Properties

Label 780.1.t.a
Level $780$
Weight $1$
Character orbit 780.t
Analytic conductor $0.389$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [780,1,Mod(317,780)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(780, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("780.317");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 780.t (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.389270709854\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.3295500.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{3} + \zeta_{8}^{3} q^{5} - \zeta_{8}^{2} q^{7} - \zeta_{8}^{2} q^{9} + \zeta_{8} q^{11} - \zeta_{8}^{2} q^{13} + \zeta_{8}^{2} q^{15} - \zeta_{8}^{3} q^{17} - \zeta_{8} q^{21} + \zeta_{8} q^{23} + \cdots - \zeta_{8}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{31} + 4 q^{33} - 4 q^{43} - 4 q^{55} - 4 q^{61} - 4 q^{63} + 4 q^{69} - 4 q^{81} - 4 q^{87} - 4 q^{91} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(-\zeta_{8}^{2}\) \(\zeta_{8}^{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
317.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 −0.707107 0.707107i 0 0.707107 + 0.707107i 0 1.00000i 0 1.00000i 0
317.2 0 0.707107 + 0.707107i 0 −0.707107 0.707107i 0 1.00000i 0 1.00000i 0
593.1 0 −0.707107 + 0.707107i 0 0.707107 0.707107i 0 1.00000i 0 1.00000i 0
593.2 0 0.707107 0.707107i 0 −0.707107 + 0.707107i 0 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
65.k even 4 1 inner
195.j odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 780.1.t.a 4
3.b odd 2 1 inner 780.1.t.a 4
4.b odd 2 1 3120.1.bu.a 4
5.b even 2 1 3900.1.t.a 4
5.c odd 4 1 780.1.bo.a yes 4
5.c odd 4 1 3900.1.bo.a 4
12.b even 2 1 3120.1.bu.a 4
13.d odd 4 1 780.1.bo.a yes 4
15.d odd 2 1 3900.1.t.a 4
15.e even 4 1 780.1.bo.a yes 4
15.e even 4 1 3900.1.bo.a 4
20.e even 4 1 3120.1.ff.a 4
39.f even 4 1 780.1.bo.a yes 4
52.f even 4 1 3120.1.ff.a 4
60.l odd 4 1 3120.1.ff.a 4
65.f even 4 1 3900.1.t.a 4
65.g odd 4 1 3900.1.bo.a 4
65.k even 4 1 inner 780.1.t.a 4
156.l odd 4 1 3120.1.ff.a 4
195.j odd 4 1 inner 780.1.t.a 4
195.n even 4 1 3900.1.bo.a 4
195.u odd 4 1 3900.1.t.a 4
260.s odd 4 1 3120.1.bu.a 4
780.bn even 4 1 3120.1.bu.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
780.1.t.a 4 1.a even 1 1 trivial
780.1.t.a 4 3.b odd 2 1 inner
780.1.t.a 4 65.k even 4 1 inner
780.1.t.a 4 195.j odd 4 1 inner
780.1.bo.a yes 4 5.c odd 4 1
780.1.bo.a yes 4 13.d odd 4 1
780.1.bo.a yes 4 15.e even 4 1
780.1.bo.a yes 4 39.f even 4 1
3120.1.bu.a 4 4.b odd 2 1
3120.1.bu.a 4 12.b even 2 1
3120.1.bu.a 4 260.s odd 4 1
3120.1.bu.a 4 780.bn even 4 1
3120.1.ff.a 4 20.e even 4 1
3120.1.ff.a 4 52.f even 4 1
3120.1.ff.a 4 60.l odd 4 1
3120.1.ff.a 4 156.l odd 4 1
3900.1.t.a 4 5.b even 2 1
3900.1.t.a 4 15.d odd 2 1
3900.1.t.a 4 65.f even 4 1
3900.1.t.a 4 195.u odd 4 1
3900.1.bo.a 4 5.c odd 4 1
3900.1.bo.a 4 15.e even 4 1
3900.1.bo.a 4 65.g odd 4 1
3900.1.bo.a 4 195.n even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(780, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 1 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 1 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 1 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 1 \) Copy content Toggle raw display
$97$ \( (T - 1)^{4} \) Copy content Toggle raw display
show more
show less