Properties

Label 7800.2.a.bi
Level 78007800
Weight 22
Character orbit 7800.a
Self dual yes
Analytic conductor 62.28362.283
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7800,2,Mod(1,7800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7800=2335213 7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 62.283313576662.2833135766
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x37x4 x^{3} - 7x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 1560)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq3β2q7+q9+(β1+2)q11+q13+(β2+2β12)q17+(β2+β1+2)q19+β2q21+β2q23q27+(β2+β1+4)q29++(β1+2)q99+O(q100) q - q^{3} - \beta_{2} q^{7} + q^{9} + (\beta_1 + 2) q^{11} + q^{13} + (\beta_{2} + 2 \beta_1 - 2) q^{17} + (\beta_{2} + \beta_1 + 2) q^{19} + \beta_{2} q^{21} + \beta_{2} q^{23} - q^{27} + ( - \beta_{2} + \beta_1 + 4) q^{29}+ \cdots + (\beta_1 + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q3q7+3q9+5q11+3q137q17+6q19+q21+q233q27+10q29+2q315q3311q373q39q41+10q47+20q49+7q51++5q99+O(q100) 3 q - 3 q^{3} - q^{7} + 3 q^{9} + 5 q^{11} + 3 q^{13} - 7 q^{17} + 6 q^{19} + q^{21} + q^{23} - 3 q^{27} + 10 q^{29} + 2 q^{31} - 5 q^{33} - 11 q^{37} - 3 q^{39} - q^{41} + 10 q^{47} + 20 q^{49} + 7 q^{51}+ \cdots + 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x37x4 x^{3} - 7x - 4 : Copy content Toggle raw display

β1\beta_{1}== ν25 \nu^{2} - 5 Copy content Toggle raw display
β2\beta_{2}== ν2+2ν+5 -\nu^{2} + 2\nu + 5 Copy content Toggle raw display
ν\nu== (β2+β1)/2 ( \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β1+5 \beta _1 + 5 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−0.602705
2.89511
−2.29240
0 −1.00000 0 0 0 −3.43134 0 1.00000 0
1.2 0 −1.00000 0 0 0 −2.40857 0 1.00000 0
1.3 0 −1.00000 0 0 0 4.83991 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7800.2.a.bi 3
5.b even 2 1 1560.2.a.q 3
15.d odd 2 1 4680.2.a.bh 3
20.d odd 2 1 3120.2.a.bi 3
60.h even 2 1 9360.2.a.cy 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.a.q 3 5.b even 2 1
3120.2.a.bi 3 20.d odd 2 1
4680.2.a.bh 3 15.d odd 2 1
7800.2.a.bi 3 1.a even 1 1 trivial
9360.2.a.cy 3 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7800))S_{2}^{\mathrm{new}}(\Gamma_0(7800)):

T73+T7220T740 T_{7}^{3} + T_{7}^{2} - 20T_{7} - 40 Copy content Toggle raw display
T1135T1128T11+32 T_{11}^{3} - 5T_{11}^{2} - 8T_{11} + 32 Copy content Toggle raw display
T173+7T17252T17356 T_{17}^{3} + 7T_{17}^{2} - 52T_{17} - 356 Copy content Toggle raw display
T1936T19216T19+16 T_{19}^{3} - 6T_{19}^{2} - 16T_{19} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3+T2+40 T^{3} + T^{2} + \cdots - 40 Copy content Toggle raw display
1111 T35T2++32 T^{3} - 5 T^{2} + \cdots + 32 Copy content Toggle raw display
1313 (T1)3 (T - 1)^{3} Copy content Toggle raw display
1717 T3+7T2+356 T^{3} + 7 T^{2} + \cdots - 356 Copy content Toggle raw display
1919 T36T2++16 T^{3} - 6 T^{2} + \cdots + 16 Copy content Toggle raw display
2323 T3T2++40 T^{3} - T^{2} + \cdots + 40 Copy content Toggle raw display
2929 T310T2++184 T^{3} - 10 T^{2} + \cdots + 184 Copy content Toggle raw display
3131 T32T2+32 T^{3} - 2 T^{2} + \cdots - 32 Copy content Toggle raw display
3737 T3+11T2+20 T^{3} + 11 T^{2} + \cdots - 20 Copy content Toggle raw display
4141 T3+T216T+4 T^{3} + T^{2} - 16T + 4 Copy content Toggle raw display
4343 T3112T256 T^{3} - 112T - 256 Copy content Toggle raw display
4747 T310T2++256 T^{3} - 10 T^{2} + \cdots + 256 Copy content Toggle raw display
5353 T3+3T2+164 T^{3} + 3 T^{2} + \cdots - 164 Copy content Toggle raw display
5959 T38T2++1024 T^{3} - 8 T^{2} + \cdots + 1024 Copy content Toggle raw display
6161 T3+3T2+164 T^{3} + 3 T^{2} + \cdots - 164 Copy content Toggle raw display
6767 T312T2++640 T^{3} - 12 T^{2} + \cdots + 640 Copy content Toggle raw display
7171 T3+19T2++160 T^{3} + 19 T^{2} + \cdots + 160 Copy content Toggle raw display
7373 T3+26T2++328 T^{3} + 26 T^{2} + \cdots + 328 Copy content Toggle raw display
7979 T319T2+160 T^{3} - 19 T^{2} + \cdots - 160 Copy content Toggle raw display
8383 T34T2+320 T^{3} - 4 T^{2} + \cdots - 320 Copy content Toggle raw display
8989 T313T2+20 T^{3} - 13 T^{2} + \cdots - 20 Copy content Toggle raw display
9797 T3+9T2+1420 T^{3} + 9 T^{2} + \cdots - 1420 Copy content Toggle raw display
show more
show less