i \(-0.737998\pi\)
−0.679948 + 0.733260i \(0.737998\pi\)
\(798\) 1.48349e7i 0.824666i
\(799\) 1.91541e7i 1.06144i
\(800\) 1.78936e6i 0.0988489i
\(801\) 5.00213e6i 0.275470i
\(802\) 1.66239e7 0.912637
\(803\) 611982. 0.0334927
\(804\) 6.71923e6i 0.366589i
\(805\) 1.82829e7 0.994388
\(806\) −1.63590e6 743442.i −0.0886989 0.0403097i
\(807\) −1.50628e7 −0.814183
\(808\) 6.56642e6i 0.353835i
\(809\) −2.86033e7 −1.53654 −0.768272 0.640123i \(-0.778883\pi\)
−0.768272 + 0.640123i \(0.778883\pi\)
\(810\) −974067. −0.0521647
\(811\) 5.97923e6i 0.319222i 0.987180 + 0.159611i \(0.0510240\pi\)
−0.987180 + 0.159611i \(0.948976\pi\)
\(812\) 4.24387e6i 0.225877i
\(813\) 628133.i 0.0333292i
\(814\) 2.70929e6i 0.143316i
\(815\) −5.97800e6 −0.315255
\(816\) 2.14996e6 0.113033
\(817\) 4.71414e7i 2.47085i
\(818\) −2.60971e7 −1.36367
\(819\) 3.60231e6 7.92665e6i 0.187660 0.412933i
\(820\) 219042. 0.0113761
\(821\) 1.46642e7i 0.759279i −0.925134 0.379640i \(-0.876048\pi\)
0.925134 0.379640i \(-0.123952\pi\)
\(822\) −2.67744e6 −0.138210
\(823\) 1.80149e7 0.927113 0.463557 0.886067i \(-0.346573\pi\)
0.463557 + 0.886067i \(0.346573\pi\)
\(824\) 1.30434e7i 0.669227i
\(825\) 2.82144e6i 0.144323i
\(826\) 2.49272e7i 1.27123i
\(827\) 9.93027e6i 0.504891i 0.967611 + 0.252445i \(0.0812348\pi\)
−0.967611 + 0.252445i \(0.918765\pi\)
\(828\) 3.61890e6 0.183443
\(829\) 2.97991e7 1.50597 0.752986 0.658037i \(-0.228613\pi\)
0.752986 + 0.658037i \(0.228613\pi\)
\(830\) 1.81621e6i 0.0915106i
\(831\) −1.45242e7 −0.729608
\(832\) 2.27221e6 + 1.03262e6i 0.113800 + 0.0517169i
\(833\) 1.33554e7 0.666877
\(834\) 1.30854e6i 0.0651437i
\(835\) −1.73174e7 −0.859542
\(836\) 6.70532e6 0.331821
\(837\) 537445.i 0.0265168i
\(838\) 1.91180e7i 0.940443i
\(839\) 1.35283e7i 0.663496i −0.943368 0.331748i \(-0.892362\pi\)
0.943368 0.331748i \(-0.107638\pi\)
\(840\) 3.77135e6i 0.184416i
\(841\) −1.82504e7 −0.889779
\(842\) −1.36623e7 −0.664117
\(843\) 9.50897e6i 0.460855i
\(844\) −4.15277e6 −0.200670
\(845\) −1.03815e7 + 9.06293e6i −0.500169 + 0.436643i
\(846\) −6.65058e6 −0.319473
\(847\) 2.27327e7i 1.08879i
\(848\) −6.42096e6 −0.306627
\(849\) 4.61467e6 0.219721
\(850\) 6.52235e6i 0.309640i
\(851\) 1.05423e7i 0.499013i
\(852\) 8.49217e6i 0.400792i
\(853\) 9.03698e6i 0.425257i −0.977133 0.212628i \(-0.931798\pi\)
0.977133 0.212628i \(-0.0682023\pi\)
\(854\) −2.23976e7 −1.05089
\(855\) 7.02282e6 0.328546
\(856\) 9.43078e6i 0.439909i
\(857\) −9.55364e6 −0.444341 −0.222171 0.975008i \(-0.571314\pi\)
−0.222171 + 0.975008i \(0.571314\pi\)
\(858\) 3.58281e6 + 1.62823e6i 0.166152 + 0.0755086i
\(859\) 3.73649e6 0.172775 0.0863874 0.996262i \(-0.472468\pi\)
0.0863874 + 0.996262i \(0.472468\pi\)
\(860\) 1.19843e7i 0.552545i
\(861\) 585606. 0.0269214
\(862\) 2.48565e7 1.13939
\(863\) 3.44318e7i 1.57374i 0.617120 + 0.786869i \(0.288299\pi\)
−0.617120 + 0.786869i \(0.711701\pi\)
\(864\) 746496.i 0.0340207i
\(865\) 8.93626e6i 0.406084i
\(866\) 2.33345e7i 1.05731i
\(867\) 4.94194e6 0.223280
\(868\) −2.08085e6 −0.0937438
\(869\) 1.16572e7i 0.523653i
\(870\) 2.00904e6 0.0899892
\(871\) −1.17635e7 + 2.58849e7i −0.525403 + 1.15612i
\(872\) 502186. 0.0223652
\(873\) 2.27048e6i 0.100828i
\(874\) −2.60915e7 −1.15537
\(875\) −3.19020e7 −1.40863
\(876\) 491213.i 0.0216276i
\(877\) 2.12195e7i 0.931613i −0.884887 0.465807i \(-0.845764\pi\)
0.884887 0.465807i \(-0.154236\pi\)
\(878\) 3.06769e6i 0.134300i
\(879\) 2.44141e7i 1.06578i
\(880\) 1.70463e6 0.0742034
\(881\) 3.83954e7 1.66663 0.833315 0.552798i \(-0.186440\pi\)
0.833315 + 0.552798i \(0.186440\pi\)
\(882\) 4.63720e6i 0.200717i
\(883\) 3.58049e7 1.54540 0.772699 0.634773i \(-0.218906\pi\)
0.772699 + 0.634773i \(0.218906\pi\)
\(884\) −8.28241e6 3.76398e6i −0.356472 0.162001i
\(885\) 1.18005e7 0.506456
\(886\) 4.08168e6i 0.174685i
\(887\) 2.52692e7 1.07841 0.539203 0.842176i \(-0.318726\pi\)
0.539203 + 0.842176i \(0.318726\pi\)
\(888\) 2.17464e6 0.0925453
\(889\) 4.50973e7i 1.91380i
\(890\) 9.16830e6i 0.387984i
\(891\) 1.17707e6i 0.0496715i
\(892\) 1.71513e7i 0.721747i
\(893\) 4.79493e7 2.01212
\(894\) 7.96512e6 0.333310
\(895\) 9.88896e6i 0.412661i
\(896\) 2.89025e6 0.120272
\(897\) −1.39413e7 6.33570e6i −0.578525 0.262914i
\(898\) −1.67249e7 −0.692107
\(899\) 1.10850e6i 0.0457441i
\(900\) −2.26465e6 −0.0931956
\(901\) 2.34049e7 0.960495
\(902\) 264691.i 0.0108324i
\(903\) 3.20400e7i 1.30759i
\(904\) 1.23311e7i 0.501857i
\(905\) 2.38681e6i 0.0968717i
\(906\) 1.73681e7 0.702962
\(907\) −2.49639e7 −1.00761 −0.503806 0.863817i \(-0.668067\pi\)
−0.503806 + 0.863817i \(0.668067\pi\)
\(908\) 1.04336e6i 0.0419971i
\(909\) 8.31063e6 0.333599
\(910\) −6.60259e6 + 1.45286e7i −0.264308 + 0.581594i
\(911\) −807347. −0.0322303 −0.0161151 0.999870i \(-0.505130\pi\)
−0.0161151 + 0.999870i \(0.505130\pi\)
\(912\) 5.38208e6i 0.214271i
\(913\) 2.19472e6 0.0871370
\(914\) −1.43333e7 −0.567520
\(915\) 1.06030e7i 0.418673i
\(916\) 3.06967e6i 0.120879i
\(917\) 2.36838e7i 0.930095i
\(918\) 2.72104e6i 0.106568i
\(919\) −2.92665e6 −0.114309 −0.0571547 0.998365i \(-0.518203\pi\)
−0.0571547 + 0.998365i \(0.518203\pi\)
\(920\) −6.63301e6 −0.258369
\(921\) 2.20027e7i 0.854726i
\(922\) 6.69836e6 0.259502
\(923\) 1.48674e7 3.27149e7i 0.574423 1.26398i
\(924\) 4.55732e6 0.175602
\(925\) 6.59722e6i 0.253517i
\(926\) −2.64945e7 −1.01538
\(927\) −1.65081e7 −0.630953
\(928\) 1.53967e6i 0.0586891i
\(929\) 2.03515e7i 0.773672i 0.922148 + 0.386836i \(0.126432\pi\)
−0.922148 + 0.386836i \(0.873568\pi\)
\(930\) 985072.i 0.0373474i
\(931\) 3.34332e7i 1.26417i
\(932\) −5.66273e6 −0.213543
\(933\) −1.79265e7 −0.674203
\(934\) 1.52297e7i 0.571249i
\(935\) −6.21352e6 −0.232439
\(936\) −1.30691e6 + 2.87577e6i −0.0487591 + 0.107291i
\(937\) −659937. −0.0245558 −0.0122779 0.999925i \(-0.503908\pi\)
−0.0122779 + 0.999925i \(0.503908\pi\)
\(938\) 3.29255e7i 1.22187i
\(939\) −1.49757e7 −0.554271
\(940\) 1.21897e7 0.449960
\(941\) 3.40074e7i 1.25199i −0.779828 0.625994i \(-0.784694\pi\)
0.779828 0.625994i \(-0.215306\pi\)
\(942\) 3.98612e6i 0.146360i
\(943\) 1.02996e6i 0.0377173i
\(944\) 9.04354e6i 0.330300i
\(945\) 4.77311e6 0.173869
\(946\) −1.44819e7 −0.526137
\(947\) 1.44758e7i 0.524527i −0.964996 0.262263i \(-0.915531\pi\)
0.964996 0.262263i \(-0.0844689\pi\)
\(948\) −9.35673e6 −0.338145
\(949\) 859978. 1.89233e6i 0.0309972 0.0682073i
\(950\) 1.63277e7 0.586969
\(951\) 2.88434e7i 1.03418i
\(952\) −1.05352e7 −0.376747
\(953\) 1.88172e7 0.671156 0.335578 0.942012i \(-0.391068\pi\)
0.335578 + 0.942012i \(0.391068\pi\)
\(954\) 8.12652e6i 0.289090i
\(955\) 3.43465e7i 1.21864i
\(956\) 1.84598e7i 0.653255i
\(957\) 2.42774e6i 0.0856883i
\(958\) 1.94351e7 0.684185
\(959\) 1.31200e7 0.460666
\(960\) 1.36824e6i 0.0479163i
\(961\) 2.80856e7 0.981015
\(962\) −8.37748e6 3.80719e6i −0.291861 0.132638i
\(963\) −1.19358e7 −0.414750
\(964\) 3.35605e6i 0.116315i
\(965\) 2.34685e7 0.811275
\(966\) −1.77333e7 −0.611430
\(967\) 4.30702e7i 1.48119i 0.671952 + 0.740595i \(0.265456\pi\)
−0.671952 + 0.740595i \(0.734544\pi\)
\(968\) 8.24738e6i 0.282896i
\(969\) 1.96181e7i 0.671194i
\(970\) 4.16152e6i 0.142011i
\(971\) 2.85474e7 0.971668 0.485834 0.874051i \(-0.338516\pi\)
0.485834 + 0.874051i \(0.338516\pi\)
\(972\) 944784. 0.0320750
\(973\) 6.41210e6i 0.217129i
\(974\) 285020. 0.00962673
\(975\) 8.72426e6 + 3.96479e6i 0.293912 + 0.133570i
\(976\) 8.12580e6 0.273050
\(977\) 4.23484e7i 1.41939i 0.704510 + 0.709694i \(0.251167\pi\)
−0.704510 + 0.709694i \(0.748833\pi\)
\(978\) 5.79829e6 0.193844
\(979\) −1.10790e7 −0.369441
\(980\) 8.49942e6i 0.282699i
\(981\) 635579.i 0.0210861i
\(982\) 2.71447e7i 0.898269i
\(983\) 1.39064e7i 0.459020i −0.973306 0.229510i \(-0.926288\pi\)
0.973306 0.229510i \(-0.0737124\pi\)
\(984\) −212457. −0.00699492
\(985\) −3.71335e6 −0.121948
\(986\) 5.61222e6i 0.183841i
\(987\) 3.25891e7 1.06483
\(988\) 9.42254e6 2.07337e7i 0.307097 0.675748i
\(989\) 5.63516e7 1.83196
\(990\) 2.15742e6i 0.0699597i
\(991\) −3.49486e6 −0.113043 −0.0565217 0.998401i \(-0.518001\pi\)
−0.0565217 + 0.998401i \(0.518001\pi\)
\(992\) 754930. 0.0243572
\(993\) 3.18047e7i 1.02357i
\(994\) 4.16132e7i 1.33587i
\(995\) 2.68376e7i 0.859380i
\(996\) 1.76161e6i 0.0562681i
\(997\) 77983.9 0.00248466 0.00124233 0.999999i \(-0.499605\pi\)
0.00124233 + 0.999999i \(0.499605\pi\)
\(998\) −669949. −0.0212920
\(999\) 2.75227e6i 0.0872525i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 78.6.b.a.25.6 yes 6
3.2 odd 2 234.6.b.c.181.1 6
4.3 odd 2 624.6.c.d.337.5 6
13.5 odd 4 1014.6.a.q.1.3 3
13.8 odd 4 1014.6.a.o.1.1 3
13.12 even 2 inner 78.6.b.a.25.1 6
39.38 odd 2 234.6.b.c.181.6 6
52.51 odd 2 624.6.c.d.337.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.b.a.25.1 6 13.12 even 2 inner
78.6.b.a.25.6 yes 6 1.1 even 1 trivial
234.6.b.c.181.1 6 3.2 odd 2
234.6.b.c.181.6 6 39.38 odd 2
624.6.c.d.337.2 6 52.51 odd 2
624.6.c.d.337.5 6 4.3 odd 2
1014.6.a.o.1.1 3 13.8 odd 4
1014.6.a.q.1.3 3 13.5 odd 4